
J. Electrical Systems 20-7s (2024): 3607-3619

3607

1,2Buddaraju Revathi

3 M. V. D. Prasad

4Naveen Kishore

Gattim

Performance Comparison of various

CNN Models for Recognition of

Handwritten Telugu Text

Abstract: - Deep Learning (DL) stands as a pivotal field in the exploration of pattern recognition, offering unparalleled potential for

addressing difficult machine learning challenges. The recognition of characters in the Telugu language using Optical Character Recognition

(OCR) presents challenges due to the complex structures of characters, the presence of confusing characters, and overlapping characters.

Convolutional Neural Networks (CNNs) exhibit proficiency in extracting features from training images and determining subtle differences

in character shapes. The potency of robust CNN architectures has significantly elevated recognition rates, especially for Indian scripts. Our

goal was to evaluate how well CNN based models adapt and perform with accuracy in a challenging script recognition context. In this

paper, we introduce a character segmentation algorithm designed to address the challenges posed by overlapping characters, considering

the Telugu language-specific features. Our approach involves a preprocessing stage to identify page boundaries and detect words within

lines, employing edge detection algorithms. Subsequently, characters are extracted from words on the page using a character segmentation

algorithm tailored for the Telugu language and the characters are recognized using trained deep learning models. In addressing the

distinctive traits of the training data, we utilize a built based upon the Inception and ResNet models, incorporating adjustments in layers.

The model’s performance undergoes thorough validation using a standard dataset, and it is benchmarked against established models in the

respective field.

Keywords: Deep learning, Convolution Neural Network, ResNet, Inception, Optical character recognition,

Feature extraction.

I. INTRODUCTION

OCR technology plays a crucial role in safeguarding cultural legacies, advancing education, streamlining

governance, rejuvenating languages, improving communication, and upholding legal standards, where regional

languages hold sway. Its integration into regional languages significantly contributes to the broader socioeconomic

progress of these regions [1]. The Telugu is a significant South Indian language, has been understudied, leading

to inadequate solutions for recognizing its handwritten script. To address this gap, we have employed advanced

deep learning models, well-known for their effectiveness in image recognition tasks.

Telugu language has hundreds of characters. There are 56 important base characters. Out of which 16 are vowels

and the rest are consonants. For each consonant there exists gunintham which is formed by adding the symbolic

representation of vowel with consonants. In addition, there are so many compound characters which are formed

by adding symbolic ligature of a character to the base character. Most of the base characters have similar and

intricate structures. Due to this the Telugu handwritten OCR has remained unaddressed problem.

This study makes significant strides in advancing OCR technology and plays a pivotal role in fostering linguistic

diversity, preserving cultural heritage, enhancing education, and ensuring access to information in native

languages. Our research involves an in-depth analysis of various CNN models applied to a dataset comprising

Telugu handwritten texts. The primary aim is to evaluate the performance of these models and establish

benchmarks for accuracy and efficiency in recognizing Telugu scripts.

OCR is implemented in five stages namely preprocessing, segmentation, feature extraction, training, validation

and testing, recognition [2]. The preprocessing stage stands as a pivotal step, focusing on preparing the input

image or document to ensure precise character recognition. This phase is dedicated to refining image quality,

rectifying distortions, and eliminating any noise. Segmentation is the pivotal process of partitioning an image with

1 Research Scholar, Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India-

522502.

 E-mail: buddaraju.revathi@gmail.com

2 Assistant Professor, Department of Electronics and Communication Engineering, SRKR Engineering College, Bhimavaram-534204.

3 Associate Professor, ECE Department, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur,Andhra Pradesh, India-522502.

4 Associate Professor, ECE Department, Sasi Institute of Technology and Engineering, Tadepalligudem.

Copyright © JES 2024 on-line : journal.esrgroups.org

mailto:buddaraju.revathi@gmail.com

J. Electrical Systems 20-7s (2024): 3607-3619

3608

text into smaller segments or sections, each corresponding to a single character, word, or line. By dissecting the

text into discrete characters, OCR algorithms can concentrate on recognizing each character separately, thereby

significantly enhancing accuracy [3]-[4].

Feature extraction is a pivotal process where input data, like images containing text, is transformed into significant

features. Neural networks excel in this task by autonomously identifying relevant features from the data, thereby

improving the accuracy and efficiency of the extraction process [5]-[6]. Training and testing form indispensable

components of OCR system development. Training allows the system to acquire knowledge and adaptability,

while testing serves to validate its performance, guaranteeing its ability to process varied, real-world data

accurately and reliably.

Telugu OCR faces the problems with character segmentation and similarity of characters. For example, య, మ;

స, న; థ, ధ; ఠ, ర. These characters are called confusion characters in Telugu. A character segmentation technique

has been developed to address segmentation issues and preserve vital features, especially for overlapping

characters. To differentiate between similar characters, the ResNet Inception cascade model was employed,

mitigating overfitting concerns often associated with deep models.

II. RELATED WORK

Enhancing OCR recognition rates is achieved through the segmentation of overlapping characters. In the context

of Bangla and Devanagari scripts, Utpal Garain et.al [7] tackled character segmentation challenges, particularly

in cases where characters are touching. Their approach involved employing fuzzy multifactorial analysis to

effectively separate touching characters in these scripts. G. Louloudis et.al [8] utilized a Gaussian mixture model

to compute distance between words and character spacing for handwritten word segmentation. This approach,

based on Euclidean distance and convex hull-based metric, demonstrated superior performance on standard

datasets compared to conventional methods. Jeewonoog Ryu et.al [9] employed dissimilarity scores among inter

and intra-word gaps to segment words in handwritten scripts. Modeling the similarity score for inter-word gaps,

along with individual gap likelihoods as a binary quadratic problem, the parameters were estimated by structured

Support Vector Machine. This method outperformed on both Latin and Indian languages. Vishal Rajput et.al [10]

developed a character segmentation technique by analyzing pixel values vertically to identify local minima and

maxima points. Adjusting the graph adaptively based on peak intensity values widths from the vertical projection

profile enabled correct segmentation points. While effective for connected text, the algorithm may require revision

for handling overlapping characters.

With the evolution of neural networks, there has been a surge in research interest in OCR for native languages,

driven by their proficiency in feature extraction. Haifeng Zhao et.al [11] conducted OCR research for Kannada

and English scene text detection. The approach was based on VGG-Net with fewer units in the convolutional

layer, employing diverse strategies for initialization to achieve improved accuracy rates. Minesh Mathew et.al

[12] tackled text recognition in Telugu, Malayalam, and Devanagari scene images using a CNN-RNN model

trained end-to-end on images. This model demonstrated proficiency in recognizing text by detecting words within

the images. Konkimalla Chandra Prakash et.al [13] focused on Telugu OCR for printed text, utilizing connected

components for segmenting images at the character level. CNN was employed for feature extraction of base

characters, vattu, and gunintham. The Adam optimizer and CNN as a classifier were integral components of the

approach. Syed Yasser Arafat et.al [14] employed faster RCNN alongside CNNs to localize text in Urdu scene

images. Ligature alignment prediction through a regression residual network and the use of two-stream deep neural

networks contributed to a practical recognition rate of 76.6%. Yongjie Zou et.al [15] leveraged Bi-LSTM with

ambient position for license plate character detection. Popular CNN architectures with a spatial attention

mechanism were used to extract character features, achieving significant recognition rates on both regular and

irregular license plates.

A classification technique for recognizing handwritten Urdu characters and digits was introduced by A. Rasheed

et.al [16] leveraging the principles of transfer learning with pre-trained CNNs to enhance accuracy. In the domain

of handwritten Ethiopic texts, R. Malhotra et.al [17] harnessed deep neural networks, employing a comprehensive

end-to-end approach for seamless feature extraction and efficient subsequent detection. The model's core

incorporates an attention technique combined with connectionist temporal classification, and the architecture

features seven CNNs and two recurrent neural networks.

J. Electrical Systems 20-7s (2024): 3607-3619

3609

Segmenting overlapping Telugu characters requires careful consideration of language features, particularly when

dealing with compound characters. Previous research in this domain has been limited. Therefore, we have devised

an algorithm tailored to segment overlapping characters by modifying projection profiles. Traditional handwritten

text detection methods using machine learning struggle with the intricacies of language structure, resulting in

lower recognition rates. To address this challenge, we leverage deep learning models for feature extraction, leading

to significantly improved recognition rates.

III. IMPLEMENTATION PROCESS

3.1 Recognition of words in an image

The test page which must be checked for word recognition rate is given as input to OCR. The bilateral filter is

utilized to smooth images while safeguarding edge details [18] specifically crafted for grayscale images. This non-

linear filter performs a mathematical operation that involves a weighted average of pixel values within a given

neighbourhood. These weights are determined by both spatial proximity and intensity similarity, creating a

harmonious balance between spatial closeness and similarity in pixel intensity. The bilateral filtering is

mathematically given by (1)

𝐵𝐹(𝐼, 𝜎𝑠𝑝, 𝜎𝑖𝑛)=
1

𝑊𝑟
∑ 𝐼(𝑠) ∙ 𝑤(𝑟, 𝑠)𝑠𝜖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑟) (1)

where I is an image in grey scale with coordinates of pixels at (r, s). 𝜎𝑠𝑝 and 𝜎𝑖𝑛 regulates special dimensions of

filter and similarity intensity. 𝑤(𝑟, 𝑠) is kernel of bilateral filter given by (2),

𝑤(𝑟, 𝑠) = 𝑤𝑠(𝑟, 𝑠) ∙ 𝑤𝑖(𝐼(𝑟), 𝐼(𝑠)) (2)

where 𝑤𝑠(𝑟, 𝑠) and 𝑤𝑖(𝐼(𝑟), 𝐼(𝑠)) represent the spatial and intensity components of the weight, respectively.

The adaptive Gaussian thresholding technique employs a threshold function that considers variations in

illumination to detect page edges. This approach enables effective identification of the edges of the pages by

considering changes in illumination. The process includes computing mean, 𝜇(𝑟, 𝑠) and standard deviation 𝜎(𝑟, 𝑠)

in neighbourhood of pixel intensities at (r, s) of image 𝐼 given by (3) and (4).

𝜇(𝑟, 𝑠) =
1

𝑊𝑆
∑ ∑ 𝐼(𝑖, 𝑗)𝑠+𝑤

𝑗=𝑠−𝑤
𝑟+𝑤
𝑖=𝑟−𝑤 (3)

𝜎(𝑟, 𝑠) = √
1

𝑊𝑆
∑ ∑ (𝐼(𝑖, 𝑗)𝑠+𝑤

𝑗=𝑠−𝑤
𝑟+𝑤
𝑖=𝑟−𝑤 − 𝜇(𝑟, 𝑠))2 (4)

where WS is window size and w are the half window size.

The threshold of each pixel is computed by (5)

𝑇(𝑟, 𝑠) = 𝜇(𝑟, 𝑠) − 𝑙 ⋅ 𝜎(𝑟, 𝑠) (5)

where l controls variations in sensitivity and user specified value. Classify the pixels by using thresholding as

given by (6)

𝐵𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑠𝑢𝑙𝑡(𝑟, 𝑠) = {
1, 𝑖𝑓 𝐼(𝑟, 𝑠) > 𝑇(𝑟, 𝑠)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

This flexible method empowers the threshold to adjust throughout various sections of the image, adeptly handling

variations in illumination and refining the accuracy of edge detection.

To identify words on the page, eliminate page noise by employing the Sobel operator, which utilizes 5x5 Gaussian

filtering in the process given by (7)

𝑔(𝑦, 𝑧) = 𝐺𝜎(𝑦, 𝑧) ∗ 𝑓(𝑦, 𝑧) (7)

𝑤here𝐺𝜎 =
1

√2𝜋𝜎2
exp (−

𝑦2+𝑧2

2𝜎2)

The pixel directions and gradients of the edges can be calculated by (8)

𝐺(𝑦, 𝑧) = √((𝑔𝑦
2(𝑦, 𝑧) + 𝑔𝑧

2(𝑦, 𝑧))

𝜃(𝑦, 𝑧) = 𝑡𝑎𝑛−1(
𝑔𝑦(𝑦,𝑧)

𝑔𝑧(𝑦,𝑧)
) (8)

J. Electrical Systems 20-7s (2024): 3607-3619

3610

where𝑔𝑦(𝑦, 𝑧) and 𝑔𝑧(𝑦, 𝑧) represents horizontal and vertical derivatives. Afterward, contours are produced,

resulting in numerous bounding boxes that overlap. Union and intersection techniques are then employed to obtain

a bounding box around each word, and the count of these bounding boxes determines the total number of words

on the specific page.

3.2 Character segmentation and Feature extraction

Character segmentation is pivotal during the preprocessing stage of OCR, significantly influencing the overall

accuracy and efficiency of the recognition process [19]. Handwritten Telugu text typically features spaces between

characters. While techniques such as vertical projection profiles can effectively segment words into characters

when there is no overlapping. But handwriting speed or individual writing styles often lead to character overlap.

To address this issue, we have devised a segmentation algorithm capable of accurately isolating overlapping

characters. This algorithm preserves crucial character features, ensuring that the model can recognize the

characters with precision.

 1. Input the bounding box. Compute the image width as well as height.

2. Consider bounding box as image denoted by 𝐼(𝑧, 𝑦). oor every column in the image compute the

vertical projection profile P() by summing the pixel intensities along the vertical axis given by (9)

𝑃(𝑧) = ∑ 𝐼(𝑧, 𝑦)𝐻
𝑧=1 (9)

 where H represents the height of the image.

3. Let 𝑃(0), 𝑃(1), 𝑃(2), … … indicate the sum of pixel intensities along the height of image column wise.

oind the values at which 𝑃(𝑧) = 0. The points whose P()=0 represents gaps between characters. So split them

at those point.

4. The above process splits the words to characters if there is proper spacing between them. If there are

overlapping characters then 𝑃(𝑧) ≠ 0 and this algorithm will not separate them. So after splitting the bounding

box to segments calculate the width of each segment. Let {WD1 WD2 … WDn} represents width of each segment.

The value of n depends on the segments in each bounding box.

5. Let WDm represents the width of small segment. If WDn>=2xWDm then compute 𝑃(𝑧) =

∑ ∑ 𝐼(𝑧, 𝑦)𝐻
𝑧=1

10
𝑖=−10 . Then split the image where P() is minimum. This algorithm effectively splits the overlapping

characters in Telugu language.

Fig. 1 shows segmentation outputs for a word. Fig 1 (a) shows the input word and its sum of vertical pixel intensity

plot. Fig. 1 (b) shows the segmentation based on the plot, where the overlapping characters are not segmented.

Fig. 1 (c) shows the properly segmented character after passing through our algorithm.

Fig 1. Word segmented to character (a) Projection graph for word (b) Words segmented by using projections (c) Segmentation output of

proposed character segmentation algorithm

Feature extraction plays a crucial role in OCR, with CNNs serving as potent tools for extracting features from

images. Let 𝐼 denote the input image, 𝐾 represent the applied filter, and F be the resulting output feature map. The

convolution operation at a specific spatial location (𝑔, ℎ) in the output feature map is defined by (10)

𝐹(𝑔, ℎ) = ∑ ∑ 𝐼(𝑔 + 𝑟, 𝑠 + ℎ). 𝐾(𝑟, 𝑠)𝑆−1
𝑠=0

𝑅−1
𝑟=0 (10)

(a)

(b)

(c)

J. Electrical Systems 20-7s (2024): 3607-3619

3611

where r,s are filter dimensions. 𝐼(𝑔 + 𝑟, 𝑠 + ℎ) are pixel intensities of input image at locations (𝑔 + 𝑟, 𝑠 + ℎ).

𝐾(𝑟, 𝑠) represents weights of filter at location (𝑟, 𝑠). Summation is carried out across all elements of the filter, and

the outcome is allocated to the corresponding position (𝑔, ℎ) in the output feature map. This procedure is reiterated

for all spatial locations within the output feature map.

Activation functions are crucial in empowering neural networks to grasp intricate, non-linear associations, thereby

promoting successful training and ensuring the model's adaptability across diverse tasks. In CNNs ReLU is the

most popularly used one. If Z denotes the input to the activation function, potentially originating from the output

of a convolutional or fully connected layer before activation, the ReLU activation V is calculated elementwise as

given by (11),

𝑉(𝑔, ℎ, 𝑘) = max (0, 𝑍(𝑔, ℎ, 𝑘)) (11)

where 𝑉(𝑔, ℎ, 𝑘) is value of activation function at position (𝑔, ℎ) in the kth feature map and 𝑍(𝑔, ℎ, 𝑘) is the

corresponding input value to the activation function.

Pooling serves to decrease the spatial dimensions of the input volume while preserving crucial information. The

max-pooling operation can be mathematically expressed at location (g,h) given by (12)

𝑀(𝑔, ℎ, 𝑡) = 𝑚𝑎𝑥𝑚=0
𝑡−1 𝑚𝑎𝑥𝑛=0

𝑛−1𝐼(𝑅 ∙ 𝑔 + 𝑚, 𝑅 ∙ ℎ + 𝑛) (12)

where t is pool window size, R is stride, I is input feature map and M is output feature map.

After a series of convolution and pooling operations, flattening is often applied before feeding the output of

convolutional or pooling layers into a fully connected layer. The bottom segment of the CNN involves a SoftMax

layer, producing class probabilities utilized in classification by fully connected layers. This can be expressed by

(13)

𝑅𝑡 =
𝑒𝑠𝑡

∑ 𝑒𝑠𝑡𝑛
𝑝=1

 (13)

Where 𝑅𝑡 represents output for class t and n is total number of classes.

The cross-entropy loss computed between the predicted probabilities 𝑅𝑡 and actual probabilties 𝑃𝑡 for each class

is given by (14)

𝐿(𝑃, 𝑅) = − ∑ 𝑃𝑡
𝑛
𝑞=1 ∙ log(𝑅𝑡) (14)

 where L is the entropy loss.

The SoftMax activation transforms raw scores into probabilities, and the cross-entropy loss measures the disparity

between these predicted probabilities and the actual probabilities. This guides the optimization process throughout

training, aiming to minimize this difference for improved model performance. The Adam optimizer adapts the

network's weights and biases to minimize a specified loss function. The update rules for the weights and biases

using the Adam optimizer are outlined below in (15), (16), (17)

𝑢𝑦 = 𝛼1 ∙ 𝑢𝑦−1 + (1 − 𝛼1) ∙ ∇𝜃𝐿𝑃(𝜃) (15)

𝑝𝑦 = 𝛼2 ∙ 𝑝𝑦−1 + (1 − 𝛼2) ∙ (∇𝜃𝐿𝑃(𝜃))2 (16)

𝜃𝑦 = 𝜃𝑦−1 −
𝜂

√𝑝𝑦+𝜀
∙ 𝑢𝑦 (17)

where 𝐿𝑃(𝜃) loss function, 𝜂 is learning rate, ∇𝜃𝐿𝑃(𝜃) is gradient loss 𝑢𝑦, 𝑝𝑦 are the gradients moving averages

and their squares. 𝛼1, 𝛼2 𝑎re decay rates and 𝜀 value is a constant to avoid division by zero. The Adam optimizer

adjusts the model parameters by considering the gradients of the cross-entropy loss. This process enhances training

effectiveness and optimizes the model's parameters for improved performance.

Following segmentation of words into characters, the resulting test page is inputted into the trained model for

recognition. This test serves to compute the system's word recognition rates, considering that the model is

exclusively trained with characters and character recognition rates are obtained from the generated plots.

J. Electrical Systems 20-7s (2024): 3607-3619

3612

We have employed five CNN models and assessed their performance on characters using a Telugu dataset. The

models include ResNet 34, ResNet 50, ResNet 101, and Inception-ResNet, Inception V1 [20]-[22]. These are

shown in Fig. 2, Fig 3, Fig.4, Fig.5, Fig.6.

Fig. 2 Architecture of ResNet34

Fig. 3 Architecture of ResNet50

Fig. 4 Architecture of ResNet101

Fig. 5 Architecture of ResNet-Inception

Fig. 6 Architecture of Inception V1

Convolution

layer

7x7, 64,

Stride 2

Max

pooling

7x7

Stride 2

Convolution

block

3x3,64

3x3, 64 x3

Convolution

block

3x3,64

3x3,64 x4

input

Convolution

block

3x3,64

3x3,64 x6

Convolution

block

3x3,128

3x3,128 x3

Global

Average

Pooling

SoftMax

output

Convolution

layer

7x7, 64,

Stride 2

 Max

pooling

 7x7

Stride 2

Convolution

block

1x1,64

3x3,64

1x1,64 x3

Convolution

block

1x1,64

3x3,64

1x1,64 x4

input

Convolution

block

1x1,128

3x3,128

1x1,128 x6

Convolution

block

1x1,128

3x3,128

1x1,128 x3

Global

Average

Pooling

SoftMax

output

Convolution

layer

7x7, 64,

Stride 2

 Max

pooling

 7x7

Stride 2

Convolution

block

1x1,64

3x3,64

1x1,64 x3

Convolution

block

1x1,64

3x3,64

1x1,64 x4

input

Convolution

block

1x1,128

3x3,128

1x1,128 x23

Convolution

block

1x1,128

3x3,128

1x1,128 x3

Global

Average

Pooling

SoftMax

output

 Stem

 Inception-

Resnet A

Reduction-A

Inception-

Resnet B

input

Average

Pooling

SoftMax
output

Convolution

layer

 Max

pooling

Inception

Block-1
Inception

Block-2

input

Inception

Block-3

Max

Pooling

Inception

Block-4

SoftMax

output

Max

pooling

J. Electrical Systems 20-7s (2024): 3607-3619

3613

Inception modules excel at extracting multi-scale features by integrating a variety of filter sizes within a single

layer. This method accurately approximates a diverse range of filter sizes, enabling the neural network to

effectively capture both intricate and large-scale features. ResNet addresses the challenge of vanishing gradients

in deep networks by employing strategic residual connections. These connections optimize the training of

extremely deep networks by facilitating more direct gradient flow, allowing the model to learn complex features.

Importantly, ResNet's proficiency in mastering identity mappings further amplifies the training of exceptionally

deep neural networks.

ResNet34 is comprised of 34 layers, making it faster to train and demanding fewer computational resources than

deeper models. It is well-suited for tasks involving fewer complex datasets or scenarios with limited computational

resources. With 50 layers, ResNet50 achieves greater depth than ResNet34. It exhibits improved performance on

complex datasets compared to its shallower counterpart. ResNet50 is a popular choice for various computer vision

tasks, striking a balance between model depth and computational efficiency. Comprising 101 layers, ResNet101

attains greater depth than both ResNet34 and ResNet50. It excels in performance on highly complex datasets and

tasks demanding a more intricate feature representation. However, due to its increased depth, ResNet101 typically

necessitates more computational resources and time for training.

Integrating Inception and ResNet enhances the network's ability to comprehend mixed details and multi-scale

features concurrently. Tasks involving patten boundary definition rely on precise details, while recognizing

patterns across diverse sizes and orientations demands multi-scale capabilities. By capitalizing on the strengths of

both architectures, the combined model surpasses the performance of using Inception or ResNet in isolation.

These distinct architectures serve as a regularization technique, mitigating overfitting by diversifying the acquired

features. Integrating these architectures may extend training time due to the heightened complexity of the model.

Furthermore, in complex architectures, the meticulous selection of hyperparameters becomes paramount.

3.3 Dictionary model Development

The utilization of dictionary models improves the system's recognition rates. Telugu, in particular, poses

challenges due to similar characters, leading individuals to unintentionally write one character instead of another.

Instances include య and మ, స and న, థ and ధ, ఠ and ర, ప and వ, న and స. In these scenarios, dictionary

models rectify characters within words, addressing both human and machine errors. As a result, we observe

improved word detection rates.

Step 1: Let the predicted word be denoted as input and compute its length.

Step 2: Examine the dictionary words with lengths equal to or greater than the predicted word.

Step 3: For each word selected from the dictionary, determine the count of matching characters between it and the

predicted word.

Step 4: Replace the predicted word with the dictionary word that exhibits the maximum character matching.

IV. RESULTS AND DISCUSSIONS

Character training for models involves utilizing the Telugu dataset obtained from IEEE Dataport [23]. The training

set comprises 11,602 images, while an additional 2,565 images are set aside for validation. The evaluation of OCR

effectiveness is performed on the Telugu IEEE Dataport handwritten dataset, employing Inception V1, ResNet

34, ResNet 50, and ResNet 101 and Inception-ResNet. The models undergo training for 25,000 steps. Fig. 7 shows

the plots of Inception V1. Fig. 7 (a) displays the accuracy plot for Inception V1, while Fig. 7(b) illustrates the

corresponding loss plot. Inception V1 has attained an accuracy of 87% with a validation loss of 13%. The

performance of ResNet 34 is visually depicted in Fig. 8. Fig. 8 (a) presents both train and validation accuracy

results, while Fig. 8 (b) provides insights into the loss plot. Notably, ResNet 34 achieves a remarkable validation

accuracy of 91.5%, with a corresponding validation loss of 8.5%.

J. Electrical Systems 20-7s (2024): 3607-3619

3614

(a) (b)

Fig. 7 Performance of Inception V1 (a) Accuracy plot (b) Loss plot

(a) (b)

Fig. 8 Performance of ResNet34 (a) Accuracy plot (b) Loss plot

 Fig. 9 presents performance plots of ResNet 50. Fig. 9 (a) presents the train and validation accuracy plots of

ResNet 50, while Fig. 9(b) illustrates the validation loss of ResNet 50. The model attains a valid accuracy of 96%

and loss of 5%.

(a) (b)

Fig. 9 Performance of ResNet 50 (a) Accuracy plot (b) Loss plot

Fig. 10 shows the plots of ResNet 101. Fig. 10(a) illustrates the training and validation accuracy outcomes for

ResNet 101. Fig. 10 (b) offers a visual representation of the validation loss. Notably, ResNet 101 attains a

validation accuracy of 86.5%, accompanied by a loss of 14.5%. The model's performance on the Telugu dataset

highlights overfitting issues within the deep CNN architecture.

(a) (b)

Fig. 10 Performance of ResNet 101 (a) Accuracy plot (b) Loss plot

J. Electrical Systems 20-7s (2024): 3607-3619

3615

Fig. 11 shows the plots of ResNet-Inception. The training and validation accuracy outcomes for Inception-ResNet

are depicted in Fig 11(a) while Fig. 11(b) visually presents the validation loss. Notably, Inception-ResNet achieves

a commendable validation accuracy of 97%, coupled with a validation loss of 2%. The model exhibits top-notch

performance on the Telugu dataset, effectively avoiding overfitting issues.

(a) (b)

Fig. 11 Performance of ResNet- Inception (a) Accuracy plot (b) Loss plot

Fig. 12 illustrates a comparison of validation loss among Inception V1, ResNet34, ResNet50, ResNet101, and

Inception-ResNet models. A lower validation loss indicates better model performance. Consequently, the graph

distinctly indicates that the Inception-ResNet model exhibits significantly lower loss compared to the other

models.

All the ResNet models underwent training with Telugu characters. The input for the models consists of scanned

images, wherein the page boundaries are identified, excluding the background and correcting image orientations.

Following this, words are detected and segmented into individual characters. The CNN models then recognize

these characters, and the words are reconstructed. In character recognition, the model may misclassify characters

due to their similarities and variations in handwritten styles, leading to a potential decrease in the word recognition

rate. To address this, the integration of a dictionary is implemented to rectify character misclassifications, resulting

in an improvement in word accuracy rates.

Our evaluation involved 1000 sentences handwritten by various individuals, and we computed the word

recognition rates for the three models both with and without the use of a dictionary. Table 1 presents details on

the total parameters, character recognition rates, and word recognition rates for different architectures. The word

recognition rates are depicted with and without the application of dictionaries. It is evident from the table that

models utilizing dictionaries enhance the accuracy rate and mitigate issues arising from similarly structured

characters.

Table 1. Comparison of parameters and accuracy rates of the models

Model Parameters Valid

Character

Accuracy

Word

Accuracy

Word

Accuracy with

dictionary

Inception V1 56,31,016 87% 76% 78%

ResNet 34 13,32,480 91.5% 80% 81.5%

Fig.12 Comparison of loss plots

J. Electrical Systems 20-7s (2024): 3607-3619

3616

ResNet-50 21,01,312 96% 84% 86.5%

ResNet-101 50,07,552 86.5% 73% 75%

ResNet Inception Cascade 55,43,120 97% 85% 87.5%

From Table 1, Inception V1 is equipped with 56,31,016 trainable parameters and demonstrates a character

recognition rate of 87%, along with a word recognition rate of 76% without a dictionary and 78% with a dictionary.

ResNet 34, featuring 13,32,480 trainable parameters, achieves a character accuracy rate of 91.5% and a word

accuracy rate of 80% without a dictionary, improving to 81.5% with the use of a dictionary. ResNet 50, comprising

21,01,312 trainable parameters, attains a character accuracy rate of 96%. Additionally, it achieves a word accuracy

rate of 84% without a dictionary and 86.5% with a dictionary. ResNet 101, with 50,07,552 trainable parameters,

achieves a character accuracy rate of 86.5%. Furthermore, it attains a word accuracy rate of 73% without a

dictionary, which increases to 75% with the aid of a dictionary. Inception-ResNet, featuring 55,43,120 trainable

parameters, excels with a character accuracy rate of 97% and a word accuracy rate of 85% without a dictionary,

surging to 87.5% with the inclusion of a dictionary.

Out of the five models, Inception-ResNet performs better on Telugu language. ResNet 50 performance is almost

nearer to the Inception-ResNet and it has less trainable parameters compared to ResNet 50. ResNet 34 with fewer

parameters achieved a significant recognition rate.

We have considered a test set and evaluated the performances of all ResNet models. The valid accuracy and test

accuracy of different ResNet models is shown in Table 2. On both the validation set and test set ResNet-Inception

model performed better. The graphical representations of validation and test accuracy are shown in Fig. 13.

Table 2. Validation and test accuracy rates of the ResNet models.

Model Valid Character

Accuracy

Test Character

Accuracy

ResNet 34 91.5 88.011

ResNet-50 96 88.39

ResNet-101 86.5 81.82

ResNet Inception 97 90.29

Fig. 13 Validation and Test accuracy rates of ResNet models

The confusion matrix holds a central position in machine learning and classification tasks, providing a crucial

instrument to evaluate the effectiveness of a classification model. Confusion matrix is computed for all the models

and the parameters like Precision, recall and F1 score calculated and tabulated in Table 3. The comparison of these

parameters is shown in Fig. 14.

Table 3. Confusion matrix parameters for the ResNet models.

Model Test Accuracy Precision Recall F1 Score

ResNet34 88.011 0.87782 0.864606 0.867587

ResNet50 88.39 0.8782 0.861862 0.8601

ResNet101 81.82 0.830228 0.806937 0.798304

J. Electrical Systems 20-7s (2024): 3607-3619

3617

ResNet- Inception 90.29 0.904412 0.890236 0.886741

Table 4 illustrates the progress in OCR for native languages such as Telugu [12], [24], -[25], Tamil [26]-[27]

through various techniques, all achieving notable recognition rates. Particularly in Telugu, the proposed method

surpasses other approaches by achieving character recognition rate of 97% and word recognition rate of 87.5%.

Table 4. OCR accuracy rates for native languages

Name of

the Author

Type of text Technique Accuracy

Panyam

Narahari

Handwritten Telugu

Characters

Zoning method- Nearest Neighbour 78%

Devarapalli

Koteswara

Rao

Handwritten Telugu Text Hidden Markov Models (HMMs), Akshara

Models & Akshara Bigram Language

models

74%

Minesh

Mathew

Scene Telugu

Text detection

Hybrid CNN-RNN (CRR) 86.2%

Hybrid CNN-RNN (WRR) 57.2%

,Noushath

Shafi

Handwritten Tamil

characters

CNN with 2 Convolutional layers, 2 max

pooling layers and 2 fully connected layers

88%

S. Kowsalya Handwritten Tamil

characters

Optimal neural network with Weight

optimization using elephant herding

optimization

93%

Proposed Handwritten Telugu Text CNN, ResNet-Inception (CRR) 97%

CNN, ResNet-Inception (WRR) 87.5%

V. CONCLUSION

Advancements in OCR for regional languages are frequently impeded by resource constraints. Overcoming this

hurdle involves implementing robust preprocessing techniques to eliminate noise and rectify page skew, resulting

in a significant enhancement of input quality. The accuracy of systems handling handwritten texts relies heavily

on effective character segmentation, particularly when faced with overlapping characters. The adoption of a

segmentation approach that accounts for language-specific features can substantially increase word recognition

rates. The suggested segmentation algorithm has demonstrated its proficiency in preserving crucial character

features while accurately dissecting words into individual characters, even when confronted with overlapping

characters for Telugu text.

In the realm of Telugu language recognition, Inception-ResNet stands out as the premier performer. ResNet 50

closely trails in performance, approaching the capabilities of Inception-ResNet with the added advantage of fewer

trainable parameters. ResNet 34, boasting a reduced parameter count, achieves a commendable recognition rate.

However, Inception, characterized by a broader network and more trainable parameters, faces challenges in

handling complex structured characters and unbalanced classes. Despite these challenges, its performance remains

competitive compared to other ResNet models.

ResNet-101 excels at extracting sophisticated features from data. Nevertheless, when grappling with limited

datasets, these models encounter difficulties in extracting relevant features. The inadequacy of data points hampers

Fig. 14 Comparison of confusion parameters for ResNet models.

J. Electrical Systems 20-7s (2024): 3607-3619

3618

the network's ability to recognize significant patterns, impacting overall performance. So ResNet models excel in

recognition of handwritten Telugu text, when the model selection must be based on the dataset used.

REFERENCES

[1] Munish Kumar M. K. Jindal R. K. Sharma “Review on OCR for Handwritten Indian Scripts Character Recognition ”

Communications in Computer and Information Science pp.268–276 2011. doi:10.1007/978-3-642-24055-3_28.

[2] C. C. Tappert C. Y. Suen and T. Wakahara “The state of the art in online handwriting recognition ” IEEE Transactions

on Pattern Analysis and Machine Intelligence vol. 12 no. 8 pp.787–808 1990. doi:10.1109/34.57669.

[3] oujisawa H. Nakano Y. &Kurino K “Segmentation methods for character recognition: from segmentation to

document structure analysis ” Proceedings of the IEEE vol. 80 no. 7 pp.1079–1092 1992. doi:10.1109/5.156471
[4] Ryu H. I. Koo and N. I. Cho “Word segmentation method for handwrit-ten documents based on structured learning ”

IEEE Signal Process. Letters. vol. 22 no. 8 pp.1161–1165 2015. doi:10.1109/LSP.2015.2389852.

[5] Hadar I. Avi-It hak Thanh A. Diep and Harry Garland “High accuracy optical character recognition using neural

networks with centroid dithering ” IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 17 no. 2

pp.218–224 1995. doi:10.1109/34.368165.

[6] R. Ptucha o. Petroski Such S. Pillai o. Brockler V. Singh and P. Hutkowski “Intelligent character recognition using

fully convolutional neural networks ” Pattern Recognition vol. 88 pp.604–613 2019.doi:10.1016/j.patcog.2018.12.017.

[7] U. Garain B.B. Chaudhuri “Segmentation of touching characters in printed Devnagari and Bangla scripts using fu y

multifactorial analysis ” IEEE Transactions on Systems Man and Cybernetics Part C (Applications and Review) vol.

32 no. 4 pp. 449 – 459 2002. doi: 10.1109/TSMCC.2002.807272.

[8] G. Louloudis B. Gatos I. Pratikakis and C. Halatsis “Text line and word segmentation of handwritten documents ”

Pattern Recognition vol. 42 no. 12 pp.3169–3183 2009. doi:10.1016/j.patcog.2008.12.016.

[9] Jewoong Ryu Hyung Il Koo & Nam Ik Cho. “Word Segmentation Method for Handwritten Documents based on

Structured Learning ” IEEE Signal Processing Letters pp.1161–1165 2015. doi:10.1109/lsp.2015.2389852.

[10] Vishal Rajput N. Jayanthi S. Indu “An efficient character recognition algorithm for connected Handwritten

Documents” In book: Document Analysis and Recognition pp.97-105 2019. doi:10.1007/978-981-13-9361-7_9.

[11] Haifeng Zhao Yong Hu Jinxia Zhang “Reading Text in Natural Scene Images via Deep Neural Networks ” 2017 4th

IAPR Asian Conference on Pattern Recognition (ACPR) pp.43-48 2017. doi:10.1109/acpr.2017.25.

[12] Minesh Mathew Mohit Jain C.V. Jawahar “Benchmarking Scene Text Recognition in Devanagari Telugu and

Malayalam ” 14th IAPR International Conference on Document Analysis and Recognition vol.9 pp.9-15 2017.doi:

10.1109/ICDAR.2017.364.

[13] K. Chandra Prakash Y. M. Srikar G. Trishal S. Mandal and S. S. Channappayya "Optical Character Recognition (OCR)

for Telugu: Database Algorithm and Application " 2018 25th IEEE International Conference on Image Processing

(ICIP), Athens Greece pp. 3963-3967 2018. doi: 10.1109/ICIP.2018.8451438.

[14] S. Y. Arafat and M. J. Iqbal “Urdu-Text Detection and Recognition in Natural Scene Images Using Deep Learning ”

IEEE Access vol. 8 pp. 96787-96803 2020. doi: 10.1109/ACCESS.2020.2994214.

[15] Y Zou Y Zhang J Yan X Jiang T Huang H oan Z & Cui ” A Robust License Plate Recognition Model Based on

Bi-LSTM ” IEEE Access vol. 8 pp.211630-211641 2020. doi: 10.1109/ACCESS.2020.3040238.

[16] A. Rasheed N. Ali B. Zafar A. Shabbir M. Sajid and M. T. Mahmood “Handwritten Urdu Characters and Digits

Recognition Using Transfer Learning and Augmentation with AlexNet ” in IEEE Access vol.10 pp.102629-102645

2022. doi: 10.1109/ACCESS.2022.3208959.

[17] R. Malhotra and M. T. Addis “End-to-End Historical Handwritten Ethiopic Text Recognition Using Deep Learning ”

IEEE Access vol. 11 pp. 99535-99545 2023. doi: 10.1109/ACCESS.2023.3314334.

[18] Paris S. Kornprobst P. Tumblin J. & Durand o. “Bilateral oiltering: Theory and Applications ” ooundations and

Trends in Computer Graphics and Vision. 2008; vol. 4 no .1 pp.1–74. doi:10.1561/0600000020

[19] Himadri Nandini Das Bebartta and Sanghamitra Mohanty “Algorithm for segmenting script-dependant portion in a

bilingual Optical Character Recognition system ” Pattern Recognition and Image Analysis vol. 27 no. 3 pp.560–568

2017. doi:10.1134/s1054661817030142.

[20] K. He X. Zhang S. Ren and J. Sun “Deep Residual Learning for Image Recognition ” 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) pp.770-778 2016. doi: 10.1109/CVPR.2016.90.

[21] Christian S egedy Sergey Ioffe Vincent Vanhoucke. Alex Alemi “Inception-v4 Inception-ResNet and the Impact of

Residual Connections on Learning ” Proceedings of the Thirty-oirst AAAI Conference on Artificial Intelligence (AAAI-

17) pp. 4278-4284 2017. arXiv:1602.07261.

[22] Christian S egedy Wei Liu Yangqing Jia Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan Vincent

Vanhoucke Andrew Rabinovich “Going Deeper with Convolutions ” 2014. arXiv:1409.4842.

[23] Muni Sekhar Velpuru Tejasree G Ravi Kumar M “Telugu Handwritten Character Dataset ” Dec 30 2020. IEEE

Dataport. https://Dx.Doi.Org/10.21227/Mw6a-D662.

[24] P. N. Sastry T. R. V. Lakshmi N. V. K. Rao T. V. Rajinikanth and A. Wahab “Telugu Handwritten Character Recognition

Using Zoning oeatures ” 2014 International Conference on IT Convergence and Security (ICITCS) pp.1-4 2014. doi:

10.1109/ICITCS.2014.7021817.

[25] Devarapalli Koteswara Rao Atul Negi “Orthographic Properties Based Telugu Text Recognition Using Hidden Markov

Models ” 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) vol.9 pp. 9-15 2017.

doi: 10.1109/ICDAR.2017.327.

http://dx.doi.org/10.1007/978-3-642-24055-3_28
https://doi.org/10.1109/LSP.2015.2389852
https://doi.org/10.1016/j.patcog.2018.12.017
https://doi.org/10.1016/j.patcog.2008.12.016
http://dx.doi.org/10.1007/978-981-13-9361-7_9
https://link.springer.com/article/10.1134/S1054661817030142#auth-1
https://link.springer.com/article/10.1134/S1054661817030142#auth-2
https://arxiv.org/search/cs?searchtype=author&query=Szegedy,+C
https://arxiv.org/search/cs?searchtype=author&query=Ioffe,+S
https://arxiv.org/search/cs?searchtype=author&query=Vanhoucke,+V
https://arxiv.org/search/cs?searchtype=author&query=Alemi,+A
https://arxiv.org/search/cs?searchtype=author&query=Szegedy,+C
https://arxiv.org/search/cs?searchtype=author&query=Liu,+W
https://arxiv.org/search/cs?searchtype=author&query=Jia,+Y
https://arxiv.org/search/cs?searchtype=author&query=Sermanet,+P
https://arxiv.org/search/cs?searchtype=author&query=Reed,+S
https://arxiv.org/search/cs?searchtype=author&query=Anguelov,+D
https://arxiv.org/search/cs?searchtype=author&query=Erhan,+D
https://arxiv.org/search/cs?searchtype=author&query=Vanhoucke,+V
https://arxiv.org/search/cs?searchtype=author&query=Vanhoucke,+V
https://arxiv.org/search/cs?searchtype=author&query=Rabinovich,+A
https://dx.doi.org/10.21227/Mw6a-D662

J. Electrical Systems 20-7s (2024): 3607-3619

3619

[26] N. Shaffi and o. Hajamohideen “uTHCD: A New Benchmarking for Tamil Handwritten OCR ” IEEE Access vol. 9

pp.101469-101493 2021. doi: 10.1109/ACCESS.2021.3096823.

[27] Kowsalya S. & Periasamy P. S “Recognition of Tamil handwritten character using modified neural network with aid

of elephant herding optimi ation ” Multimedia Tools and Applications pp.25043-25061 2019. doi:10.1007/s11042-

019-7624-2.

