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Abstract: - The biometric system that uses fingerprints is prone to different types of attacks. The presentation attack is one of the easiest to 

perform on the fingerprint sensor. In recent years, several Fingerprint Presentation Attack Detection (FPAD) approaches have been 

proposed. These FPAD approaches have attained fair results on a dataset of different materials (cross-material). However, FPAD method 

performance degrades up to 30% when training and testing datasets are from different distributions (sensors). So for a robust FPAD method, 

it must learn domain-independent features to have consistent performance. To mitigate the domain-shift and FPAD, we have proposed 

unsupervised divergence-based domain adaptation (UDDA) with an Adaptive Loss Function (ALF). The ALF integrates domain divergence 

loss (DDL) and classification loss. The ALF helps in learning domain-invariant features and accurately classifying live and fake fingerprints 

in a cross-sensor scenario. The investigational outcomes confirmed that the offered UDDA method reduces the cross-sensor average 

classification error (ACE) by 19.94% and 19.23% on LivDet 2015 and LivDet 2017, respectively. 

Keywords: Fingerprint Presentation Attack, Domain Shift, Domain Adaptation, Cross Sensor. 

 

 

I.  INTRODUCTION 

The most popular biometric behavior is the fingerprint, which is vulnerable to several kinds of attacks. The 

presentation attack (PA) [27] is among the simplest attacks to perform on a sensor to interfere with the biometric 

system’s policy [28]. In PA, the attacker without having extensive knowledge of the biometrics system can hamper 

the operation of the biometrics system with a fake fingerprint made of different materials. Hence it is quite necessary 

to detect presentation attacks by correctly identifying fake and live fingerprints. 

Even though there has been tremendous advancement in the fingerprint presentation attack detection (FPAD) 

approaches, fails to generalize when the fake fingerprint is made of a novel material not used in training such 

models. There has been seen up to a three-fold drop in performance in such cross-material generalization scenarios 

[29]. In recent years, many handcrafted [4-9] and deep feature-based FPAD methods [10-20] have enhanced the 

generalization performance in cross-material cases. Nevertheless, these FPAD techniques only achieve poor 

classification accuracy when they are evaluated on fingerprint photos from a different sensor (target dataset) after 

being trained on images from one sensor (source dataset).  

The FPAD approaches suffer from poor sensor interoperability [30], due to domain shifts in source and target 

datasets. The fingerprint pictures from various sensors have distinct textural appearances, which is the cause of this 

domain shift (Figure 1). The photographs' properties are solely determined by the illumination, the presenting 

attack's creator's experience, and the acquisition technique [31]. The domain changes in the source (training) and 

the target (testing) dataset makes it difficult for the FPAD methods to generalize in a cross-sensor setting. 

 
Fig. 1. Examples of LivDet 2015 [22] dataset fingerprints acquired with various sensors: (a) Biometrika, (b) 

Digital Persona, (c) Orcanthus, (d) GreenBit. 
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To improve the generalization performance when training and test sensors are different, this article proposes a novel 

FPAD method using unsupervised divergence-based domain adaptation (UDDA). The proposed method utilizes a 

new adaptive loss function (ALF) which integrates cross entropy loss and Maximum Mean Discrepancy (MMD) 

[2] or Correlation Alignment (CORAL) [3] loss for domain-independent features learning. The objective is to 

minimize the distributional difference between the source sensor and target sensor representations to improve the 

model's generalization to the target sensor in a cross-sensor setting. The following is the proposed work's primary 

contribution: 

• We have designed an unsupervised domain adaptation-based FPAD method (UDDA), which has been 

used first time for fingerprint presentation attack detection. 

• We have also designed a novel adaptive loss function (ALF) to learn domain invariant features and classify 

fake and live fingerprints accurately. 

• The ALF integrates cross-entropy loss and MMD with Gaussian kernel loss or CORAL loss to learn the 

domain-independent features to enhance the cross-sensor performance. 

• The extensive experiment shows that both MMD and CORAL loss enhance PAD performance 

significantly over the target domain. 

• The UDDA utilizes ResNet as the base CNN model for feature extraction which can be integrated with 

any CNN model easily. 

The remainder of the study has been prepared as follows: Section 2 lists important studies related to FPAD. Details 

of the suggested FPAD model are provided in Section 3. Section 4 provides the conclusion and discussion. Section 

5 discusses the conclusion and next steps. 

II. RELATED WORK 

Several academics have suggested FPAD solutions based on deep learning-based techniques and handmade 

characteristics to detect presentation assaults over fingerprint biometrics. This section presents some cutting-edge 

FPAD techniques that target generalization issues brought on by novel materials and/or sensors that weren't 

employed during FPAD method training. 

A. Handcrafted features-based FPAD methods 

To quantify and mitigate the effect of novel spoof material Rattani et al. [4] have utilized LBP, LPQ, and BSIF 

features and applied W-SVM for PA detection tasks. Their study highlights that there is a 97% rise in the rate of 

errors when a FPAD method is tested on fingerprint images made up of novel spoof material. Their method based 

on WSVM improves up to 44% in performance in the detection of fingerprints of novel spoof material. Ding et al. 

[5] have utilized an ensemble method based on One Class SVM (OC-SVM) to improve generalization performance 

over unseen materials. They first extracted local texture features using LBP, GLCM, BSIF, LPQ, and BGP. Further, 

these features have been passed to respective OC-SVMs to form an ensemble model. Yuan et al. [6] have suggested 

a Local Gradient Pattern (LGP) for efficient texture enhancement along with a deep residual network for enhanced 

generalization performance over unknown spoof material. A Weber local binary descriptor (WLBD) has been 

proposed by Xia et al. [7] for fingerprint presentation attack detection. For PAD, Sharma et al. [8] have suggested 

texture descriptors called Uniform LBP (ULBP) and Local Adaptive LBP (LABP). In a different work, Sharma et 

al. [9] provided an ensemble model for the FPAD problem that combined an eight-layer CNN architecture with a 

Complete Local Binary Pattern (CLBP) with LALBP. 

B. Deep learning-based FPAD methods 

Nogueira et al. [10] first applied VGG-CNN and compared the CNN-based model with the LBP-based handcrafted 

method for FPAD. They first studied the effect of unknown sensor and unknown material cases on the 

generalization capability of the suggested FPAD method. Marasco et al. [11] have presented a comparison of 

various CNN models (CaffeNet, GoogleNet, and Siamese) for FPAD. In their study, they have highlighted that 

the generalization of the FPAD model over novel spoof material can be improved with effective utilization of 

CNN, but sensor interoperability is still a big concern for degraded performance. Park et al. [12] have suggested 

a FPAD method that utilizes fingerprint patches. Their method first divides the input fingerprint into no 

overlapping patches. Further, these patches are passed to the SqueezeNet-CNN for classification of each patch as 

fake or live and then aggregated the result based on a voting method for final classification. Their method shows 

better generalization over the novel spoof material. Pala et al. [13] have proposed TripletNet-CNN for FPAD and 
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generalization over unknown material and sensor scenarios. They have affirmed that generalization to the new 

sensor is much more difficult than new materials. Chugh et al. [14] have proposed Inception v3-based CNN for 

FPAD. To enhance the generalization performance over cross-material and cross-sensor cases they have extracted 

minutiae-centered patches from fingerprints for the PAD task. Zhang et al. [15] have suggested the FPAD method 

based on an improved residual block to reduce the parameters for a lightweight model. Liu et al. [16] have 

proposed a MobileNet-based rethinking global-local model for PAD. Agarwal et al. [17] have utilized incremental 

learning for FPAD tasks. Their model utilizes ResNet-50 for feature extraction and effectively improves the 

generalization performance over novel materials. Chugh et. al. [18] have utilized a universal material generator 

and proposed a wrapper-based approach that enhances the generalization performance of FPAD methods. Rai et 

al. [19] have proposed an ensemble network based on MobileNet and SVM. Their model effectively generalizes 

cross-material scenarios but is not able to perform similarly in cross-sensor cases. In another study, Rai et al. [20] 

proposed an ensemble-based model that utilizes deep features and handcrafted features. 

Most of the FPAD methods discussed above have a robust cross-material performance by proposing either novel 

handcrafted features or utilizing modern deep CNN architectures. There is only up to a three-fold drop in 

performance by these FPAD methods [4-20]. A summary of the above FPAD model is given in Table 1. 

Table 1. Summary of the previously proposed FPAD methods. 

Reference Proposed Method Category 

Rattani et al. [4] LBP, LPQ, and BSIF features and applied W-SVM Handcrafted 

Ding et al. [5] LBP, GLCM, BSIF, LPQ, and BGP with One Class SVM Handcrafted 

Yuan et al. [6] Local Gradient Pattern (LGP) for efficient texture 

enhancement along with a deep residual network 

Hybrid (Handcrafted and Deep learning) 

Xia et al. [7] WLBD Handcrafted 

Sharma et al. [8] LABP and ULBP texture descriptors  Handcrafted 

Sharma et al. [9] CLBP with LALBP along with eight-layer CNN 

architecture  

Hybrid (Handcrafted and Deep learning) 

Nogueira et al. [10] AlexNet, VGG-19, and LBP (Compared Deep Learning 

methods with handcrafted methods) 

Deep Learning Method 

Marasco et al. [11] CaffeNet, GoogleNet, and Siamese Deep Learning Method 

Park et al. [12] SqueezeNet-CNN  Deep Learning Method 

Pala et al. [13] TripletNet-CNN Deep Learning Method 

Chugh et al. [14] Minutiae centered fingerprint patches with Inception v3-

based CNN  

Deep Learning Method 

Zhang et al. [15] SlimRes CNN based on residual Network Deep Learning Method 

Liu et al. [16] MobileNet V3 Deep Learning Method 

Agarwal et al. [17] LBP, LPQ, and BSIF with ResNet-50 based CNN model 

(Incremental Learning) 

Hybrid (Handcrafted and Deep learning) 

Chugh et. al. [18] Universal material generator based on VGG-16 Deep Learning Method 

Rai et al. [19] Ensemble network based on MobileNet  Deep Learning Method 

Rai et al. [20] Local Phase Quantization, Frequency Domain Analysis, 

Ridge-Valley Clarity, Gabor Quality, Orientation Certainty 

Level, Ridge-Valley Smoothness, and  DenseNet-121 

ensemble-based model 

Hybrid (Handcrafted and Deep learning) 

The traditional FPAD methods [4-20] generally extract features from the source dataset while training. When the 

trained FPAD methods are given a different target dataset (fingerprint from different sensors) while testing, there 

is a huge drop in performance. As there is variation in extracted features of source and target dataset (domain-

shift) from different fingerprint sensors. 

III. PROPOSED MODEL 

To mitigate the domain-shift in source and target dataset this research article has proposed unsupervised domain 

adaptation (UDDA) for extraction of domain invariant features intended for the FPAD task. The architecture of 

the UDDA method has been given in Fig. 2. In the suggested method, the divergence between the source and 

target sensor has been minimized by the use of unsupervised domain adaptation. The model uses labeled input 

photos from the source sensor and unlabeled fingerprint images from the target sensor to learn sensor-independent 

features during the training phase. The fingerprint images are scaled to fit CNN. We have utilized the novel 
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adaptive loss function which uses cross-entropy loss for fingerprint classification along with the domain 

discrepancy loss to learn the sensor-independent features. In the testing phase, the model takes labeled target 

sensor fingerprint images for analyzing the cross-sensor generalization performance. The details of each block of 

the offered method (UDDA) have been given in further subsections. 

 
Fig. 2. Proposed unsupervised domain adaptation (UDDA) model for FPAD. 

 

A. Feature Extraction 

For feature extraction from the source sensor and target sensor, any CNN architecture can be utilized. In this study, 

we have utilized ResNet50 [21] as base CNN as it utilizes skip connection and handles vanishing gradient 

problems effectively. We have modified the fully connected layer (FC) of the original ResNet-50 since we have 

to categorize the fingerprint images as live or fake (binary classification). We have added a bottleneck layer and 

an FC layer that utilizes novel ALF to regularize the distribution discrepancy and effective classification of live 

and fake fingerprints. 

B.  Unsupervised Domain Adaptation 

𝐿𝑒𝑡      𝐷𝑠 = {(𝑥𝑖
𝑠, 𝑦𝑖

𝑠)}𝑖=1
𝑛𝑠                                                                   (1) 
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Where 𝐷𝑠 is the source domain (sensor 1), 𝑥𝑖
𝑠 is the ith fingerprint image along with its label 𝑦𝑖

𝑠 ϵ {live, fake}, 𝑛𝑠 

is the number of fingerprint images in the source sensor. 

     𝐷𝑡 = {(𝑥𝑗
𝑡)}𝑗=1

𝑚𝑡                                                                                   (2) 

Where 𝐷𝑡  is the target domain (sensor 2), 𝑥𝑗
𝑡 is the jth un-labeled fingerprint image, 𝑚𝑡 is the total number of 

fingerprints in the target sensor, and 𝑚𝑡 <= 𝑛𝑠. The goal is to learn sensor-independent features by building a 

classifier that can minimize the cross-sensor generalization error. Let 𝑦 =  𝐶𝛳 (x) be an FPAD classifier (outputs 

labels fake/live), which will minimize the cross-sensor error, then the target sensor error is as follows: 

𝜉𝑡(𝛳) = 𝑃𝑟(𝑥𝑗
𝑡 , 𝑦) ~ 𝐷𝑡[𝐶𝛳 (𝑥𝑗

𝑡) ≠ 𝑦]𝑗=1
𝑚𝑡                                           (3) 

Equation (3) states that the prediction (𝑃𝑟) of the classifier is different from the actual label of the fingerprint. To 

minimize the classification error using source supervisor this study proposes an adaptive loss function (ALF) 

which is defined in Equation (4). 

ALF = min
𝛳

1

𝑛𝑙
∑ 𝐽(

𝑛𝑙
𝑖=1 𝐶𝛳 (𝑥𝑖

𝑙), 𝑦𝑖
𝑙) +  𝜆𝑑(𝐷𝑠  , 𝐷𝑡)                                 (4) 

Where 𝐽(𝐶𝛳 (𝑥𝑖
𝑙), 𝑦𝑖

𝑙) is the cross entropy loss for classification of fingerprint as live and fake, and 𝑑(𝐷𝑠, 𝐷𝑡) is 

the domain discrepancy loss which identifies sensor independent features, 𝜆 is the hyper-parameter tuned via 

experiment and l represents the source and target sensor. To minimize the domain discrepancy, we have utilized 

MMD and CORAL as divergence measurements between the source and target sensor. 

 
 

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts 

are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this template 

measures proportionately more than is customary. This measurement and others are deliberate, using specifications 

that anticipate your paper as one part of the entire proceedings, and not as an independent document. Please do not 

revise any of the current designations. 

1) Maximum Mean Discrepancy(MMD) Loss 

We have utilized MMD loss [2] along with Gaussian kernel to calculate the distribution dissimilarity between 

source and target sensor; to lessen the domain discrepancy. To ascertain if the two samples are from the same 

distribution, MMD maps the features to a Hilbert Space with Reproducing Kernel (RKHS) and then compares 

their means. We have used MMD as it is more robust to noise and small variations in the data as well as it is more 

flexible due to the use of kernel functions. MMD aligns the distributions by focusing on mean and covariance. Let 

𝑥𝑖
𝑠 and 𝑥𝑖

𝑡 be the two sets of samples from the source sensor (𝐷𝑠) and the target sensor (𝐷𝑡), (for simplicity let 

𝑚𝑡= 𝑛𝑠 = 𝑚), and ℎ(𝑥𝑖
𝑠), ℎ( 𝑥𝑗

𝑠) are the extracted features by a CNN(ResNet-50 in our case)’s fully connected 

layer, then MMD has been calculated using Equation (5) as follows: 

𝑑𝑚𝑚𝑑
2 (𝐷𝑠 , 𝐷𝑡) =

1

𝑚2 (∑ 𝑘(ℎ(𝑥𝑖
𝑠), ℎ( 𝑥𝑗

𝑠))𝑚
𝑖,𝑗=1 + ∑ 𝑘(ℎ(𝑥𝑖

𝑡), ℎ(𝑥𝑗
𝑡)𝑚

𝑖,𝑗=1 ) − 2 ∑ 𝑘(ℎ(𝑥𝑖
𝑠), ℎ(𝑥𝑗

𝑡))𝑚
𝑖,𝑗=1 )           (5)                                                                                

Where k is the Gaussian kernel function defined using Equation (6). 

𝑘(ℎ(𝑥𝑖
𝑠), ℎ(𝑥𝑗

𝑠)) = 𝑒
−

||ℎ(𝑥𝑖
𝑠),ℎ(𝑥𝑗

𝑠)||2

2𝜎2                                                            (6) 

2) Correlation Alignment (CORAL) Loss 

For comparison, we have exploited CORAL [3] loss for cross-sensor generalization. CORAL matches the source 

and target distributions' correlations or second-order statistics. Let 𝐶(𝐷𝑠) and 𝐶(𝐷𝑡) be the feature covariance 

matrices of the source sensor and target domains sensors respectively. Then coral loss is calculated as given in 

Equation (7). 

𝑑𝑐𝑜𝑟𝑎𝑙
2 (𝐷𝑠, 𝐷𝑡) =  

1

4𝑑2
‖𝐶(𝐷𝑠) − 𝐶(𝐷𝑡)‖𝐹𝑟

2                              (7) 

Where ‖𝐶(𝐷𝑠) − 𝐶(𝐷𝑡)‖𝐹𝑟
2  is the Frobenius norm and d is the dimensionality of the feature vector. To calculate 

𝐶(𝐷𝑠) and 𝐶(𝐷𝑡) we will utilize Equation (8) and Equation (9) given below; 

𝐶(𝐷𝑠) =  
1

𝑚−1
(𝑑𝑠

𝑇𝑑𝑠 −
1

𝑚
(𝐼𝑇𝑑𝑠)𝑇(𝐼𝑇𝑑𝑠))                              (8) 

𝐶(𝐷𝑡) =  
1

𝑚−1
(𝑑𝑡

𝑇𝑑𝑡 −
1

𝑚
(𝐼𝑇𝑑𝑡)𝑇(𝐼𝑇𝑑𝑡))                              (9) 
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In Equation (8) and Equation (9), I represent the column vector of 1’s. To calculate the gradient of input features 

by chain rule we will utilize Equation (10) and Equation (11) as given below; 

𝜕𝑑𝑐𝑜𝑟𝑎𝑙(𝐷𝑠,𝐷𝑡)

𝜕𝑑𝑠
𝑖𝑗  = 

1

𝑑2(𝑚−1)
((𝑑𝑠

𝑇 −
1

𝑚
(𝐼𝑇𝑑𝑠)𝑇𝐼𝑇)𝑇(𝐶(𝐷𝑠) − 𝐶(𝐷𝑡)))

𝑖𝑗

            (10) 

𝜕𝑑𝑐𝑜𝑟𝑎𝑙(𝐷𝑠,𝐷𝑡)

𝜕𝑑𝑡
𝑖𝑗  = 

1

𝑑2(𝑚−1)
((𝑑𝑡

𝑇 −
1

𝑚
(𝐼𝑇𝑑𝑡)𝑇𝐼𝑇)𝑇(𝐶(𝐷𝑠) − 𝐶(𝐷𝑡)))

𝑖𝑗

            (11) 

The transpose is denoted by T in equations (10) and (11) and m is the number of fingerprints in each sensor. 

 

IV. RESULT AND DISCUSSION 

First, we have discussed the fingerprint datasets used in this study to evaluate the proposed model and then in 
further subsections given the experimental setup and ablation study. 

A. Dataset and Evaluation Metrics 

To assess the performance of the UDDA method, we have utilized LivDet 2015 (LD-15) [22] and LivDet 2017 
(LD-17) [23] data sets. LivDet 2015 dataset was created to focus on the never-seen-before [24] attacks. In the 
LivDet 2017 dataset, training, and testing datasets have different material fake fingerprints as given in Table 2. 

Table 2. Sensor and materials details used for the creation of fake fingerprints in LD-15 and LD-17 datasets. 

Dataset Fingerprint Sensor Train Data Set Test Data Set 

LivDet 2015 

(LD-15) [22] 

Green Bit, Cross-

match, Biometrika, 

and Digital Persona 

Body-Double, EcoFlex, Play-Doh, 

Latex, WoodGlue 

Same as the train set with additional 

fake fingerprints made of OOMOO, 

Gelatin, and Liquid Ecoflex 

LivDet 2017 

(LD-17) [23] 

Green Bit, 

Orcanthus, and 

Digital Persona 

Body Double, EcoFlex, and Wood 

Glue 

Latex, Gelatine, and Liquid Ecoflex 

 

 
Fig. 3. Distribution of fingerprint images in the LD-15 [22] dataset's train and test sets. 

 

Fig. 4. Distribution of fingerprint images in the LD-17 [23] dataset's train and test sets. 

To evaluate the FPAD methods as per the [25] ISO/IEC 30107-3 standards we have utilized Attack Presentation 

Classification Error Rate (APCER) and Bonafide Presentation Classification Error Rate (BPCER), which denotes 

the rate of incorrectly categorized attack presentation (fake samples) and misclassified bonafide presentation (live 

samples) respectively by the PAD system. The classification error (ACE) which is the average of APCER and 

BPCER is utilized to assess the UDDA, which is calculated using Equation (12). 
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𝐴𝐶𝐸 =  
𝐴𝑃𝐶𝐸𝑅+𝐵𝑃𝐶𝐸𝑅

2
                                                                    (12) 

Further, ACE can be used to calculate the accuracy (Acc) of the FPAD method using Equation (13). 

𝐴𝑐𝑐 = 100 − 𝐴𝐶𝐸                                                                         (13)      

B. Experimental setup 

The proposed UDDA model utilizes a stochastic gradient descent (sgd) optimizer and uses an adaptive loss 

function. It consists of cross-entropy loss for fingerprint classification and MMD loss or CORAL loss for domain 

divergence as given in Equation (4). The rest of the hyper-parameters are used as given in Table 3. 

Table 3. Hyper-parameters and their values as used in the experiment. 

Hyper-parameters Value 

Learning rate 0.0001 

Dropout 0.5 

Batch size 32 

Epochs 100 

𝜆 adaptive loss hyper-parameter 10 

 

 

All the tests have been accompanied on an Intel Core i5 processor with 16 GB RAM and 4 GB RTX 3050 graphics 

card memory on the Windows 11 platform. 

C. Ablation Study 

In the experiment, we analyzed the effectiveness of the ResNet-50 CNN model on the LD-15 dataset without 

applying the domain adaptation concept in cross-sensor scenarios. The fingerprints from one sensor (like Greenbit) 

serve as the source domain in this configuration, while the fingerprints from a different sensor (like Digital 

Persona) serve as the target domain. When fingerprint images come from the same sensor (similar distribution) in 

both the training and test sets, we have find that the ResNet-50 CNN model performs well and achieves consistent 

accuracy throughout the train and test datasets. But when the train and test datasets have fingerprint images from 

different sensors (distribution) the accuracy of the ResNet-50 CNN model degrades drastically (up to 30% 

reduction in accuracy) as shown in Table (3). The primary cause of this decline in the model's performance is that 

it was trained only using features from the source sensor dataset. Furthermore, because fingerprint pictures from 

various sensors have varying textural qualities, the FPAD model performs worse when evaluated on a different 

test dataset with slightly different features. We have tested the ReNet-50 CNN model on the LD-15 dataset both 

with and without domain adaptation to get over this restriction. 

In the domain adaption scenario, the first fully connected layer of ResNet-50 has been eliminated and substituted 

with a bottleneck layer and a fully connected layer for fingerprint classification. We have utilized the proposed 

adaptive loss function (ALF) as given in Equation (4) for identifying the domain invariant features and 

classification. The proposed FPDA unsupervised domain adaption model (UDDA) uses MMD loss and CORAL 

loss separately, in the adaptive loss function. From the experiment, we found that MMD loss offers a better 

reduction in ACE in comparison to CORAL loss (Table 4). MMD loss assesses the difference between 

distributions without assuming any specific functional forms. It is effective in capturing differences in higher-

order statistics besides mean and covariance. Since CORAL anticipates a linear transition across domains and is 

primarily concerned with matching second-order statistics between source and destination domains, it may 

perform poorly if the connection is noticeably nonlinear. This is the plausible cause of less degradation in ACE 

by CORAL loss. So forth we have utilized the MMD loss function for further evaluation of the LD-17 dataset. 

 

Table 4. Classification error (ACE) comparison of the ResNet50 base model on the LD-15 dataset (Note: UDDA is not 

applicable when training and test datasets come from the same sensor). 

Data Set Training Dataset Sensor Testing Dataset Sensor 

ACE (in %)                            

Without UDDA 

With 

UDDA 

using 

MMD 

With 

UDDA 

using 

CORAL  
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LD-15 

[22] 

Crossmatch 2.03 - - 

Digital Persona 4.23 - - 

Biometrika 4.15 - - 

Greenbit 2.25 - - 

Average 3.16 - - 

 

Crossmatch 

Digital Persona 50.82 32.67 35.43 

Biometrika 45.25 28.61 30.25 

Greenbit 44.23 27.01 31.63 

 

Digital Persona 

Crossmatch 33.04 22.92 25.21 

Biometrika 42.28 23.26 24.15 

Greenbit 34.43 17.31 18.19 

 

Biometrika 

Crossmatch 39.52 18.34 18.28 

Digital Persona 23.47 15.26 17.61 

Greenbit 19.91 11.7 15.54 

GreenBit 

Crossmatch 32.04 12.9 14.62 

Biometrika 32.97 17.95 19.42 

Digital Persona 20.34 11.45 15.22 

Average 34.86 19.94 22.13 

D. Experimental results 

The proposed UDDA method which utilizes a novel ALF based on MMD loss or cross-entropy loss is evaluated 

on the LD-17 dataset for cross-sensor performance evaluation and results were compared with the previously 

published FPAD methods. In cross-sensor scenario, the results of the UDDA model on the LD-17 dataset have 

been reported in Table 5. 

Table 5: Comparison of the cross-sensor performance of our UDDA model and other FPAD methods on the LD-

17 dataset (values are in ACE %). 

Data 

Set 

Training 

DataSet Sensor 

Testing Dataset 

Sensor 

Proposed method 

(UDDA) 

Slim-

ResCNN 

[15] 

F

S

B 

[2

6] 

MoSFPAD 

[19] 

FSB+

UMG 

[18] 

 

 

 

 

LD-17 

[23] 

 

GreenBit 

Orcanthus 26.64 56.02 5

0.

5

7 

42.67 33.95 

Digital Persona 12.23 19.61 1

0.

6

3 

16.45 5.19 

 

Orcanthus 

GreenBit 17.35 31.18 3

0.

0

7 

27.42 18.25 

Digital Persona 22.12 37.70 4

2.

0

1 

38.71 23.64 

Digital Persona GreenBit 8.32 12.10 1

0.

4

6 

22.61 3.65 
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Orcanthus 28.73 55.70 5

0.

6

8 

41.75 31.56 

Average 19.23 35.39 32.40 31.60 19.37 

The proposed model offers an average ACE of 19.23 on cross-sensor evaluation on the LD-17 dataset, which is 

substantially less than other FPAD approaches [15] [18] [26] and [19]. 

 

 
Figure 5. Comparison of ACE (%) of proposed UDDA and other FPAD methods on LD-17 dataset. 

Our UDDA method perform identical to the state-of-the-art FPAD method provided by Chugh et al. [18]. Their 

FPAD method [18] have used a universal material generator to enhance the performance of the current FPAD 

model, which focuses on producing the texture of unseen fake material. The UMG-based model is computationally 

expensive because it generates the novel fingerprint patches first, and then learns over them. The proposed UDDA 

model offers the least or almost similar (in some cases) ACE value because it learns the domain invariant features 

instead of generating the common set of features of source and target domains (which is computationally 

expensive) [18].    

V. CONCLUSION 

Despite the tremendous growth in the FPAD methods, most of the methods fail to generalize in cross-sensor 

scenarios. This is mostly because these techniques are trained on sensor-dependent features. This paper suggests a 

novel FPDA approach (UDDA) that makes use of a special adaptive loss function for a resilient FPAD method. It 

aids in the learning of domain-invariant features for any basic CNN model by combining the cross-entropy loss and 

MMD loss. Two LivDet datasets that are available to the public have been used to evaluate the suggested model 

(UDDA). The outcomes of the study demonstrate that unsupervised domain adaptation contributes to an 

improvement in cross-sensor generalization ability. 
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