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Abstract: - The escalating prevalence of Android malware poses a significant threat to cybersecurity. This research explores the 

effectiveness of filter-based feature selection techniques, specifically Information Gain, Chi-Square Test, and Fisher's Score, in analyzing 

Android permission patterns for malware detection. A suite of machine learning classifiers, including Decision Trees, K-Nearest Neighbors, 

Random Forest, Support Vector Machine, and Logistic Regression, were employed to evaluate the performance of these techniques. Results 

demonstrate that filter-based feature selection utilizing Information Gain and Fisher's Score outperformed the Chi-Square Test in terms of 

feature reduction, achieving classification accuracies of 91.53% and 91.22% respectively on the high-dimensional CICInvesAndMal2019 

dataset. This study highlights the potential of filter-based feature selection methods, particularly Information Gain and Fisher's Score, for 

enhancing the efficiency and accuracy of Android malware detection.  
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1 Introduction 

In contemporary times, there has been a notable focus on research pertaining to the security of mobile devices 

running on the Android operating system [1] [2]. A significant concern within this realm is the issue of undesirable 

permissions linked to the installation of Android applications, which serve as a primary conduit for Android 

malware. The pace at which new forms of malware are being uncovered is alarming, with a discovery rate of 

approximately one instance every 10 seconds [3]. This trend is further underscored by the staggering identification 

of around 3 million malicious Android applications in the year 2020 alone. 

While the Android operating system has incorporated dynamic permission management and user-facing warnings 

regarding suspicious permissions during app installation, these safeguards are not foolproof. Despite the alerts, 

users often grant permissions without thorough scrutiny, potentially compromising device security. Moreover, 

malicious applications can still exploit vulnerabilities to download and execute harmful code after installation, 

enabling the exfiltration of sensitive data to remote servers. This highlights the ongoing need for robust security 

mechanisms to counter the evolving tactics employed by malicious actors in the Android ecosystem. 

Numerous permissions are requested by Android applications during installation, which users may or may not 

knowingly grant. The risk of malware infiltration is particularly pronounced in applications sourced from outside 

the official Play Store [5]. Analyzing the permissions requested by applications can serve as a valuable method 

for detecting Android malware. Developing an anti-malware system capable of scrutinizing permissions requested 

during installation could alert Android users to potential threats. Machine learning tools can be employed for the 

dynamic analysis of Android permissions. These permissions are characterized by continuous evolution and high 

dimensionality, as evidenced by the comprehensive CICInvesAndMal2019 dataset containing 4,115 features [6]. 

Therefore, there is a critical need to conduct experiments aimed at identifying a reduced feature set using 

optimization techniques to minimize false positives and enhance accuracy. 

This paper proposes a novel methodology for detecting malicious Android applications by leveraging the distinct 

permission patterns they exhibit. The approach integrates machine learning algorithms, including Random Forest, 

K-Nearest Neighbors, Support Vector Machines, Decision Trees, and Logistic Regression, to classify applications 

based on their permission requests. To enhance the efficiency and accuracy of malware detection, filter-based 

feature selection techniques such as Information Gain, Chi-Square test, and Fisher's Score are applied.  

The paper is structured as follows: Section 2 provides a comprehensive overview of relevant literature, Section 3 

details the methodology employed, Section 5 describes the experimental setup, Section 6 presents the performance 

analysis and experimental results, and Section 7 concludes the study, outlining potential avenues for future 

research. 

2 Related Work 
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Recent research has focused on developing more sophisticated feature selection algorithms to improve the 

accuracy and efficiency of malware detection, particularly in the Android environment. Hein and Myo [10] 

pioneered a permission-based malware classification system, extracting data from the Android manifest file and 

employing dimensionality reduction techniques. While their study demonstrated the potential of permission-based 

analysis, they also acknowledged its limitations, highlighting the need for a more comprehensive approach. Sanz 

et al. [11] further explored permission-based malware identification with their PUMA system, achieving a 

noteworthy 92% accuracy using the Random Forest classifier. However, they emphasized that incorporating 

dynamic analysis techniques could further enhance the effectiveness of malware detection. These studies highlight 

the crucial role of permission patterns in identifying malicious applications, while also underscoring the need for 

integrating dynamic analysis into future malware detection systems.  

Aung and Zaw [12] developed a framework for classifying Android applications as either benign or malicious 

using machine learning techniques. Their approach employed a range of dimensionality reduction methods, 

including Gain Attribute Evaluator, Relief-F Attribute Evaluator, Cfs Subsystem Evaluator, and Consistency 

Subsystem Evaluator, to optimize the feature set. They evaluated the performance of several classification 

algorithms, including J48, Decision Tree, Bayesian classification, Random Forest, Regression Tree, and 

Sequential Minimal Optimization (SMO), using metrics such as accuracy, true positive rate, false-positive rate, 

and precision. While their study demonstrated the effectiveness of their approach, it was limited by the evaluation 

dataset consisting of only 200 samples. Further research with larger and more diverse datasets is necessary to 

validate the generalizability of their findings. 

Further exploring the use of machine learning for Android malware detection, Singh et al. [13] developed a 

permission-based framework utilizing Principal Component Analysis (PCA) for feature selection and a Support 

Vector Machine (SVM) classifier, achieving a 90.08% accuracy rate. Suleiman et al. [14] expanded on this 

approach, extracting 58 features, including API calls and system commands, using APK Analyzer. Through 

experimentation with a Bayesian classifier, they determined that a reduced set of 15-20 features was sufficient for 

optimal performance, outperforming traditional signature-based antivirus software. However, both studies 

acknowledge the need for further validation with larger and more diverse datasets to confirm their findings and 

ensure the robustness of their models against evolving malware tactics.  

Zhang et al. [15] propose a novel method for not only detecting Android malware but also classifying it into 

specific malware families. Their approach utilizes n-gram analysis and feature hashing to extract multi-level 

fingerprints from applications. These fingerprints are then fed into an online classifier trained on the Android 

Malware Genome Project (AMGP) dataset. Utilizing open-source tools like xxd and aapt, they generate n-grams 

for each sub-fingerprint, which are then hashed into bit-vectors using the Scikit-learn toolkit. Notably, their 

method achieved impressive accuracies of 99.2% and 98.8% in identifying malware families within the Derbin 

Dataset. Despite this high performance, the authors acknowledge that incorporating dynamic runtime analysis into 

the sub-fingerprint extraction process could further improve the model's ability to detect and classify evolving 

malware strains.  

Oktay and Ibrahim [16] investigated the efficacy of using a Genetic Algorithm (GA) for feature selection in 

Android malware detection. Their approach involved training three classifiers—Naive Bayes, Decision Trees, and 

Support Vector Machines—each utilizing a unique subset of features selected by the GA. Comparing the 

performance of these classifiers, they found that the SVM classifier achieved the highest accuracy (98.45%) when 

applied to the 16 features identified by the GA. However, their study utilized the AMGP dataset, which is known 

for its outdated nature. Therefore, further research employing more recent datasets with permissions from higher 

API levels is crucial to validate the effectiveness and generalizability of their proposed method.  

Allix et al. [17] undertook a comprehensive forensic analysis of Android malware, examining a vast dataset 

comprising 500,000 applications, both benign and malicious. Their investigation focused not only on malware 

identification through antivirus solutions but also on understanding the methodologies employed by malware 

authors. Significantly, their analysis revealed a critical vulnerability stemming from a lack of cryptography 

knowledge among malware writers. This deficiency frequently leads to the reuse of digital certificates across both 

benign and malicious applications, as current mitigation techniques fail to adequately verify their authenticity. 

This finding underscores the need for improved security measures that can effectively detect and prevent such 

certificate misuse. 

Shifting from static analysis to behavioral analysis, Zaman et al. [18] developed a malware detection method 

based on traffic analysis and system call monitoring. Their approach involved creating a blacklist of known 

malicious applications and implementing a logging mechanism to record communications between apps and 

remote servers. By comparing the blacklisted domains with the logged URLs, they were able to identify potentially 

malicious behavior. Patel [19] provided a comprehensive overview of various Android malware detection models, 

including DroidNative, DREBIN, ICCDetector, APK Auditor, DMDAM, AndroDialysis, and API-based systems, 

analyzing the techniques employed by each model. Further comparative analyses of related works are presented 

in Table 1. 

Table 1. Related work comparison 
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Paper, 

Year 
Dataset Classifier 

Feature 

Selection 

No. of 

Features 

Accura

cy 

[23], 

2018 
MODroid 

Linear discriminant analysis 

(LDA), RF, SVM 
- 134 85.50% 

[24], 

2018 
Own Dataset RF, SVM, KNN, NB, LR NA 696 81% 

[25], 

2019 
MODroid NB, RF, SVM NA 134 86.06% 

[26], 

2014 

Google Play 

Store 
Dalvik Virtual Machine NA - 85% 

[27], 

2018 
Own Dataset NB 

cfsSusetEval + 

Random 

Search, 

PCS+Ranker, 

ClassifierSubse

tEval + 

RandomSearch 

11 80% 

This study proposes a novel approach for Android malware classification by employing filter-based feature 

selection techniques. Specifically, Information Gain, Chi-Square test, and Fisher Score are utilized to identify and 

select a reduced subset of highly relevant features from high-dimensional datasets, thereby enhancing the 

efficiency and accuracy of subsequent classification models. 

 

3 Methodology 

Feature selection plays a critical role in optimizing machine learning models by identifying and retaining only the 

most salient features while eliminating irrelevant or redundant ones. This process not only enhances the model's 

efficiency but also improves its accuracy. This study focuses on a filter-based feature selection technique, 

employing algorithms such as Information Gain, Chi-Square test, and Fisher's Score to effectively discern the 

most informative features within high-dimensional datasets. By reducing the feature space to the most 

discriminative attributes, these methods aim to enhance the performance of subsequent classification models. 

 
Fig 1. System Architecture 

The proposed model follows a systematic process for Android malware classification. Initially, the complete 

feature set of the dataset is considered. Subsequently, a refined subset of features is carefully selected through the 

application of filter-based feature selection techniques. This reduced set of highly relevant features is then 

employed for intrusion detection, leveraging a chosen machine-learning algorithm. The architecture of this model, 

illustrating the sequential flow of data processing and analysis, is depicted in Figure 1. 

 

3.1. Information Gain 

Information Gain (IG) [20] is a fundamental concept in machine learning and data mining, particularly in the 

context of feature selection. It serves as a criterion for measuring the relevance of a feature in predicting the target 

variable of a dataset. The IG metric quantifies the reduction in entropy achieved by splitting the data based on a 

specific feature, thereby indicating the informativeness of that feature. By selecting features with higher 

Information Gain, machine learning models can focus on the most relevant aspects of the data, leading to improved 

model performance and interpretability. The detailed explanation of the Information Gain feature selection 

technique, includes its calculation process and significance in enhancing the efficiency and effectiveness of 

machine learning algorithms. 

Entropy Calculation: Entropy is a measure of uncertainty or disorder in a set of data. It is calculated for the target 

variable (or class labels) before and after splitting the data based on a feature. The formula to calculate entropy is  
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖
𝑐
𝑖=1          (1) 

Where, 𝑆 is the set data, 𝑐 is the number of classes in target variable, 𝑝𝑖  is the proportion of the number instance 

in class 𝑖 to the total number of instances. 

Information Gain Calculation: Information Gain (IG) serves as a measure of the decrease in entropy, or 

uncertainty, achieved by partitioning a dataset based on a specific feature. In essence, IG quantifies the 

informativeness of a feature in discerning between different classes within the dataset. The formula for calculating 

IG is as follows: 

𝐼𝐺 (𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝛴𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠 (𝐴)
|𝑆𝑣|

|𝑆|
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)      (2) 

Where, 𝑆 is the original dataset, 𝐴 is the feature being considered for splitting, 𝑣𝑎𝑙𝑢𝑒𝑠 (𝐴) are the possible values 

of feature 𝐴. 𝑆𝑣 is the subset of 𝑆 for which feature 𝐴 has value 𝑣. |𝑆| and |𝑆𝑣| denote the number of instances in 

sets 𝑆 and 𝑆𝑣 respectively. 

Selecting the Best Feature: Calculate the IG for each feature in the dataset and select the feature with the highest 

IG. This feature is considered the most informative and is chosen for splitting the dataset. 

Repeat: This recursive partitioning process is then repeated for each resulting subset, further splitting the data 

based on the selected features. This iterative procedure continues until a predefined stopping criterion is met. Such 

criteria may include reaching a maximum tree depth, achieving a minimum number of instances within a node, or 

attaining a desired level of purity within the subsets. 

 

3.2. Chi-Square Test 

Feature selection is a crucial step in machine learning model development, aimed at identifying the most relevant 

features that contribute to the prediction task. Among the various techniques available, the Chi-Square (𝜒2) [21] 

test stands out as a valuable method for feature selection, particularly in scenarios involving categorical data. In 

the context of machine learning, the Chi-Square test is applied to assess the relationship between each feature and 

the target variable, aiding in the selection of informative features for model training. The detailed explanation of 

the step-by-step process involved in the Chi-Square feature selection technique, includes the calculation of the 

Chi-Square statistic, determination of degrees of freedom, and assessment of significance.  

Understanding the Chi-Square Test: The Chi-Square test is based on the principle of comparing the observed 

frequencies of categorical variables with the expected frequencies under the assumption of independence. 

Calculating the Contingency Table: To perform the Chi-square test, a contingency table, also known as a cross-

tabulation table, is constructed. This table displays the frequency distribution for every possible combination of 

categories between the two variables under consideration. In the context of feature selection, one of these variables 

typically represents the target variable (e.g., class labels), while the other represents the feature variable being 

evaluated (e.g., feature values). 

Calculating Expected Frequencies: Subsequently, the expected frequencies for each cell within the contingency 

table are calculated. These expected frequencies represent the values that would be observed if there were no 

association between the target variable and the feature variable, i.e., under the assumption of independence. The 

formula for calculating the expected frequency of a cell is as follows: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙 𝑥 𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙

𝐺𝑟𝑎𝑛𝑑 𝑇𝑜𝑡𝑎𝑙
       (3) 

Calculating the Chi-Square Statistic: The Chi-Square statistic is computed by first determining the squared 

differences between the observed frequencies (obtained from the data) and the expected frequencies (calculated 

based on the assumption of independence). Each squared difference is then divided by the respective expected 

frequency. These values are subsequently summed across all cells within the contingency table. This process is 

mathematically expressed by the following formula: 

𝜒2 =
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
          (4) 

Calculating Degrees of Freedom: Degrees of freedom (df) is calculated as  
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 − 1) 𝑋 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1)       (5) 

Determining Significance: Finally, the significance of the Chi-Square statistic is assessed using a critical value 

from the Chi-Square distribution table. If the calculated Chi-Square value is greater than the critical value for a 

given significance level (e.g., 0.05), then the null hypothesis of independence is rejected, indicating that the two 

variables are dependent and the feature is considered important for classification. 

Feature Selection: Features with high Chi-Square values and low p-values (significance level) are considered 

important and can be selected for further analysis or model building. 

 

3.3. Fisher’s Score 

Fisher's Score [22], also known as Fisher's Discriminant Ratio, is a widely used feature selection technique that 

evaluates the discriminatory power of individual features in classification tasks. By measuring the ratio of 

between-class variance to within-class variance, Fisher's Score identifies features that are most effective in 

distinguishing between different classes. The detailed explanation of the step-by-step process involved in Fisher's 
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Score feature selection, includes the calculation of mean vectors for each class, the computation of between-class 

and within-class scatter matrices, and the derivation of Fisher's Score for each feature.  

Calculate the Mean Vectors: Calculate the mean vector for each class. If you have 𝐶 classes and 𝑛 features, you 

will have 𝐶 mean vectors of size 𝑛. Mean vector for class 𝑐: 

𝜇𝑐 =
1

𝑁
∑ 𝑥𝑐𝑖

𝑁𝑐

𝑖=1
           (6) 

Where, 𝑁𝑐 is the number of samples in class 𝑐 and 𝑥𝑐𝑖
 is the 𝑖𝑡ℎsample is class 𝑐. 

Calculate the Between-Class Scatter Matrix (SB): This matrix, known as the between-class scatter matrix, 

quantifies the variance between different classes within the dataset. Its calculation involves summing the outer 

products of the differences between each individual class mean vector and the overall mean vector of the entire 

dataset. This process effectively captures the degree of separation between the classes based on their feature 

values. 

𝑆𝐵 = ∑ 𝑁𝑐(𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)𝑇𝐶

𝑐=1
         (7) 

Where, 𝜇 is the overall mean vector calculated as the mean of all samples. 

Calculate the Within-Class Scatter Matrix (SW): This matrix measures the variance within classes and is 

calculated as the sum of the scatter matrices for each class. 

𝑆𝑊 = ∑ ∑ (𝑥𝑐𝑖 − 𝜇𝑐)(𝑥𝑐𝑗 − 𝜇𝑐)
𝑇𝑁𝑐

𝑖=1

𝐶

𝑐=1

        (8) 

Calculate the Fisher's Score (F): Fisher's Score for each feature is calculated as the ratio of the trace of SB to 

SW. 

𝐹 =
𝑡𝑟𝑎𝑐𝑒 (𝑆𝐵)

𝑡𝑟𝑎𝑐𝑒 (𝑆𝑊)
           (9) 

Where, 𝑡𝑟𝑎𝑐𝑒 (𝐴) denotes the sum of the diagonal elements of matrix 𝐴. 

Select Features: Features with higher Fisher's scores are selected as they are deemed more discriminatory for 

classification tasks. 

 

4 Experimentation Setup 

The experimental setup for this study was conducted on a Windows 10 (64-bit) operating system running on an 

Intel® Core™ i5 CPU @1.80 GHz processor, equipped with 8 GB of RAM and a 1 TB HDD. The system 

employed the Anaconda distribution of Python, integrating essential machine learning libraries.  

The CICInvesAndMal2019 dataset, selected for its high dimensionality, served as the evaluation dataset. This 

dataset comprises 1594 instances, including 1187 benign and 407 malware samples, described by 4115 Android 

permissions. The malware samples are classified into 42 distinct families, which are further grouped into broader 

categories such as Adware, SMS, Ransomware, and Scareware. A detailed breakdown of the dataset's composition 

is presented in Table 2. 

Table 2. Dataset description 

Dataset Features No. of Samples Size 

CICInvesAndMal2019 4115 

1594 

12.7 MB Malware Benign 

1187 407 

 

5 Performance Analysis and Experimental Results 

The proposed Android malware detection system evaluates its classification accuracy using several standard 

metrics, including Mean Squared Error (MSE), Root Mean Square Error (RMSE), Precision, Recall, F1-Score, 

and Accuracy. These metrics are defined as follows: 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
       (10) 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
       (11) 

F1-Score = 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
        (12) 

Accuracy = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
    (13) 

MSE = 
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
         (14) 

RMSE = √
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
        (15) 
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In evaluating the performance of the classification models, standard metrics were employed, including 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (TP), 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (TN), 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (FP), and 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (FN). TP represents the 

number of benign samples correctly classified, while TN represents the number of malware samples correctly 

classified. Conversely, FP indicates the number of benign samples incorrectly classified as malware, and FN 

represents the number of malware samples incorrectly classified as benign. These metrics are formally defined as 

follows: TP represents instances where the predicted output �̂�𝑖 correctly identifies a benign sample, TN represents 

instances where �̂�𝑖 correctly identifies a malware sample, FP occurs when �̂�𝑖 incorrectly classifies a benign sample 

as malware, and FN occurs when Y ̂_i incorrectly classifies a malware sample as benign. Here, �̂�𝑖 denotes the 

actual output or true class label, and 𝑛 represents the total number of samples in the dataset. 

To assess the efficacy of the Information Gain, Chi-Square test, and Fisher's Score feature selection methods, five 

widely-used classification algorithms were employed: logistic regression, k-nearest neighbors, decision tree, 

support vector machine, and random forest. Each feature selection method was evaluated in conjunction with each 

of these classifiers, resulting in a comprehensive set of experiments. The performance metrics for each 

combination of feature selection method and classifier are presented in Table 3. This comparative analysis 

provides insights into the effectiveness of each feature selection technique in enhancing the performance of 

different classification algorithms. 

Table 3. Accuracy comparison of experimented filter-based feature selection methods 

Feature 

Selection 

Method 

Classifier 

Accuracy 

Before 

Feature 

Selection 

Accuracy 

After 

Feature 

Selection 

% 

Change 

in 

Accuracy 

No. of 

Features 

Selected 

% 

Decrease 

in 

Features 

Time taken 

for Feature 

Reduction in 

Sec. 

Information Gain 

SVM 0.915360502 0.89968652 -1.71% 49 98.81% 

35.7 

DT 0.909090909 0.915360502 0.69% 49 98.81% 

KNN 0.912225705 0.87460815 -4.12% 49 98.81% 

LR 0.909090909 0.887147335 -2.41% 49 98.81% 

RF 0.940438871 0.909090909 -3.33% 49 98.81% 

Chi Square Test 

SVM 0.915360502 0.902821317 -1.37% 50 98.78% 

0.204558849 

DT 0.909090909 0.912225705 0.34% 50 98.78% 

KNN 0.912225705 0.921630094 1.03% 50 98.78% 

LR 0.909090909 0.887147335 -2.41% 50 98.78% 

RF 0.940438871 0.915360502 -2.67% 50 98.78% 

Fishers Score 

SVM 0.915360502 0.896551724 -2.05% 49 98.81% 

4.167310238 

DT 0.909090909 0.912225705 0.34% 49 98.81% 

KNN 0.912225705 0.887147335 -2.75% 49 98.81% 

LR 0.909090909 0.884012539 -2.76% 49 98.81% 

RF 0.940438871 0.927899687 -1.33% 49 98.81% 

 

The performance analysis of prominent classification algorithms integrated with feature selection methods, 

namely Information Gain, Chi-Square test, and Fisher's Score, are illustrated from Graphs 1 to 3. 

 
Graph 1. Performance Analysis of Decision Tree 

with Information Gain 

 
Graph 2. Performance Analysis of KNN with Chi-

Square Test 
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Graph 3. Performance Analysis of Decision Tree with Fishers Score 

 

Figures 2 to 4 depict the Area Under the Curve (AUC) of the ROC curves corresponding to the aforementioned 

graphs. The results indicate that the Decision Tree algorithm, when employed with Information Gain and Fisher's 

Score, exhibits a larger area under the curve, suggesting better performance in terms of feature space optimization. 

 
   Fig 2. ROC curve for DT – IG  Fig 3. ROC curve for KNN – Chi Square 

 
Fig 4. ROC curve for DT – Fishers Score 

Among the various experiments conducted, the decision tree classifier using Information Gain for feature selection 

exhibited the best performance, achieving a 0.69% improvement in accuracy with only 49 features selected out of 

4115. Similarly, the decision tree classifier using Fisher's Score as the feature selection criterion outperformed 

other comparison algorithms, achieving a 0.34% increase in accuracy with 50 features. Lastly, the KNN classifier 

using the Chi-Square test for feature selection demonstrated superior performance compared to other feature 

selection algorithms, achieving an overall increase in accuracy of 1.03% with only 49 selected features, indicating 

a substantial 98.81% reduction in the feature space. 

 

6 Conclusion and Future Work 

The increasing reliance on smartphones necessitates robust security measures to protect user data from Android 

malware attacks. This study addresses this challenge by exploring the efficacy of three filter-based feature 

selection algorithms – Information Gain, Chi-Square Test, and Fisher's Score – in conjunction with five machine 

learning classifiers: KNN, Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM), and 

Random Forest (RF). Utilizing the high-dimensional CICInvesAndMal2019 dataset, which encompasses 4115 

features, the performance of each feature selection method paired with each classifier was rigorously evaluated. 

Notably, the Decision Tree classifier, when combined with either Information Gain or Fisher's Score, achieved the 
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highest accuracy of 95.09%, utilizing a significantly reduced subset of only 49 features. While the Chi-Square 

Test, in conjunction with the KNN classifier, also demonstrated respectable accuracy (92.16% with 50 features), 

its performance in terms of AUC ROC in the reduced feature spaces was lower compared to using the full feature 

set. These findings underscore the effectiveness of Information Gain and Fisher's Score in reducing dimensionality 

and improving the performance of machine learning models for Android malware detection in high-dimensional 

datasets. 

This research lays the groundwork for several promising avenues of future exploration. Subsequent studies will 

focus on developing and evaluating wrapper-based feature selection techniques, aiming to further refine the 

selection process and potentially uncover even more performant feature subsets. Additionally, incorporating 

dynamic analysis techniques, particularly behavior-based analysis for real-time data monitoring, will be a crucial 

area of investigation to enhance the detection and classification of evolving Android malware threats. 

 

References 
[1] P.R.K.Varma, K.V.S.Raju and K.P.Raj, "Android mobile security by detecting and classification of malware based on 

permissions using machine learning algorithms," in International Conference on IoT in Social, Mobile, Analytics and 

Cloud (I-SMAC), SCAD Institute of Technology, Palladam,India, 2017.  

[2] N.Anusha and B.Rajalakshmi, "Sensor based application for malware detection in android OS (Operating System) 

devices," in 2017 International Conference on Information Communication and Embedded Systems (ICICES), Chennai, 

India, 2017.  

[3] https://www.techrepublic.com/article/new-android-malware-found-every-10-seconds-report-says/. [Online].  

[4] S.H.Moghaddam and M.Abbaspour, "Sensitivity analysis of static features for Android malware detection," in 2014 22nd 

Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2014.  

[5] W.Qing-Fei and F.Xiang, "Android Malware Detection Based on Machine Learning," in 2018 4th Annual International 

Conference on Network and Information Systems for Computers (ICNISC), Wuhan, China, 2018.  

[6] Taheri, Laya, Kadir, Abdul, Lashkari and A.Habibi, "Extensible Android Malware Detection and Family Classification 

Using Network-Flows and API-Calls," in 2019 International Carnahan Conference on Security Technology (ICCST), 

Chennai, India, 2019.  

[7] P.Xiong, X.Wang, W.Niu, T.Zhu and G.Li, "Android malware detection with contrasting permission patterns," China 

Communications, vol. 11, no. 8, pp. 1-14, Aug 2014.  

[8] F.M.Darus, N.A.A.Salleh and A.F.Ariffin, "Android Malware Detection Using Machine Learning on Image Patterns," in 

2018 Cyber Resilience Conference (CRC), Putrajaya, Malaysia, 2018.  

[9] S.Arshad, M.A.Shah, A.Wahid, A.Mehmood, H. Song and H.Yu, "SAMADroid: A Novel 3-Level Hybrid Malware 

Detection Model for Android Operating System," vol. 6, pp. 4321-4339, 2018.  

[10] C L P M Hein and K M Myo, "Permission-based Feature Selection for Android Malware Detection and Analysis," 

International Journal of Computer Applications, vol. 181 , no. 19, pp. 29-39, 2018. 

[11] B Sanz et al., "PUMA: Permission Usage to Detect Malware in Android," in International Joint Conference CISIS’12-

ICEUTE´12-SOCO´12, Ostrava, Czech Republic., 2013, pp. 289-298. 

[12] Z Aung and W Zaw, "Permission-Based Android Malware Detection," International Journal Of Scientific & Technology 

Research, vol. 2, no. 3, pp. 228-234, 2013. 

[13] A K Singh, C D Jaidhar, and M A A Kumara, "Experimental analysis of Android malware detection based on 

combinations of permissions and API-calls," Journal of Computer Virology and Hacking Techniques, vol. 15, no. 3, pp. 

209-218, 2019. 

[14] S S Y Yerima, S Sezer, G McWilliams, and I Muttik, "A New Android Malware Detection Approach Using Bayesian 

Classification," in IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 

Barcelona, Spain, 2013, pp. 121-128. 

[15] L Zhang, V L Thing, and Y Cheng, "A Scalable and extensible framework for android malware detection and family 

attribution," Computer & Security, vol. 80, pp. 120-133, 2019. 

[16] O Yildiz and I A Doğru, "Permission-based Android Malware Detection System Using Feature Selection with Genetic 

Algorithm," International Journal of Software Engineering and Knowledge Engineering, vol. 29, no. 2, pp. 245-262, 

2019. 

[17] K.Allix, Jerome, T.F.Bissyandé, Klein, State and Y.L.Traon, "A Forensic Analysis of Android Malware -- How is 

Malware Written and How it Could Be Detected?," in International computer software and applications conference, 

Vasteras, Sweden, 2014.  

[18] M.Zaman, T.Siddiqui, M.R.Amin and M.S.Hossain, "Malware detection in Android by network traffic analysis," in 2015 

International Conference on Networking Systems and Security (NSysS), Dhaka, Bangladesh, 2015.  

[19] Z.D.Patel, "Malware Detection in Android Operating System," in 2018 International Conference on Advances in 

Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 2018.  

[20] Prasetiyowati, M.I., Maulidevi, N.U. & Surendro, K. Determining threshold value on information gain feature selection 

to increase speed and prediction accuracy of random forest. J Big Data 8, 84 (2021). https://doi.org/10.1186/s40537-021-

00472-4 

[21] Zhai, Y.; Song, W.; Liu, X.; Liu, L.; Zhao, X. A chi-square statistics based feature selection method in text classification. 

InProceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), 

Beijing, China,23–25 November 2018; pp. 160–163  

[22] Q. Q. Gu, Z. H. Li, J. W. Han. Generalized fisher score for feature selection. https://arxiv.org/abs/1202.3725, 2012. 



J. Electrical Systems 20-3 (2024): 2801-2809 

 

2809 

 

[23] Rehman, Khan, Muhammad, Lee, Lv, Baik, P.A.Shah, K.Awan and Mehmood, "Machine learning-assisted signature and 

heuristic-based detection of malwares in Android devices," Computers and Electrical Engineering, vol. 69, pp. 821-841, 

July 2018.  

[24] M.Kedziora, P.Gawin, I.Jozwiak and M.Szczepanik, "Android Malware Detection Using Machine Learning and Reverse 

Engineering," in CS & IT Conference Proceedings, Wroclaw University of Science and Technology, Poland, 2018.  

[25] B.Wu, W.Wen and J.Li, "Android Malware Detection Method Based on frequent Pattern and Weighted Naive Bayes," in 

Cyber Security, Beijing, China, Springer, 2019, pp. 36-51. 

[26] V. Grampurohit, "Android App Malware Detection," IIIT, Hyderabad, India, 2016. 

[27] P.Girdhar and D.Virmani, "An Analysis of Feature Selection Method in Mobile Malware Detection," International 

Journal of Engineering Applied Sciences and Technology, vol. 3, no. 3, pp. 56-61, 2018. 

 

 


