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Abstract: - Lung cancer is a big problem in global health, hence there has to be improvement in methods for detecting it early. In this study, 

we introduce a novel approach to enhancing the precision of lung cancer detection by merging ResNet and CapsuleNet into a fusion model. 

The strength of CapsuleNet in capturing hierarchical properties and the experience of ResNet in tackling vanishing gradient challenges are 

combined to create a more robust solution for lung cancer diagnosis. The suggested CapsuleNet-ResNet fusion model makes use of 

CapsuleNet's distinctive capsule structure to effectively describe spatial hierarchies within lung imagery. Dynamic routing can capture 

complex patterns more efficiently by using capsules instead of regular neurons. Using ResNet's residual learning to address issues caused 

by deep neural networks, we further enhance the model's feature extraction. We train ResNet and CapsuleNet independently after pre-

processing the lung image collection. Afterwards, the learned representations from both networks are combined using a well-planned fusion 

procedure. More discriminative detection of lung cancer is achieved by the model through the combination of local and global data. We 

put our suggested method through its paces using benchmark lung cancer datasets in a battery of tests. We test the suggested CapsuleNet-

ResNet fusion model against state-of-the-art methods, CapsuleNet and ResNet models on their own, and more. Our CapsuleNet-ResNet 

fusion model revealed significant results with 98% accuracy, 97.2% precision, 98.5% recall rate and 97.8% F1 Score. These results surpass 

those of fundamental algorithms such as VGG16, CNN, and ResNet. It reveal that our fusion model has the potential to be used for early 

detection of lung cancer because of its improved detection accuracy and resilience. By accurately depicting lung images and making use 

of the unique properties of ResNet and CapsuleNet, our proposed method enhances diagnostic abilities of lung cancer. 
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I.  INTRODUCTION  

Lung cancer, a substantial healthcare concern, not only exacts a significant toll in terms of cost but also manifests 

as a formidable challenge because of its tendency for late-stage diagnosis and high mortality rates. Given these 

challenges, there is a pressing need for advanced diagnostic technologies capable of early detection with heightened 

accuracy to enhance the survival rates of cancer patients. Recent years have witnessed a remarkable advancement 

in medical imaging analysis, largely attributed to the emergence of deep learning models being used in multiple 

researches. Notably, Wang et al. (2023) introduced a multiple-scale residual network aimed at improving the 

identification of specific types of lung nodules, thus enhancing diagnostic capabilities [1]. Tian et al. (2024) 

pioneered a combined model merging radiomics and deep learning techniques to forecast hidden lymph node 

metastases in lung cancer across multiple healthcare facilities, demonstrating the efficacy of such integration [2]. 

Alamgeer et al. (2023) employed nature-based optimization techniques and deep feature fusion models to detect 

and classify lung cancer, showcasing innovative approaches in the field [3]. Furthermore, Barrett and Viana (2022) 

proposed EMM-LC Fusion as a superior multimodal fusion method for lung cancer classification, emphasizing the 

importance of integrating diverse data forms for enhanced accuracy [4]. Chaturvedi et al. (2021) explored machine 

learning algorithms for lung cancer prediction and categorization, shedding light on the potential of these methods 

in the domain [5]. Meanwhile, Gite et al. (2023) addressed the challenge of lung image segmentation for diagnosis 

using deep learning techniques, paving the way for cutting-edge segmentation approaches [6]. Mahum and Al-

Salman (2023) introduced Lung-RetinaNet, incorporating a context module and multi-scale feature fusion to 

improve lung cancer detection accuracy, adding significant value to the field [7]. Similarly, Mohamed et al. (2023) 

developed a system for autonomously detecting and classifying lung cancer using deep learning in conjunction with 

optimization search approaches, highlighting the potential of optimization techniques in improving model 

performance [8]. Furthermore, Nazir et al. (2023) focused on Multiview image registration and fusion for machine 

learning-based lung cancer diagnosis, underscoring the benefits of data integration for improved detection accuracy 
[9]. Pour and Esmaeili (2023) proposed genetically independent recurrent deep learning for lung cancer diagnosis, 

introducing a novel approach within the domain [10]. Prasad et al. (2022) proposed a novel approach combining 

fuzzy K-means clustering with deep learning for enhanced accuracy in identifying lung cancer from CT lung 
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images, demonstrating the effectiveness of integrating clustering with deep learning [11]. Concurrently, Tashtoush 

et al. (2023) conducted a comparative study utilizing a VGG-16 CNN model and CT image processing for Early 

identification and categorization of lung cancer, highlighting VGG-16 specific advantages in this context [12]. 

Furthermore, Thanoon et al. (2023) performed a thorough assessment of techniques using deep learning employed 

in lung cancer diagnosis using CT scans, offering insights into diverse applications of deep learning methodologies 

for addressing diagnostic challenges [13]. Nisa et al. (2023) explored detection of lung cancer, highlighting the 

potential benefits of employing higher tensor representations to enhance classification accuracy [14]. Meanwhile, 

Pagadala et al. (2023) focused on enhancing lung cancer identification through CT scans by integrating image 

processing and deep neural networks, aiming to enhance diagnostic accuracy by leveraging the synergy between 

deep learning and image processing techniques [15].Among these models, ResNets and CapsuleNets have garnered 

attention for their efficacy in extracting intricate patterns and features from imaging data. While ResNets excel in 

mitigating the vanishing gradient problem and capturing complex patterns, CapsuleNets offer a unique approach 

by recording hierarchical relationships between features, thus improving generalization and durability. However, 

both models exhibit limitations when applied to the task of identifying lung cancer, potentially struggling with the 

interpretation of complex spatial features and nuanced hierarchical relationships. In response to these challenges, 

fusion models combining the strengths of ResNet and CapsuleNet provides a hopeful direction for boosting the 

precision and effectiveness of lung cancer diagnosis. Nevertheless, the development of such fusion models entails 

overcoming several hurdles, including computational complexity, interpretability of capsule routing, and dataset 

variability arising from diverse imaging modalities and acquisition settings. To address these challenges, the 

research endeavors to devise an optimized fusion model that seamlessly integrates hierarchical features from 

ResNet and CapsuleNet, thereby enhancing lung cancer detection accuracy. Additionally, efforts will be directed 

towards enhancing CapsuleNet's interpretability, optimizing computational efficiency, and ensuring the 

generalizability and applicability of the proposed model in real-world clinical settings. By attaining these goals, the 

study aims to contribute significantly to the field of medical imaging analysis, offering a robust solution for the 

early diagnosis of lung cancer and ultimately improving patient outcomes. 

The entire paper is divided into 4 sections. The Introduction showcasing a short summary of the research problem, 

motivation, and objectives. It also includes relevant literature, encompassing existing research and identifying gaps 

in knowledge. The Methodology section explains the development of the CapsuleNet-ResNet fusion model and 

outlines the experimental setup. Also it defines the datasets required for the process. The Results and Discussion 

section presents and analyzes the experimental results, followed by in-depth discussions. The Conclusion section 

includes conclusion which summarizes the findings, highlights their implications, and suggests avenues for future 

exploration. 

II. METHODOLOGY 

A. Dataset 

The investigation draws upon a dataset obtained from the Iraq-Oncology Teaching Hospital/National Center for 

Cancer Diseases (IQ-OTH/NCCD) compilation for the analysis of lung cancer. This specific dataset, denoted as 
[16], compiles information collected during a three-month span in 2019 from specialized medical facilities. It 

comprises CT scans obtained from a diverse range of individuals, including both healthy participants and those 

afflicted with lung cancer at various stages of the disease (Figure 1). These CT scans were administered by 

personnel from both the Iraq-Oncology Teaching Hospital and the National Center for Cancer Diseases, with 

detailed annotations provided by oncologists and radiologists. 

The dataset comprises 1190 images, representing CT scan slices from 110 instances (as shown in Table 1). These 

instances are categorized into three main groups: normal, benign, and malignant. Specifically, there are 55 normal 

cases, 15 benign cases, and 40 malignant cases. 

Initially, CT scans were acquired using a Siemens SOMATOM scanner and saved in DICOM format. The CT 

protocol settings included a voltage range of 120 kV, a slice thickness of 1 mm, and a window width adjustable 

from 350 to 1200 HU, along with a window center ranging from 50 to 600. All scans were performed during full 

inhalation. Before any analysis, the images were de-identified, and the necessity for signed consent was exempted 

by the oversight review board. Approval for the study was obtained from the institutional review boards of all 

involved hospitals. 
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In a typical scan, anywhere from eighty to two hundred slices are utilized, with each slice providing varying 

perspectives of the human chest from different angles. The collection comprises 110 cases, showcasing a broad 

spectrum of demographic diversity, encompassing factors such as gender, age education level, marital status, 

geographic location and more. The majority of individuals hail from central Iraqi provinces, including Babylon, 

Baghdad, Wasit, Diyala, and Salahuddin, while others are engaged in occupations such as farming or trading. 

Additionally, individuals employed in Iraq's transportation and oil ministries are represented in the dataset. 

 

 
Figure 1: Dataset (a) Samples from dataset. (b) Distribution of cases in target class 

 

                 Table 1: Dataset Description and Class Distribution 

Class Number of Cases Number of Slices Description 

Normal 55 Varies Healthy subjects 

Benign 15 Varies Non-cancerous abnormalities 

Malignant 40 Varies Cancerous cases in different stages 

 

Table 2 is a feature table that summarizes relevant data points from the IQ-OTH/NCCD lung cancer dataset and 

should help you understand it better. Characteristics of the IQ-OTH/NCCD Lung Cancer Database. 

 

                    Table 2: Feature Table for the IQ-OTH/NCCD Lung Cancer Dataset 

Feature Description 

Scanner Siemens SOMATOM 

CT Protocol 120 kV, 1 mm slice thickness, Window width: 350-1200 HU, Window center: 50-600 

Class Distribution Normal: 55 cases, Benign: 15 cases, Malignant: 40 cases 

Number of Slices 80 to 200 slices per scan 

Demographics Varying gender, age, educational attainment, area of residence, and living status 

 

This feature table encapsulates critical information about the dataset, providing a comprehensive overview of its 

characteristics and ensuring transparency in the experimental setup. 

B. Proposed Model: CapsuleNet-ResNet Fusion Model 

For accuracy improvement of lung cancer detection, the researchers have developed the CapsuleNet-ResNet Fusion 

Model. This model combines the two networks, ResNet and CapsuleNet, to use their complementary capabilities. 

The goal of this fusion model is to tackle the problems with deep neural networks by utilising ResNet's residual 

learning and to efficiently capture hierarchical information using CapsuleNet's distinctive capsule structure. 

1) CapsuleNet Architecture 

Hinton et al.'s Capsule Networks (CapsuleNet) deviate from conventional neural networks in that they encode 

feature hierarchies. By substituting capsules for neurons, CapsuleNet enables dynamic routing to efficiently capture 

intricate patterns. Let 
( )ixC

denote the CapsuleNet representation for the input image ix
 

The routing mechanism is represented by 
( )ic xR

, which dynamically assigns weights to capsules. 

( ) matrix) routing (Adaptiveic xR
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The routing matrix 
( )ic xR

 is optimized by minimizing the Wasserstein distance between the predicted and ground 

truth routing matrices: 

( ) ( )( )icCic

n

=iC
Θ

xR,Θ,xRnim 
1

nWasserstei

                               (1) 

Here, CΘ represents the CapsuleNet parameters, and 
( )ic xR

 is the ground truth adaptive routing matrix. 

Times Roman or Times New Roman may be used. If neither is available on your word processor, please use the 

font closest in appearance to Times. Avoid using bit-mapped fonts if possible. True-Type 1 or Open Type fonts are 

preferred. Please embed symbol fonts, as well, for math, etc. 

 

2) ResNet Architecture 

Residual Networks (ResNet) introduced by He et al.  excel in capturing complex patterns and mitigating the 

vanishing gradient problem. Let 
R( xi )

 denote the ResNet representation for the input image 
xi . ResNet utilizes 

residual blocks, and the output of a residual block is given by: 

( ) ( )Riiib Θ,xF+x=xR
                          (2) 

Here,  represents the residual function, and 
Θ

R  denotes the ResNet parameters. 

( )Ri Θ,xF
 

 

3) CapsuleNet-ResNet Fusion 

The CapsuleNet-ResNet Fusion Model integrates the representations from CapsuleNet and ResNet using a fusion 

mechanism. The fused feature representation 
F

i  for the input image 
xi  is defined as the concatenation of 

CapsuleNet and ResNet representations: 

( ) ( )iii xRxC=F ⊕
                        (3) 

Here, ⊕ denotes the concatenation operation. 

 Objective Function 

The overall objective function for the proposed CapsuleNet-ResNet Fusion Model aims to minimize a modified 

Huber loss: 

( )∥∥
1

iFi

n

=i

δ
nim
Θ

yΘF
                 (4) 

Here, 
Θ

 represents the parameters to be optimized, 
ΘF  are the fusion model parameters, 

ϕδ ( z)
 is the modified 

Huber loss, and 
δ

 is the threshold parameter. 

( )

parameter) (Threshold

loss)Huber  (M odified

)parameters model(Fusion 

optimized) be  tos(Parameter

δ

z

Θ

Θ

δ

F

 

This objective function seeks optimal parameters 
Θ

 and 
ΘF  for the fusion modelin an effort to optimise the 

combined hierarchical features' adjusted Huber loss. The goal of the fusion model is to enhance the lung cancer 

detection accuracy by including both global and local information, by merging CapsuleNet and ResNet 

representations. 

 

4) Detailed Model Architecture 

The CapsuleNet-ResNet Fusion Model consists of three main components: The CapsuleNet layer, the ResNet layer, 

and the Fusion layer. 

a) CapsuleNet Layer: 
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The CapsuleNet layer comprises capsules, each responsible for encoding specific hierarchical features. Let ijv
 

 represent the output vector of capsule 
j

 in the primary capsule layer for input ix
. The length of this vector, 

denoted as 
 )  )ijv

 represents the probability of the presence of the corresponding entity in the input. The dynamic 

routing algorithm is employed to determine the coupling coefficients 
ci j , which dictate the contribution of each 

capsule to the higher-level capsule’s output. 

( )

( )
jj

jj

ijij

i

ijj

s=v

u=s

vWc=u

Routing

Squash



                                                             (5) 

Here, 
u j  is the total input to capsule 

j
, js

 is the squashing function applied to ju
, and jv

 is the output of 

capsule 
j
 after routing. 

b) ResNet Layer: 

The ResNet layer is composed of residual blocks, each containing a shortcut connection. Let 
xi  be the input to a 

residual block, and 
F ( xi ,ΘR)

 represent the output of the block, where 
Θ

R  denotes the ResNet parameters. The 

output of the residual block is given by: 

( )Riii Θ,xF+x=y
                           (6) 

This structure allows the model to learn residual functions and facilitates the training of deeper networks. 

c) Fusion Layer: 

The Fusion layer combines the output representations from the CapsuleNet and ResNet layers. The feature vector 

iz
 at the output of the Fusion layer is the concatenation of the CapsuleNet output 

v j  and the ResNet output iy
. 

 )
iji y,v=z

 
This concatenated feature vector is then used for further processing in subsequent layers or for final classification. 

The overall objective function for the CapsuleNet-ResNet Fusion Model combines the losses from both the 

CapsuleNet and ResNet components. Let 
yi  be the ground truth label for input 

xi , and capsuleL
 

 and 
Lresnet  represent the losses for the CapsuleNet and ResNet components, respectively. The combined loss is 

given by: 

( ) resnetcapsuletotal 1 Lα+Lα=L
                        (7) 

Here, α  is a hyperparameter that balances the contributions of the CapsuleNet and ResNet losses. 

( ) ( ) ( ) )

( )

( ) resnetcapsuletotal

resnet

capsule

1

M SE

1log1log

Lα+Lα=L

y,y=L

yy+yy=L

ii

i

i j

ijijijij





                                     (8) 

Here, 
ŷ

i j  is the predicted probability by CapsuleNet, and iy
is the predicted output by ResNet. The Mean Squared 

Error (MSE) is used as the regression loss for the ResNet component. 

The suggested CapsuleNet-ResNet Fusion Model's architecture is shown in Figure 2. The Algorithm of the same is 

also shown in Figure 3. The CapsuleNet and ResNet branches, as well as the Fusion Layer, are essential parts of 

this complicated architecture. Both the CapsuleNet and ResNet branches process the input image, and they provide 

separate representations, labelled as and, respectively. Using a weighted loss function, which is symbolised as, the 

Fusion Layer merges the results of these branches. 
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( ) resnetcapsuletotal -1 Lα+Lα=L
                         (7) 

The final prediction is generated at the output layer. 

 

 
                Figure 2: Proposed CapsuleNet-ResNet Fusion Model Architecture 

 

                      
                    Figure 3: Proposed CapsuleNet-ResNet Fusion Model Algorithm 

 

C. Evaluation Metrics 

For accuracy improvement of lung cancer detection, the researchers have developed the CapsuleNet-ResNet Fusion 

Model. This model combines the two networks, ResNet and CapsuleNet, to use their complementary capabilities. 
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The goal of this fusion model is to tackle the problems with deep neural networks by utilising ResNet's residual 

learning and to efficiently capture hierarchical information using CapsuleNet's distinctive capsule structure. 

 

1) Accuracy 

Accuracy is a measure of how well a model predicts future outcomes by comparing the number of cases for which 

the model is correct with the total number of instances in the dataset: 

sPrediction ofNumber  Total

sPredictionCorrect  ofNumber 
Accuracy=

                      (8) 

 

2) Loss 

The discrepancy between the actual and expected values is depicted by the loss function. In our fusion model, we 

employ a modified version of the Huber loss: 

( )∥∥Loss
1

iFi

n

=i

δ
nim
Θ

yΘF= 
                       (4) 

 

3) Precision, Recall, and F1 Score 

Precision, recall, and F1 score are metrics commonly used in binary classification tasks. 

Positives False + Positives True

Positives True
Precision =

                     (9) 

Negatives False + Positives True

Positives True
Recall =

                    (10) 

Recall +Precision 

RecallPrecision
2Score F1 =

                                                                                                             (11) 

 

4) Confusion Matrix 

In the confusion matrix, you can observe the model's predictions regarding the number of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). This term is: 










TPFN

FPTN

 
Taken as a whole, these measures provide light on how well the model detects lung cancer. 

III. RESULTS AND DISCUSSION 

Here, we detail our experimental findings and talk about how well the CapsuleNet-ResNet Fusion Model worked. 

A. Preparing Data 

First, we collected CT scan images from the Iraq-Oncology Teaching Hospital/National Centre for Cancer Diseases 

(IQ-OTH/NCCD) to use in preparing the lung cancer dataset. There are 1,190 pictures in the collection, broken 

down into normal, benign, and cancerous categories. The cases included in the dataset number 110. 

Image scaling to 256 × 256 pixels and pixel value normalisation between 0 and 1 were part of the data preprocessing 

steps. Using a 75-25 split, the dataset was divided into two parts: the training set and the validation set. We 

oversampled minority classes using the Synthetic Minority Over-Sampling Technique (SMOTE) to fix the class 

imbalance and provide a more balanced training set. 

B. Model Building 

We have combined CapsuleNet with a tweaked ResNet50 to create our suggested model. To classify lung cancer, 

we first loaded the ResNet50 base sans the top classification layer and then added our own custom layers. Sparse 

categorical cross-entropy loss and the Adam optimizer were used to construct the model. 

Overfitting was avoided by terminating training early after 20 epochs. A grand total of 40,359,171 parameters, 

16,777,731 of which are trainable, make up the resultant model architecture. 
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C. Evaluation Metrics 

Accuracy, precision, recall, F1 score, loss, and the confusion matrix were some of the measures used to assess the 

model's performance. The results of the classification on the validation set are summarised in Table 3. 

                                                  

Table 3: Classification Results on Validation Set 

Class Precision Recall F1 Score Support 

Normal 0.83 1.00 0.91 30 

Benign 1.00 1.00 1.00 137 

Malignant 1.00 0.94 0.97 108 

 

The confusion matrix further details the model’s predictions. 

















10206

01370

0030

 

D. Discussion 

An overall accuracy of 98% on the validation set was achieved by the model, demonstrating its effectiveness in 

lung cancer case classification. The model's strong performance is seen from the excellent recall, precision, and F1 

scores achieved by all classes. 

 

 
Figure 4: Cases Predicted by Proposed Model (a) Benign (b) Malignant (c) Normal 

 

Figures 5 show the suggested model's training and testing performance metrics. The accuracy is shown in Figure 

5(a) whereas the loss during training is shown in Figure 5(b). 

 
Figure 5: Training and Testing of Proposed Model (a) Accuracy (b) Loss 
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Figure 6: a) Benign b) Malignant c) Normal 

 

Both the accuracy and loss curves show that the model converges quickly during training and avoids overfitting 

(Figures 5). We visualise the cases indicated by the suggested model as part of our evaluation. Malignant, benign, 

and normal predictions are illustrated in Figures 4. 

Figure 6 (a), (b), and (c) exhibit pictures from the normal class, the benign class, and the malignant class, 

respectively. 

We get promising results using the proposed CapsuleNet-ResNet fusion model on CT scans used to diagnose lung 

cancer. Combining the greatest aspects of ResNets and Capsule Networks, the model is able to solve several 

problems with traditional CNNs. The use of CapsuleNets to capture feature hierarchies allows for a more robust 

understanding of spatial hierarchies in medical images. On the other hand, ResNets solve the vanishing gradient 

problem, making deeper network training easier. 

Based on mathematical principles, the model integrates CapsuleNet and ResNet designs in a complicated way. The 

model employs a ResNet foundation with pre-trained weights to extract characteristics from slices of CT scans. The 

subsequent CapsuleNet layers enhance the model's ability to identify subtle patterns indicative of lung cancer by 

representing spatial hierarchies and relationships using the retrieved information. The mathematical formulas of the 

fusion model, which illustrate the interplay between CapsuleNet and ResNet, are presented in Section 2. 

Iraq-Oncology Teaching Hospital/National Centre for Cancer Diseases (IQ-OTH/NCCD) provides the training and 

evaluation dataset, which adds diversity and realism to the model's learning process. We have included examples 

of normal, benign, and malignant lung cancer phases to reflect the complexity of real-life circumstances. Ethical 

approvals from the institutional review board and the use of a de-identified dataset show that the model is dedicated 

to protecting users' privacy. 

The accuracy, recall, precision, F1-score, loss, and confusion matrices of the evaluation demonstrates that the model 

can distinguish between normal, benign, and pathological cases. The model has strong performance in multiple 

categorization domains, as demonstrated by the comprehensive assessment of these metrics in Section 3. 

Oversampling methods, such as SMOTE, enhance the model's generalizability and help with medical image 

analysis's common class imbalance problem. 

In Section 3, we can observe the training process of the model demonstrating its convergence and generalisation 

skills. A built-in early pausing mechanism prevents overfitting and ensures that the model learns meaningful 

patterns apart from the noise in the training data. Accuracy and loss graphs over epochs are displayed in Figures 

5(a) and (b), respectively, to demonstrate the model's learning process. 

Last but not least, after being evaluated using numerous metrics, trained on a diverse and realistic dataset, and 

backed by a solid mathematical foundation, the proposed CapsuleNet-ResNet fusion model becomes a useful tool 

for the detection of lung cancer. Combining the greatest features of ResNets and CapsuleNets, taking ethical 

considerations into consideration, and having excellent performance metrics make it a cutting-edge solution in the 

critical field of medical image analysis for lung cancer diagnosis. 

Finally, the proposed CapsuleNet-ResNet Fusion Model shows promise in precisely identifying lung cancer from 

CT scan images., providing medical professionals with a valuable tool for early identification and treatment 

coordination. 
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1) Comparative Analysis with Previous Studies 

A comparison with well-established models from prior research, such as ResNet34, classic CNN, and VGG16, is 

carried out to evaluate the performance of the suggested CapsuleNet-ResNet fusion model. The most important 

measures of these models' performance are summarised in Figure 7. 

 

 
                       Figure 7: Comparative Analysis of Proposed Model with Previous Studies 

IV. CONCLUSION 

The creation of the CapsuleNet-ResNet fusion model, which utilised CT images to diagnose lung cancer, was a 

significant advancement in medical imaging. The model's output is really promising. With an overall accuracy of 

98%, the model successfully classifies CT images as benign, malignant, or normal. The model's 98% recall and 

94% precision show that it can reliably produce predictions, which is important for early lung cancer detection. 

Several disclaimers should be considered before drawing any conclusions from these results. The dataset may not 

be representative of the variety of instances encountered in more generalised clinical settings, despite its 

comprehensiveness. Since imaging procedures can differ among healthcare facilities and possibly affect the model's 

performance, more validation in varied situations is required. Taking these limitations into account, we offer a 

number of recommendations for boosting the model's performance. Increase the model's generalizability by training 

it on a more diverse set of data and doing cross-institutional validation using different imaging techniques. In order 

to stay abreast of the constantly evolving medical imaging procedures and standards, consistently monitoring and 

updating the model is essential. Integrating data from many imaging modalities should be the focus of future studies 

aiming to improve diagnosis accuracy. Improving the model's predictions so they are easier to understand and use 

would help create confidence among healthcare practitioners. To improve healthcare decision-making times, more 

studies examining the feasibility of real-time implementation are needed. Despite its limitations, the CapsuleNet-

ResNet fusion model represents a significant advance in the quest for improved early diagnosis and treatment of 

lung cancer. Its robust performance metrics and ethical considerations make it a vital tool in the ongoing drive to 

improve medical imaging and cancer detection patient outcomes. 
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