¹ Rana Saihood ² Nadir Habubi	Talib Fadhil	Characterization of Indium Concentration Upon Properties of Nanostructured Copper Oxide Thin Films	Journal of Electrical
³ Raghad Hamdan	Mohsin		Systems
⁴Ibrahim Ramadha	an Agool		
⁵Sami Chiad	Salman		
⁶ Abeer Hadi	Ghalib		
⁷ Jameel Dhabab	М.		

Abstract: - By applying the spray pyrolysis process at 350°C, CuO and In-doped CuO films with various In content of (0, 2 and 4%) were created on glass substrates. CuO films are confirmed to have a polycrystalline cubic structure by XRD analysis, with a recognizable peak at (200). As indium concentration rises, grain size grows from 13.74 nanometers to 15.82 nanometers, but the strain (%) parameter falls from 25.21 to 21.91. AFM measurements demonstrate that nanostructure exists. The average diameter size, surface roughness and rms values of the prepared films were (68.8, 49.7 and 31.2) nm, (9.77, 4,73 and 4.19) and (7.79, 6.60 and 2.23) nm for CuO, CuO: 2% In and CuO: 4% In respectively. Within the scope of this study, an investigation of the effect of indium dopant on the optical characteristics of CuO films was carried out. The transparency properties is decreased with indium doping increases, and the absorption coefficient (α) increases with indium content. The band gap values for the CuO and CuO: In films were found to be 1.98, 1.93 and 1.87 eV with In content, respectively. The refractive index and the CuO thin film extinction values are changed with indium doping concentration change.

Keywords: Copper oxide, Indium doping, XRD, optical properties, Topography.

I. INTRODUCTION

The benefits of copper oxide, including its nontoxicity, affordability, and environmental appropriateness, make it a desirable material [1-3]. It receives a lot of attention because it is a well-known p-type semiconductor, and a band gaps of 1.3-2.1 eV and 2.0-2.6 eV [3,4]. Numerous applications, including catalysis, water splitting, gas sensors and solar cells [5-11], have shown the potential usage of cupric oxide thin films. Several deposition processes, like sputtering [12], plasma evaporation [13], spray pyrolysis [14-20], electro-deposition [21], and sol-

¹ General Directorate of Education in Baghdad Governorate Rusafa second Ministry of Education Baghdad, Iraq ranatalib353@gmail.com

²Dept. Engineering of Refrigeration and Air Conditioning Technologies Alnukhba University College Baghdad, Iraq

n.fadhil@alnukhba.edu.iq

³General Directorate of Education in Baghdad Governorate Rusafa second Ministry of Education Baghdad, Iraq rghdhmdan598@gmail.com

⁴Bilad Alrafidain University College Diyala, Iraq

dr.agool@bauc14.edu.iq

⁵Dept. Physics College of Education, Mustansiriyah University Baghdad, Iraq dr.sami@uomustansiriyah.edu.iq

⁶General Directorate of Education in Baghdad Governorate Rusafa second Ministry of Education Baghdad, Iraq abeerghalibhadia@gmail.com

⁷Dept. Physics Alnukhba University College Baghdad, Iraq j.mousa@alnukhba.edu.iq

Copyright © JES 2024 on-line : journal.esrgroups.org

gel dip-coating [5, 7], have been used to create copper oxide. Even though spray pyrolysis is a low-cost and straightforward processing technique, copper oxide thin films made using other soft chemistry processes, including this one, exhibit good qualities for most applications mentioned. It offers attractive benefits, such as being nonhazardous and excellent for depositing [11]. According to reports, under ambient deposition circumstances, it creates uniform film structures with broad areas, good crystallinity, a balance of thickness and stoichiometry, and phase purity [14, 15]. P type semiconductors make up the majority of copper oxide [22–25]. When different numbers of dips are analyzed and associated with morphological and structural features, the impact of the film thickness on the primary optoelectronic properties is examined. In this study, we investigated the effect of CuO films doped with indium on their structural, morphological, and optical characteristics.

II. EXPERIMENTAL

O.1 M of CuCl₂ was ressolved in a mixture of 1:1 deionized (W_D) and ethanol to create the CuO thin films. Indium trichloride (InCl₃), supplied by PubChem India, was used as the doping agent and was diluted in W_D . For the purpose of making the solution transparent, a few droplets of HCl were provided. Indium-doped CuO film was prepared via chemical spray pyrolysis and applied to a glass slide substrate. These are the preparatory requirements: 350 °C was the substrate temperature, 30 cm separated the nozzle from the substrate, 10 seconds of spraying time were followed by 90 seconds to prevent cooling, 4 ml/min was the spray rate, and N_2 was utilized as the carrier gas. To ascertain film thickness, the gravimetric method was employed., which was 335 ± 20 nm. By using XRD, structural characteristics were assessed. AFM was used to examine the films' surfaces. UV-Visible spectrophotometer was used to capture the 300-900 nm absorbance spectra.

III. RESULTS AND DISCUSSIONS

XRD patterns of the intended films are offered in Fig. 1. The obtained results show that the films were polycrystalline. These results matched wurtzite, CuO, and peaks at 37.26° , 43.24° , and 62.89° that correspond to the (111), (200), and (220) reflections (JCPDS card No 05-0661). Strong peak was seen approaching (111), which was in line with previous researchers' findings [26].

By applying the formula in Eq. 1, the grain size, denoted by "D," was calculated. [27-29]:

$$D = \frac{0.9\lambda}{\beta \cos\theta} \tag{1}$$

Where λ is wavelength of the X-rays, β and θ are (FWHM) and Bragg's angle, respectively. The gathered information is shown in Table 1. As the indium concentration rises, it has been demonstrated that grain size increases from 13.74 to 15.82nm. Indium concentration is hence appropriate for determining the grain size of a material [30, 31].

Evaluation is also done on other structural metrics, including dislocation density (δ). Table 1 reveals the structural characteristics obtained, where δ can be gained by [32-34]

$$\delta = \frac{1}{D^2} \tag{2}$$

The strain (ϵ) is calculated by employing Eq. 3 [35-37]:

$$\varepsilon = \frac{\beta \cos\theta}{4} \tag{3}$$

Strain decreases as indium doping levels rise [38, 39]. Table 1 presents the determined structural parameters Pst.via Indium dopant as seen in Figure 2.

Fig.1. XRD-patterns.

The AFM micrograph for CuO and CuO is shown in Fig. 3: thin films Average Particle Size (P_{av}) values for Undoped CuO, CuO: 2% In, and CuO: 4% In were (68.8, 49.7, and 31.2) nm, respectively. By raising the CuO to CuO: 3% In, the surface roughness (Ra) decreases from 9.77 nm to 4.19 nm. The rms values of the formed films were 7.79, 6.60, and 2.23 nm for CuO, 2% In, and 4% In, respectively. Table 2 provides the AFM parameters Ap. These findings suggest that indium doping can significantly affect R_a , rms, and P_{av} , which could have implications for their electronic and optical properties [40, 41].

C	2 q	(hkl)	FWHM	Eg	D	δ (× 10 ¹⁴)	3
Specimen	(°)	Plane	(°)	(eV)	(nm)	(lines/m ²)	(× 10 ⁻⁴)
Undoped CuO	37.26	200	0.61	1.98	13.74	52.96	25.21
CuO: 2% In	37.23	200	0.56	1.93	1497	44.62	23.14
CuO: 4% In	37.2	200	0.53	1.87	15.82	39.95	21.91

TABLE 1. D, Eg and P_{st} of the grown films.

Fig.2. Structural parameters of the deposited films

Samulas	P _{av}	R _a	rms	
Samples	nm	(nm)	(nm)	
Undoped CuO	68.8	9.77	7.79	
CuO: 2 % In	49.7	4.73	6.6	
CuO: 4 % In	31.2	4.19	2.23	
70				

TABLE 2. A_p of grown films.

Fig. 3. A_P of the grown films.

Measurements of transmittance (T) in the UV-vis range were used to characterize the optically undoped and indium-doped CuO films. The transmittance curves of CuO and indium-doped thin films (2 and 4%) are shown in Fig. 3. When indium concentration was increased, the transmittance in the UV-vis region declined and reached over 66% at undoped CuO films. As indium doping concentration rises, the transmission edge shifts to the side with longer wavelengths. More indium being incorporated into the CuO lattice and a slight rise in the concentration of free charge carriers may be the causes of the loss in transparency of CuO: In films coated with 1 and 4% In concentration [42-44].

Fig. 4 shows a plot of absorption coefficient (α) versus wavelength. It can be calculated from equation (4) [45-47]:

$$\alpha = \frac{\ln\left(1/T\right)}{d} \qquad (4)$$

Where *d* is film thickness. Fig. 5 shows α rises indium dopant concentration rises. The carrier absorption with indium doping is the cause of the rise in absorption coefficient with an increase in indium doping concentration [48-51].

Fig. 4 T of the grown films

Fig. 5 aa for deposited films.

The optical band gap energy (E_q) is obtained via Tauc's formula[52-54]:

$$(\alpha h\nu) = A \left(h\nu - E_g \right)^{\frac{1}{2}}$$
 (5)

Where A is constant. The relationship was linearly dependent for n=1/2, E_g was demonstrated as offered in Fig. 6, the undoped CuO thin film recorded a greater band gap value than those doped with 0, 2, and 4% indium. When shown, as the proportion of indium doping increased, the band gap values of CuO film dropped. This drop is brought about by the dopant's propensity to widen the valence band of CuO film, which reduces the energy required for electrons to jump from the valence band to the conduction band. The visible light capture in solar cell applications can be enhanced by using this reduction in band gap [55, 56].

Fig. $6 E_g$ of the intended films.

The extinction coefficient (k) calculation by using the equation [57,58]:

$$k = \frac{\alpha \lambda}{4\pi} \qquad (6)$$

As the quantity of the dopant increased, the samples' extinction coefficient dropped, as seen in Fig. 7. The most significant value of the extinction coefficient, 0.75, was produced by the undepleted CuO films, followed by the 2% films with 0.72. The extinction coefficient of the 4% doped deposit was 0.67, and it was discovered that the

extinction coefficient of the deposited CuO declined as the amount of indium dopant increased. Because α increased with the dopant content, k dropped [59, 60].

Refractive index (n) of the deposited Undoped and CuO: In was obtained from the formula [61,62]:

$$n = \left(\frac{1+R}{1-R}\right) + \sqrt{\frac{4R}{(1-R)^2} - k^2}$$
(7)

Where R is the reflectivity. Figure 8 shows that at wavelength 520 nm, the Undoped CuO films had the most significant refractive index values (3.35) and the 4% Indium-Doped CuO films had the lowest values (3.14). The deposited materials' refractive indices showed an exponential drop with wavelength between 600 and 900 nm, indicating limited light absorption at long wavelengths [63]. Undoped and (CuO: In) films formed at indium doping concentration exhibit identical behavior of the extinction coefficient regarding wavelength [64].

IV. CONCLUSION

On glass substrates, indium-doped CuO thin films have been created using (SPT) using different doping concentrations at 300 °C. According to XRD measurements, CuO films contain a dominating peak (200). The strain (%) parameter increased from 25.21 to 21.91, while the dislocation density reduced from 52.96 to 39.95. The grain size for undoped CuO particles is around 13.74–15.82) nm with CuO: 4% In. The average particle size grew from (68.8 to 31.2) nm, while the surface roughness decreases from 9.77 to 4.19 nm, according to the AFM

picture. When indium concentration was increased, the transmittance in the UV-VIS region dropped and reached over 66% at undoped CuO films. With rising dopant concentration in the visible range, the absorption coefficient rises. The band gap values for the doped indium with (2 and 4%) and the undoped CuO thin film were 1.98 eV and 1.93 eV, respectively. With increasing doping concentration, the absorption coefficient decreases in a manner similar to how the n and k behave.

ACKNOWLEDGMENT

Mustansiriyah University (www.mustansiryah.edu.iq) and Alnukhba University College are acknowledged for their assistance.

REFERENCES

- [1] J. S. Jang, J. Kim, U. Ghorpade, H. H. Shin, M. G. Gang, S. D. Park, H. J. Kim, D. S. Lee, J. H. Kim, "Comparison study of ZnO-based quaternary TCO materials for photovoltaic application", J. Alloys Compd. 793 (2019): 499–504.
- [2] P. Aazadfar, E. Solati, D. Dorranian, "Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions", Opt. Mater. 78 (2018): 388–395.
- [3] S. C. Dixon, D.O. Scanlon, C. J. Carmalt, I. P. Parkin, "N-Type doped transparent conducting binary oxides: an overview, J. Mater. Chem. C. 4 (2016): 6946-6961.
- [4] G. Brunin, F. Ricci, V.A. Ha, G.M. Rignanese, G. Hautier, "Transparent conducting materials discovery using high-throughput computing", Npj Comput. Mater. 5 (2019) 1–13.
- [5] L. Dörner, C. Cancellieri, B. Rheingans, M. Walter, R. Kägi, P. Schmutz, M. V. Kovalenko, L. P. H. Jeurgens, "Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area", Scientific Reports 9 (2019):11758.
- [6] G. Deng, K. Li, G. Zhang, Z. Gu, X. Zhu, Y. Wei, H. Wang, "Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane", Applied Energy 253 (1) (2019):113534.
- [7] G. P. Thim, A. S. O. Maria, E. D. A. Oliveira, F. C. L. Melo, "Sol-gel silica film preparation from aqueous solutions for corrosion protectiona", Journal of Non-Crystalline Solids, 273 (2000): 124-128.
- [8] J. Toupin, H. Strubb, S. Kressman, V. Artero, N. Krins, Ch. Laberty-Robert, "CuO photo-electrodes synthesized by the sol-gel method for water splitting", Journal of Sol-Gel Science and Technology 89 (2019): 255–263.
- [9] W. Zhang, G. Ma, H. Gu, Z. Yang, H. Cheng, "A new lithium-ion battery: CuO na-norod array anode versus spinel LiNi0. 5Mn1. 5O4 cathode", Journal of Power Sources 273 (2015): 561-565.
- [10] D. Li, X. Zu, D. Ao, Q. Tang, Y. Q. Fu, Y. Guo, K. Bilawal, M. B. Faheem, L. Li, S. Li, Y. Tang, "High humidity enhanced surface acoustic wave (SAW) H₂S sensors based on sol-gel CuO films", Sensors and Actuators B. chemical 294 (2019): 55-61.
- [11] M. L. Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf, "CuO thin films deposition by spray pyrolysis: influence of precursor solution properties", Interna-tional Journal of Mathematical, Computational, Physical, Electrical and Computer Engi-neering 9 (10) (2015): 489-493.
- [12] A. A. Ogwu, T. H. Darma, E. Bouquerel, "Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering", Journal of Achievements in Materials and Manufacturing Engineering 24 (2007): 172-177.
- [13] K. Santra, C. K. Sarker, M. K. Mukherjee, B. Ghosh, "Copper oxide thin films grown by plasma evaporation method", Thin Solid Films 213 (1992): 226.
- [14] Z. M. Lamri, L. Chabane, M. S. Aida, N. Attaf, N. Zebbar, "Solution flow rate in-fluence on properties of copper oxide thin films deposited by ultrasonic spray pyrolysis", Materials Science in semiconductor processing 30 (2015): 645-650.

- [15] S. S. Kumar Jacob, I. Kulandaisamy, I. L. Poul Raj, A. A. Abdeltawab, S. Z. Mohammady, M. Ubaidullah, "Improved optoelectronic properties of spray pyrolysis coated Zn doped Cu₂O thin films for photodetector applications", Opt. Mater. 116 (2021): 111086.
- [16] H. T. Salloom, R. I. Jasim, N. F. Habubi, S. S. Chiad, M. Jadan, J. S. Addasi, "Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber", Chinese Physics B 30(6) (2021): 068505.
- [17] K. Y. Qader, R. A. Ghazi, A. M. Jabbar, K. H. Abass, S. S. Chiad, "Reduce of energy gap of CuO nano structure film by Ag doping", Journal of Green Engineering 10 (10) (2020): 7387-7398.
- [18] A. A. Khadayeir, E. S. Hassan, T. H. Mubarak, S. S. Chiad, N. F. Habubi, M.O. Dawood, I. A. Al-Baidhany, "The effect of substrate temperature on the physical properties of copper oxide films", Journal of Physics: Conference Series 1294 (2) (2019) 022009.
- [19] M. D. Sakhil, Z. M. Shaban, K. S. Sharba, N. F. Habub, K. H. Abass, S. S. Chiad, A.S. Alkelaby, "Influence mgo dopant on structural and optical properties of nanostructured cuo thin films", NeuroQuantology 18 (5) (2020): 56-61.
- [20] H. A. Hussin, R. S. Al-Hasnawy, R. I. Jasim, N.F. Habubi, S.S. Chiad, "Optical and structural properties of nanostructured CuO thin films doped by Mn", Journal of Green Engineering 10 (9) (2020): 7018-7028.
- [26] E. R. Kari, K. S. Choi, "Electrochemical synthesis and characterization of transparent nanocrystalline Cu₂O films and their conversion to CuO films", Chem. Commun. (2006) 3311–3313.
- [27] Othman, M. S., Mishjil, K. A., Rashid, H. G., Chiad, S. S., Habubi, N. F., Al-Baidhany, I. A., "Comparison of the structure, electronic, and optical behaviors of tin-doped CdO alloys and thin films", Journal of Materials Science: Materials in Electronics 31(11) (2020): 9037-9043.
- [28] N. N. Jandow, M. S. Othman, N. F. Habubi, S. S. Chiad, K. A. Mishjil, I. A. Al-Baidhany, "Theoretical and experimental investigation of structural and optical properties of lithium doped cadmium oxide thin films", Materials Research Express 6 (11) (2020).
- [29] E. H. Hadi, D. A. Sabur, S. S. Chiad, N. F. Habubi, K. H. Abass, "Physical properties of nanostructured lidoped zro₂ thin films", Journal of Green Engineering 10 (10) (2020): 8390-8400.
- [31] L. Source, C. Chen, J. Chen, "Review on Synthesis and Applications of Copper Oxide Thin Films". Coatings 10 (3) (2020): 282.
- [30] M. K. Kavitha, K. R. Ra, M. Venkateswarlu, "A Review on Structural, Optical, and Electrical Properties of Copper Oxide Thin Films". Surface Review and Letters 27 (08) (2020): 2050075.
- [32] A. J. Ghazai, O. M. Abdulmunem, K. Y. Qader, S. S. Chiad, N.F. Habubi, "Investigation of some physical properties of Mn doped ZnS nano thin films", AIP Conference Proceedings 2213 (1) (2020): 020101.
- [33] E. S. Hassan, K. Y. Qader, E. H. Hadi, S. S. Chiad, N.F. Habubi, K. H. Abass, "Sensitivity of nanostructured mn-doped cobalt oxide films for gas sensor application", Nano Biomedicine and Engineering 12(3) (2020): 205-213 2020.
- [34] S. S. Chiad, H. A. Noor, O. M. Abdulmunem, N. F. Habubi, M. Addasi, J. S. Jadan, "Optical and structural performance of nanostructured Te thin films by (CSP) with various thicknesses", Journal of Ovonic Research 16 (1) (2020): 35-40.
- [35] H.T. Salloom, E. H. Hadi, N. F. Habubi, S. S. Chiad, M. Jadan, J. S. Addasi, "Characterization of silver content upon properties of nanostructured nickel oxide thin films", Digest Journal of Nanomaterials and Biostructures 15(4) (2020): 1189-1195.
- [36] S. S. Chiad, A. S. Alkelaby, K. S. Sharba, "Optical Conduct of Nanostructure Co₃O₄ rich Highly Doping Co₃O₄: Zn alloys", Journal of Global Pharma Technology 11(7) (2020): 662-665.
- [37] N. Y. Ahmed, B. A. Bader, M. Y. Slewa, N. F. Habubi, S. S. Chiad, "Effect of boron on structural, "optical characterization of nanostructured Fe₂O₃ thin films", NeuroQuantology 18 (6) (2020): 55-60.

- [38] S. C. Ray, "Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties", Solar Energy Materials and Solar Cells 68 (3-4) (2001): 307–312.
- [39] H. A. Al-Khanbashi, W. Shirbeeny, A. A. Al-Ghamdi, L. M. Bronstein, "Spectro-scopic ellipsometry of Zn1-xCuxO thin films based on a modified sol-gel dipcoating tech-nique", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118 (2014): 800-805.
- [40] S. Ulutaş, M. S. Aktaş, M. Tomar, and E. Bacaksız, "Effect of indium doping on the structural, morphological, and optical properties of copper oxide thin films", Journal of Materials Science: Materials in Electronics 29 (13) (2018): 11219-11227.
- [41] M. Yıldız, M. Altınsoy, E. Büyükaksoy, A. Tataroğlu, A. Özcan, M. Karadağ, and E. Bacaksız, "Characterization of Indium Concentration Upon Properties of Copper Oxide Thin Films Authors Source" Journal of Nanomaterials 7 (2019): 7947609.
- [42] M. H. Sayyad, S. S. Jadhav, V. B. Gaikwad, and S. V. Mohite, "Characterization of Indium Concentration Upon Properties of Copper Oxide Thin Films", Journal of Electronic Materials 33 (14) (2017):10785-10799.
- [43] T. Guler, E. Ozkaya, F. Yakuphanoglu, "Characterization of Indium Concentration Upon Properties of Copper Oxide Thin Films", published in Journal of Electronic Materials 43 (2018): 13328
- [44] K. H. L. Zhang, K. Xi, M.G. Blamire, R. G. Egdell, "P-type transparent conducting oxides", J. Phys. Condens. Matter 28 (2016): 383002.
- [45] A. A. Khadayeir, R. I. Jasim, S. H. Jumaah, N. F. Habubi, S.S. Chiad, "Influence of Substrate Temperature on Physical Properties of Nanostructured ZnS Thin Films", Journal of Physics: Conference Series1664(1) (2020).
- [46] R. S. Ali, N. A. H. Al Aaraji, E. H. Hadi, K. H, Abass, N. F. Habubi, S. S Chiad, "Effect of Lithium on Structural and Optical Properties of anostructured CuS Thin", Journal of Nanostructuresthis link is disabled 10 (4) (2020): 810–816.
- [47] A. S. Al Rawas, M. Y. Slewa, B. A. Bader, N. F. Habubi, S. S. Chiad, "Physical characterization of nickel doped nanostructured TiO₂ thin films", Journal of Green Engineering10 (9) (2020): 7141-7153.
- [48] A. S. Patil, M. D. Patil, G. M. Lohar, S. T. Jadhav, V.J. Fulari, "Supercapacitive properties of CuO thin films using modified SILAR method", Ionics 23 (2017): 1259–1266.
- [49] P. Venkateswari, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, "Optimization and characterization of CuO thin films for P–Njunction diode application by JNSP technique", Optik 140 (2017): 476–484
- [50] S. S. Mane, S. P. Patil, K. R. Patil, P. S. Patil, J. H. Kim, "Effect of indium doping on structural, morphological, optical and electrical properties of copper oxide thin films", Journal of Alloys and Compounds 786 (2019): 662-671.
- [51] N. G. Deshpande, S. B. Patil, S. R. Jadkar, R. P. Borkar, & S. H. Pawar, "Structural, optical and electrical properties of spray deposited indium doped copper oxide thin films". Applied Surface Science 427 (2018): 950-958.
- [52] E. S. Hassan, T. H. Mubarak, S. S. Chiad, N. F. Habubi, A. A. Khadayeir, M. O. Dawood, I. A. Al-Baidhany, "Physical Properties of indium doped Cadmium sulfide thin films prepared by (SPT)", Journal of Physics: Conference Series 1294 (2) (2019).
- [53] S. S. Chiad, N. F. Habubi, W. H. Abass, M. H. Abdul-Allah, "Effect of thickness on the optical and dispersion parameters of Cd_{0.4}Se_{0.6} thin films", Journal of Optoelectronics and Advanced Materials 18(9-10) (2016): 822-826.
- [54] M. O. Dawood, S. S. Chiad, A. J. Ghazai, N. F. Habubi, O. M. Abdulmunem, "Effect of Li doping on structure and optical properties of NiO nano thin-films by SPT", AIP Conference Proceedings 2213 (2020): 020102.

- [55] M. Dahrul, H. Alatas, Irzaman, "preparation and optical properties study of CuO thin film as applied solar cell on LAPAN-IPB satellite", Procedia Environ. Sci. 33 (2016): 661–667.
- [56] T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, Y. Takita, "Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO₂ sensor", J. Mater. Chem. 8 (1998): 2037–2042.
- [57] A. A. Khadayeir, E. S. Hassan, S. S. Chiad, N. F. Habubi, K. H. Abass, M. H. Rahid, T. H. Mubarak, Dawod M. O. and Al-Baidhany, I.A., "Structural and Optical Properties of Boron Doped Cadmium Oxide", Journal of Physics: Conference Series 1234 (1) (2019): 012014.
- [58] E. S. Hassan, A. K. Elttayef, S. H. Mostafa, M. H. Salim, S. S. Chiad, "Silver oxides nanoparticle in gas sensors applications", Journal of Materials Science: Materials in Electronics 30(17) (2019): 15943-15951.
- [59] H. Absike, Z. Essalhi, H. Labrim, B. Hartiti, N. Baaalla, M. Tahiri, B. Jaber, H. Ezzahraouy, "Synthesis of CuO thin films based on Taguchi design for solar absorber", Opt. Mater. 118 (2021): 111224.
- [60] J. Morales, L. S'anchez, F. Martín, J.R. Ramos-Barrado, M. S'anchez, "Use of lowtemperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells", Thin Solid Films 474 (2005): 133–140.
- [61] E. H. Hadi, M. A. Abbsa, A. A. Khadayeir, Z. M. Abood, N. F. Habubi S.S. Chiad, "Effects of Mn doping on the characterization of nanostructured TiO2thin films deposited via chemical spray pyrolysis method", Journal of Physics: Conference Series 1664 (1) (2020).
- [62] R. S. Ali, M. K. Mohammed, A. A. Khadayeir, Z. M. Abood, N. F. Habubi, Chiad, S. S., "Structural an Optical Characterization of Sprayed nanostructured Indium Doped Fe₂O₃Thin Films'", Journal of Physics: Conference Series 1664(1) (2020): 012016.
- [63] P. Samarasekara, N. T. R. N. Kumara, N. U. S. Yapa, "Sputtered copper oxide (CuO) thin films for gas sensor devices", J. Phys. Condens. Matter 18 (2006): 2417–2420.
- [64] M. Keikhaei, M. Ichimura, "Fabrication of Copper Oxide thin films by galvanostat-ic deposition from weakly acidic solutions", Int. J. Electrochem. Sci. 13 (2018): 9931 – 9941.