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Abstract: - Deep Learning (DL) stands as a pivotal field in the exploration of pattern recognition, offering unparalleled potential for 

addressing difficult machine learning challenges. The recognition of characters in the Telugu language using Optical Character Recognition 

(OCR) presents challenges due to the complex structures of characters, the presence of confusing characters, and overlapping characters.  

Convolutional Neural Networks (CNNs) exhibit proficiency in extracting features from training images and determining subtle differences 

in character shapes. The potency of robust CNN architectures has significantly elevated recognition rates, especially for Indian scripts. Our 

goal was to evaluate how well CNN based models adapt and perform with accuracy in a challenging script recognition context. In this 

paper, we introduce a character segmentation algorithm designed to address the challenges posed by overlapping characters, considering 

the Telugu language-specific features. Our approach involves a preprocessing stage to identify page boundaries and detect words within 

lines, employing edge detection algorithms. Subsequently, characters are extracted from words on the page using a character segmentation 

algorithm tailored for the Telugu language and the characters are recognized using trained deep learning models. In addressing the 

distinctive traits of the training data, we utilize a built based upon the Inception and ResNet models, incorporating adjustments in layers. 

The model’s performance undergoes thorough validation using a standard dataset, and it is benchmarked against established models in the 

respective field. 

Keywords: Deep learning, Convolution Neural Network, ResNet, Inception, Optical character recognition, 

Feature extraction. 

 

I.  INTRODUCTION  

OCR technology plays a crucial role in safeguarding cultural legacies, advancing education, streamlining 

governance, rejuvenating languages, improving communication, and upholding legal standards, where regional 

languages hold sway. Its integration into regional languages significantly contributes to the broader socioeconomic 

progress of these regions [1]. The Telugu is a significant South Indian language, has been understudied, leading 

to inadequate solutions for recognizing its handwritten script. To address this gap, we have employed advanced 

deep learning models, well-known for their effectiveness in image recognition tasks. 

Telugu language has hundreds of characters. There are 56 important base characters. Out of which 16 are vowels 

and the rest are consonants. For each consonant there exists gunintham which is formed by adding the symbolic 

representation of vowel with consonants. In addition, there are so many compound characters which are formed 

by adding symbolic ligature of a character to the base character. Most of the base characters have similar and 

intricate structures. Due to this the Telugu handwritten OCR has remained unaddressed problem. 

This study makes significant strides in advancing OCR technology and plays a pivotal role in fostering linguistic 

diversity, preserving cultural heritage, enhancing education, and ensuring access to information in native 

languages. Our research involves an in-depth analysis of various CNN models applied to a dataset comprising 

Telugu handwritten texts. The primary aim is to evaluate the performance of these models and establish 

benchmarks for accuracy and efficiency in recognizing Telugu scripts. 

OCR is implemented in five stages namely preprocessing, segmentation, feature extraction, training, validation 

and testing, recognition [2]. The preprocessing stage stands as a pivotal step, focusing on preparing the input 

image or document to ensure precise character recognition. This phase is dedicated to refining image quality, 

rectifying distortions, and eliminating any noise. Segmentation is the pivotal process of partitioning an image with 
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text into smaller segments or sections, each corresponding to a single character, word, or line. By dissecting the 

text into discrete characters, OCR algorithms can concentrate on recognizing each character separately, thereby 

significantly enhancing accuracy [3]-[4]. 

Feature extraction is a pivotal process where input data, like images containing text, is transformed into significant 

features. Neural networks excel in this task by autonomously identifying relevant features from the data, thereby 

improving the accuracy and efficiency of the extraction process [5]-[6]. Training and testing form indispensable 

components of OCR system development. Training allows the system to acquire knowledge and adaptability, 

while testing serves to validate its performance, guaranteeing its ability to process varied, real-world data 

accurately and reliably. 

Telugu OCR faces the problems with character segmentation and similarity of characters. For example, య, మ; 

స, న; థ, ధ; ఠ, ర. These characters are called confusion characters in Telugu. A character segmentation technique 

has been developed to address segmentation issues and preserve vital features, especially for overlapping 

characters. To differentiate between similar characters, the ResNet Inception cascade model was employed, 

mitigating overfitting concerns often associated with deep models. 

II. RELATED WORK 

Enhancing OCR recognition rates is achieved through the segmentation of overlapping characters.  In the context 

of Bangla and Devanagari scripts, Utpal Garain et.al [7] tackled character segmentation challenges, particularly 

in cases where characters are touching. Their approach involved employing fuzzy multifactorial analysis to 

effectively separate touching characters in these scripts. G. Louloudis et.al [8] utilized a Gaussian mixture model 

to compute distance between words and character spacing for handwritten word segmentation. This approach, 

based on Euclidean distance and convex hull-based metric, demonstrated superior performance on standard 

datasets compared to conventional methods. Jeewonoog Ryu et.al [9] employed dissimilarity scores among inter 

and intra-word gaps to segment words in handwritten scripts. Modeling the similarity score for inter-word gaps, 

along with individual gap likelihoods as a binary quadratic problem, the parameters were estimated by structured 

Support Vector Machine. This method outperformed on both Latin and Indian languages. Vishal Rajput et.al [10] 

developed a character segmentation technique by analyzing pixel values vertically to identify local minima and 

maxima points. Adjusting the graph adaptively based on peak intensity values widths from the vertical projection 

profile enabled correct segmentation points. While effective for connected text, the algorithm may require revision 

for handling overlapping characters. 

With the evolution of neural networks, there has been a surge in research interest in OCR for native languages, 

driven by their proficiency in feature extraction. Haifeng Zhao et.al [11] conducted OCR research for Kannada 

and English scene text detection. The approach was based on VGG-Net with fewer units in the convolutional 

layer, employing diverse strategies for initialization to achieve improved accuracy rates. Minesh Mathew et.al 

[12] tackled text recognition in Telugu, Malayalam, and Devanagari scene images using a CNN-RNN model 

trained end-to-end on images. This model demonstrated proficiency in recognizing text by detecting words within 

the images. Konkimalla Chandra Prakash et.al [13] focused on Telugu OCR for printed text, utilizing connected 

components for segmenting images at the character level. CNN was employed for feature extraction of base 

characters, vattu, and gunintham. The Adam optimizer and CNN as a classifier were integral components of the 

approach. Syed Yasser Arafat et.al [14] employed faster RCNN alongside CNNs to localize text in Urdu scene 

images. Ligature alignment prediction through a regression residual network and the use of two-stream deep neural 

networks contributed to a practical recognition rate of 76.6%. Yongjie Zou et.al [15] leveraged Bi-LSTM with 

ambient position for license plate character detection. Popular CNN architectures with a spatial attention 

mechanism were used to extract character features, achieving significant recognition rates on both regular and 

irregular license plates.  

A classification technique for recognizing handwritten Urdu characters and digits was introduced by A. Rasheed 

et.al [16] leveraging the principles of transfer learning with pre-trained CNNs to enhance accuracy. In the domain 

of handwritten Ethiopic texts, R. Malhotra et.al [17] harnessed deep neural networks, employing a comprehensive 

end-to-end approach for seamless feature extraction and efficient subsequent detection. The model's core 

incorporates an attention technique combined with connectionist temporal classification, and the architecture 

features seven CNNs and two recurrent neural networks. 
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Segmenting overlapping Telugu characters requires careful consideration of language features, particularly when 

dealing with compound characters. Previous research in this domain has been limited. Therefore, we have devised 

an algorithm tailored to segment overlapping characters by modifying projection profiles. Traditional handwritten 

text detection methods using machine learning struggle with the intricacies of language structure, resulting in 

lower recognition rates. To address this challenge, we leverage deep learning models for feature extraction, leading 

to significantly improved recognition rates. 

III. IMPLEMENTATION PROCESS  

3.1 Recognition of words in an image 

The test page which must be checked for word recognition rate is given as input to OCR. The bilateral filter is 

utilized to smooth images while safeguarding edge details [18] specifically crafted for grayscale images. This non-

linear filter performs a mathematical operation that involves a weighted average of pixel values within a given 

neighbourhood. These weights are determined by both spatial proximity and intensity similarity, creating a 

harmonious balance between spatial closeness and similarity in pixel intensity. The bilateral filtering is 

mathematically given by (1) 

𝐵𝐹(𝐼, 𝜎𝑠𝑝, 𝜎𝑖𝑛)=
1

𝑊𝑟
∑ 𝐼(𝑠) ∙ 𝑤(𝑟, 𝑠)𝑠𝜖𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑟)  (1) 

where I is an image in grey scale with coordinates of pixels at (r, s). 𝜎𝑠𝑝 and 𝜎𝑖𝑛 regulates special dimensions of 

filter and similarity intensity. 𝑤(𝑟, 𝑠) is kernel of bilateral filter given by (2), 

𝑤(𝑟, 𝑠) = 𝑤𝑠(𝑟, 𝑠) ∙ 𝑤𝑖(𝐼(𝑟), 𝐼(𝑠))        (2) 

where 𝑤𝑠(𝑟, 𝑠) and 𝑤𝑖(𝐼(𝑟), 𝐼(𝑠))  represent the spatial and intensity components of the weight, respectively. 

The adaptive Gaussian thresholding technique employs a threshold function that considers variations in 

illumination to detect page edges. This approach enables effective identification of the edges of the pages by 

considering changes in illumination. The process includes computing mean, 𝜇(𝑟, 𝑠) and standard deviation 𝜎(𝑟, 𝑠) 

in neighbourhood of pixel intensities at (r, s) of image 𝐼 given by (3) and (4). 

𝜇(𝑟, 𝑠) =
1

𝑊𝑆
∑ ∑ 𝐼(𝑖, 𝑗)𝑠+𝑤

𝑗=𝑠−𝑤
𝑟+𝑤
𝑖=𝑟−𝑤    (3) 

𝜎(𝑟, 𝑠) = √
1

𝑊𝑆
∑ ∑ (𝐼(𝑖, 𝑗)𝑠+𝑤

𝑗=𝑠−𝑤
𝑟+𝑤
𝑖=𝑟−𝑤 − 𝜇(𝑟, 𝑠))2 (4) 

where WS is window size and w are the half window size. 

The threshold of each pixel is computed by (5) 

𝑇(𝑟, 𝑠) = 𝜇(𝑟, 𝑠) − 𝑙 ⋅ 𝜎(𝑟, 𝑠)    (5) 

where l controls variations in sensitivity and user specified value. Classify the pixels by using thresholding as 

given by (6) 

𝐵𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑠𝑢𝑙𝑡(𝑟, 𝑠) = {
1, 𝑖𝑓 𝐼(𝑟, 𝑠) > 𝑇(𝑟, 𝑠) 

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

This flexible method empowers the threshold to adjust throughout various sections of the image, adeptly handling 

variations in illumination and refining the accuracy of edge detection. 

To identify words on the page, eliminate page noise by employing the Sobel operator, which utilizes 5x5 Gaussian 

filtering in the process given by (7) 

𝑔(𝑦, 𝑧) = 𝐺𝜎(𝑦, 𝑧) ∗ 𝑓(𝑦, 𝑧)      (7) 

𝑤here𝐺𝜎 =
1

√2𝜋𝜎2
exp (−

𝑦2+𝑧2

2𝜎2 )   

The pixel directions and gradients of the edges can be calculated by (8) 

𝐺(𝑦, 𝑧) = √((𝑔𝑦
2(𝑦, 𝑧) + 𝑔𝑧

2(𝑦, 𝑧)) 

𝜃(𝑦, 𝑧) = 𝑡𝑎𝑛−1(
𝑔𝑦(𝑦,𝑧)

𝑔𝑧(𝑦,𝑧)
)    (8) 
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where𝑔𝑦(𝑦, 𝑧)  and 𝑔𝑧(𝑦, 𝑧) represents horizontal and vertical derivatives. Afterward, contours are produced, 

resulting in numerous bounding boxes that overlap. Union and intersection techniques are then employed to obtain 

a bounding box around each word, and the count of these bounding boxes determines the total number of words 

on the specific page. 

3.2 Character segmentation and Feature extraction 

Character segmentation is pivotal during the preprocessing stage of OCR, significantly influencing the overall 

accuracy and efficiency of the recognition process [19]. Handwritten Telugu text typically features spaces between 

characters. While techniques such as vertical projection profiles can effectively segment words into characters 

when there is no overlapping. But handwriting speed or individual writing styles often lead to character overlap. 

To address this issue, we have devised a segmentation algorithm capable of accurately isolating overlapping 

characters. This algorithm preserves crucial character features, ensuring that the model can recognize the 

characters with precision. 

       1.    Input the bounding box. Compute the image width as well as height. 

2. Consider bounding box as image denoted by 𝐼(𝑧, 𝑦). oor every column   in the image  compute the 

vertical projection profile P( ) by summing the pixel intensities along the vertical axis given by (9) 

𝑃(𝑧) = ∑ 𝐼(𝑧, 𝑦)𝐻
𝑧=1       (9) 

        where H represents the height of the image.  

3. Let 𝑃(0), 𝑃(1), 𝑃(2), … … indicate the sum of pixel intensities along the height of image column wise. 

oind the values at which 𝑃(𝑧) = 0. The points whose P( )=0 represents gaps between characters. So  split them 

at those point. 

4. The above process splits the words to characters if there is proper spacing between them. If there are 

overlapping characters  then 𝑃(𝑧) ≠ 0 and this algorithm will not separate them. So  after splitting the bounding 

box to segments calculate the width of each segment. Let {WD1  WD2  … WDn} represents width of each segment. 

The value of n depends on the segments in each bounding box. 

5. Let WDm represents the width of small segment. If WDn>=2xWDm then compute 𝑃(𝑧) =

∑ ∑ 𝐼(𝑧, 𝑦)𝐻
𝑧=1

10
𝑖=−10 . Then split the image where P( ) is minimum. This algorithm effectively splits the overlapping 

characters in Telugu language. 

Fig. 1 shows segmentation outputs for a word. Fig 1 (a) shows the input word and its sum of vertical pixel intensity 

plot. Fig. 1 (b) shows the segmentation based on the plot, where the overlapping characters are not segmented. 

Fig. 1 (c) shows the properly segmented character after passing through our algorithm. 

 
Fig 1. Word segmented to character (a) Projection graph for word (b) Words segmented by using projections (c) Segmentation output of 

proposed character segmentation algorithm 

Feature extraction plays a crucial role in OCR, with CNNs serving as potent tools for extracting features from 

images. Let 𝐼 denote the input image, 𝐾 represent the applied filter, and F be the resulting output feature map. The 

convolution operation at a specific spatial location (𝑔, ℎ) in the output feature map is defined by (10) 

𝐹(𝑔, ℎ) = ∑ ∑ 𝐼(𝑔 + 𝑟, 𝑠 + ℎ). 𝐾(𝑟, 𝑠)𝑆−1
𝑠=0

𝑅−1
𝑟=0      (10) 

(a) 

(b) 

(c) 
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where r,s are filter dimensions. 𝐼(𝑔 + 𝑟, 𝑠 + ℎ) are pixel intensities of input image at locations (𝑔 + 𝑟, 𝑠 + ℎ). 

𝐾(𝑟, 𝑠) represents weights of filter at location (𝑟, 𝑠). Summation is carried out across all elements of the filter, and 

the outcome is allocated to the corresponding position (𝑔, ℎ) in the output feature map. This procedure is reiterated 

for all spatial locations within the output feature map. 

Activation functions are crucial in empowering neural networks to grasp intricate, non-linear associations, thereby 

promoting successful training and ensuring the model's adaptability across diverse tasks. In CNNs ReLU is the 

most popularly used one. If Z denotes the input to the activation function, potentially originating from the output 

of a convolutional or fully connected layer before activation, the ReLU activation V is calculated elementwise as 

given by (11), 

𝑉(𝑔, ℎ, 𝑘) = max (0, 𝑍(𝑔, ℎ, 𝑘))  (11) 

where 𝑉(𝑔, ℎ, 𝑘) is value of activation function at position (𝑔, ℎ) in the kth feature map and 𝑍(𝑔, ℎ, 𝑘) is the 

corresponding input value to the activation function. 

Pooling serves to decrease the spatial dimensions of the input volume while preserving crucial information. The 

max-pooling operation can be mathematically expressed at location (g,h) given by (12) 

𝑀(𝑔, ℎ, 𝑡) = 𝑚𝑎𝑥𝑚=0
𝑡−1 𝑚𝑎𝑥𝑛=0

𝑛−1𝐼(𝑅 ∙ 𝑔 + 𝑚, 𝑅 ∙ ℎ + 𝑛)  (12) 

where t is pool window size, R is stride, I is input feature map and M is output feature map. 

After a series of convolution and pooling operations, flattening is often applied before feeding the output of 

convolutional or pooling layers into a fully connected layer. The bottom segment of the CNN involves a SoftMax 

layer, producing class probabilities utilized in classification by fully connected layers. This can be expressed by 

(13) 

𝑅𝑡 =
𝑒𝑠𝑡

∑ 𝑒𝑠𝑡𝑛
𝑝=1

      (13) 

Where 𝑅𝑡 represents output for class t and n is total number of classes. 

The cross-entropy loss computed between the predicted probabilities 𝑅𝑡 and actual probabilties 𝑃𝑡  for each class 

is given by (14) 

𝐿(𝑃, 𝑅) = − ∑ 𝑃𝑡
𝑛
𝑞=1 ∙ log(𝑅𝑡)  (14) 

 where L is the entropy loss. 

The SoftMax activation transforms raw scores into probabilities, and the cross-entropy loss measures the disparity 

between these predicted probabilities and the actual probabilities. This guides the optimization process throughout 

training, aiming to minimize this difference for improved model performance. The Adam optimizer adapts the 

network's weights and biases to minimize a specified loss function. The update rules for the weights and biases 

using the Adam optimizer are outlined below in (15), (16), (17) 

𝑢𝑦 = 𝛼1 ∙ 𝑢𝑦−1 + (1 − 𝛼1) ∙ ∇𝜃𝐿𝑃(𝜃)     (15) 

𝑝𝑦 = 𝛼2 ∙ 𝑝𝑦−1 + (1 − 𝛼2) ∙ (∇𝜃𝐿𝑃(𝜃))2   (16) 

𝜃𝑦 = 𝜃𝑦−1 −
𝜂

√𝑝𝑦+𝜀
∙ 𝑢𝑦    (17) 

where 𝐿𝑃(𝜃) loss function, 𝜂 is learning rate, ∇𝜃𝐿𝑃(𝜃) is gradient loss 𝑢𝑦, 𝑝𝑦  are the gradients moving averages 

and their squares. 𝛼1, 𝛼2 𝑎re decay rates and 𝜀 value is a constant to avoid division by zero. The Adam optimizer 

adjusts the model parameters by considering the gradients of the cross-entropy loss. This process enhances training 

effectiveness and optimizes the model's parameters for improved performance. 

Following segmentation of words into characters, the resulting test page is inputted into the trained model for 

recognition. This test serves to compute the system's word recognition rates, considering that the model is 

exclusively trained with characters and character recognition rates are obtained from the generated plots. 
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We have employed five CNN models and assessed their performance on characters using a Telugu dataset. The 

models include ResNet 34, ResNet 50, ResNet 101, and Inception-ResNet, Inception V1 [20]-[22]. These are 

shown in Fig. 2, Fig 3, Fig.4, Fig.5, Fig.6. 

 

 
Fig. 2 Architecture of ResNet34 

 
Fig. 3 Architecture of ResNet50 

 
Fig. 4 Architecture of ResNet101 

 
Fig. 5 Architecture of ResNet-Inception 

 
Fig. 6 Architecture of Inception V1 
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Inception modules excel at extracting multi-scale features by integrating a variety of filter sizes within a single 

layer. This method accurately approximates a diverse range of filter sizes, enabling the neural network to 

effectively capture both intricate and large-scale features. ResNet addresses the challenge of vanishing gradients 

in deep networks by employing strategic residual connections. These connections optimize the training of 

extremely deep networks by facilitating more direct gradient flow, allowing the model to learn complex features. 

Importantly, ResNet's proficiency in mastering identity mappings further amplifies the training of exceptionally 

deep neural networks. 

ResNet34 is comprised of 34 layers, making it faster to train and demanding fewer computational resources than 

deeper models. It is well-suited for tasks involving fewer complex datasets or scenarios with limited computational 

resources. With 50 layers, ResNet50 achieves greater depth than ResNet34. It exhibits improved performance on 

complex datasets compared to its shallower counterpart. ResNet50 is a popular choice for various computer vision 

tasks, striking a balance between model depth and computational efficiency. Comprising 101 layers, ResNet101 

attains greater depth than both ResNet34 and ResNet50. It excels in performance on highly complex datasets and 

tasks demanding a more intricate feature representation. However, due to its increased depth, ResNet101 typically 

necessitates more computational resources and time for training. 

Integrating Inception and ResNet enhances the network's ability to comprehend mixed details and multi-scale 

features concurrently. Tasks involving patten boundary definition rely on precise details, while recognizing 

patterns across diverse sizes and orientations demands multi-scale capabilities. By capitalizing on the strengths of 

both architectures, the combined model surpasses the performance of using Inception or ResNet in isolation. 

These distinct architectures serve as a regularization technique, mitigating overfitting by diversifying the acquired 

features. Integrating these architectures may extend training time due to the heightened complexity of the model. 

Furthermore, in complex architectures, the meticulous selection of hyperparameters becomes paramount.  

3.3 Dictionary model Development 

The utilization of dictionary models improves the system's recognition rates. Telugu, in particular, poses 

challenges due to similar characters, leading individuals to unintentionally write one character instead of another. 

Instances include య and మ, స and న, థ and ధ, ఠ and ర, ప and వ, న and స. In these scenarios, dictionary 

models rectify characters within words, addressing both human and machine errors. As a result, we observe 

improved word detection rates. 

Step 1: Let the predicted word be denoted as input and compute its length. 

Step 2: Examine the dictionary words with lengths equal to or greater than the predicted word. 

Step 3: For each word selected from the dictionary, determine the count of matching characters between it and the 

predicted word. 

Step 4: Replace the predicted word with the dictionary word that exhibits the maximum character matching. 

IV. RESULTS AND DISCUSSIONS 

Character training for models involves utilizing the Telugu dataset obtained from IEEE Dataport [23]. The training 

set comprises 11,602 images, while an additional 2,565 images are set aside for validation. The evaluation of OCR 

effectiveness is performed on the Telugu IEEE Dataport handwritten dataset, employing Inception V1, ResNet 

34, ResNet 50, and ResNet 101 and Inception-ResNet. The models undergo training for 25,000 steps. Fig. 7 shows 

the plots of Inception V1. Fig. 7 (a) displays the accuracy plot for Inception V1, while Fig. 7(b) illustrates the 

corresponding loss plot. Inception V1 has attained an accuracy of 87% with a validation loss of 13%. The 

performance of ResNet 34 is visually depicted in Fig. 8. Fig. 8 (a) presents both train and validation accuracy 

results, while Fig. 8 (b) provides insights into the loss plot. Notably, ResNet 34 achieves a remarkable validation 

accuracy of 91.5%, with a corresponding validation loss of 8.5%.  



J. Electrical Systems 20-7s (2024): 3607-3619 

 

3614 

  
(a) (b) 

Fig. 7 Performance of Inception V1 (a) Accuracy plot (b) Loss plot 

  
(a) (b) 

Fig. 8 Performance of ResNet34 (a) Accuracy plot (b) Loss plot 

 Fig. 9 presents performance plots of ResNet 50. Fig. 9 (a) presents the train and validation accuracy plots of 

ResNet 50, while Fig. 9(b) illustrates the validation loss of ResNet 50. The model attains a valid accuracy of 96% 

and loss of 5%. 

  
(a) (b) 

 
Fig. 9 Performance of ResNet 50 (a) Accuracy plot (b) Loss plot 

Fig. 10 shows the plots of ResNet 101. Fig. 10(a) illustrates the training and validation accuracy outcomes for 

ResNet 101. Fig. 10 (b) offers a visual representation of the validation loss. Notably, ResNet 101 attains a 

validation accuracy of 86.5%, accompanied by a loss of 14.5%. The model's performance on the Telugu dataset 

highlights overfitting issues within the deep CNN architecture. 

  
(a) (b) 

 
Fig. 10 Performance of ResNet 101 (a) Accuracy plot (b) Loss plot 
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Fig. 11 shows the plots of ResNet-Inception. The training and validation accuracy outcomes for Inception-ResNet 

are depicted in Fig 11(a) while Fig. 11(b) visually presents the validation loss. Notably, Inception-ResNet achieves 

a commendable validation accuracy of 97%, coupled with a validation loss of 2%. The model exhibits top-notch 

performance on the Telugu dataset, effectively avoiding overfitting issues. 

  
(a) (b) 

 
Fig. 11 Performance of ResNet- Inception (a) Accuracy plot (b) Loss plot 

Fig. 12 illustrates a comparison of validation loss among Inception V1, ResNet34, ResNet50, ResNet101, and 

Inception-ResNet models. A lower validation loss indicates better model performance. Consequently, the graph 

distinctly indicates that the Inception-ResNet model exhibits significantly lower loss compared to the other 

models. 

  
All the ResNet models underwent training with Telugu characters. The input for the models consists of scanned 

images, wherein the page boundaries are identified, excluding the background and correcting image orientations. 

Following this, words are detected and segmented into individual characters. The CNN models then recognize 

these characters, and the words are reconstructed. In character recognition, the model may misclassify characters 

due to their similarities and variations in handwritten styles, leading to a potential decrease in the word recognition 

rate. To address this, the integration of a dictionary is implemented to rectify character misclassifications, resulting 

in an improvement in word accuracy rates. 

Our evaluation involved 1000 sentences handwritten by various individuals, and we computed the word 

recognition rates for the three models both with and without the use of a dictionary. Table 1 presents details on 

the total parameters, character recognition rates, and word recognition rates for different architectures. The word 

recognition rates are depicted with and without the application of dictionaries. It is evident from the table that 

models utilizing dictionaries enhance the accuracy rate and mitigate issues arising from similarly structured 

characters. 

Table 1. Comparison of parameters and accuracy rates of the models 

Model Parameters Valid 

Character            

Accuracy  

Word 

Accuracy  

Word 

Accuracy with 

dictionary 

Inception V1 56,31,016 87% 76% 78% 

ResNet 34 13,32,480 91.5% 80% 81.5% 

Fig.12 Comparison of loss plots 
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ResNet-50 21,01,312 96% 84% 86.5% 

ResNet-101 50,07,552 86.5% 73% 75% 

ResNet Inception Cascade 55,43,120 97% 85% 87.5% 

 

From Table 1, Inception V1 is equipped with 56,31,016 trainable parameters and demonstrates a character 

recognition rate of 87%, along with a word recognition rate of 76% without a dictionary and 78% with a dictionary. 

ResNet 34, featuring 13,32,480 trainable parameters, achieves a character accuracy rate of 91.5% and a word 

accuracy rate of 80% without a dictionary, improving to 81.5% with the use of a dictionary. ResNet 50, comprising 

21,01,312 trainable parameters, attains a character accuracy rate of 96%. Additionally, it achieves a word accuracy 

rate of 84% without a dictionary and 86.5% with a dictionary. ResNet 101, with 50,07,552 trainable parameters, 

achieves a character accuracy rate of 86.5%. Furthermore, it attains a word accuracy rate of 73% without a 

dictionary, which increases to 75% with the aid of a dictionary. Inception-ResNet, featuring 55,43,120 trainable 

parameters, excels with a character accuracy rate of 97% and a word accuracy rate of 85% without a dictionary, 

surging to 87.5% with the inclusion of a dictionary. 

Out of the five models, Inception-ResNet performs better on Telugu language. ResNet 50 performance is almost 

nearer to the Inception-ResNet and it has less trainable parameters compared to ResNet 50. ResNet 34 with fewer 

parameters achieved a significant recognition rate.  

We have considered a test set and evaluated the performances of all ResNet models. The valid accuracy and test 

accuracy of different ResNet models is shown in Table 2. On both the validation set and test set ResNet-Inception 

model performed better. The graphical representations of validation and test accuracy are shown in Fig. 13. 

Table 2. Validation and test accuracy rates of the ResNet models. 

Model Valid Character            

Accuracy 

Test Character            

Accuracy 

ResNet 34 91.5 88.011 

ResNet-50 96 88.39 

ResNet-101 86.5 81.82 

ResNet Inception 97 90.29 

 

 

Fig. 13 Validation and Test accuracy rates of ResNet models 

The confusion matrix holds a central position in machine learning and classification tasks, providing a crucial 

instrument to evaluate the effectiveness of a classification model. Confusion matrix is computed for all the models 

and the parameters like Precision, recall and F1 score calculated and tabulated in Table 3. The comparison of these 

parameters is shown in Fig. 14. 

Table 3. Confusion matrix parameters for the ResNet models. 

Model Test Accuracy Precision Recall F1 Score 

ResNet34 88.011 0.87782 0.864606 0.867587 

ResNet50 88.39 0.8782 0.861862 0.8601 

ResNet101 81.82 0.830228 0.806937 0.798304 
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ResNet- Inception 90.29 0.904412 0.890236 0.886741 

 

 

Table 4 illustrates the progress in OCR for native languages such as Telugu [12], [24], -[25], Tamil [26]-[27] 

through various techniques, all achieving notable recognition rates. Particularly in Telugu, the proposed method 

surpasses other approaches by achieving character recognition rate of 97% and word recognition rate of 87.5%. 

 

Table 4. OCR accuracy rates for native languages 

Name of 

the Author 

Type of text Technique Accuracy 

Panyam 

Narahari 

Handwritten Telugu 

Characters 

Zoning method- Nearest Neighbour 78% 

Devarapalli 

Koteswara 

Rao 

Handwritten Telugu Text Hidden Markov Models (HMMs), Akshara 

Models & Akshara Bigram Language 

models 

74% 

Minesh 

Mathew 

Scene Telugu 

Text detection 

Hybrid CNN-RNN (CRR) 86.2% 

Hybrid CNN-RNN (WRR) 57.2% 

 

,Noushath 

Shafi 

Handwritten Tamil 

characters 

CNN with 2 Convolutional layers, 2 max 

pooling layers and 2 fully connected layers 

88% 

S. Kowsalya Handwritten Tamil 

characters 

Optimal neural network with Weight 

optimization using elephant herding 

optimization 

93% 

Proposed Handwritten Telugu Text CNN, ResNet-Inception (CRR) 97% 

CNN, ResNet-Inception (WRR) 87.5% 

V. CONCLUSION 

Advancements in OCR for regional languages are frequently impeded by resource constraints. Overcoming this 

hurdle involves implementing robust preprocessing techniques to eliminate noise and rectify page skew, resulting 

in a significant enhancement of input quality. The accuracy of systems handling handwritten texts relies heavily 

on effective character segmentation, particularly when faced with overlapping characters. The adoption of a 

segmentation approach that accounts for language-specific features can substantially increase word recognition 

rates. The suggested segmentation algorithm has demonstrated its proficiency in preserving crucial character 

features while accurately dissecting words into individual characters, even when confronted with overlapping 

characters for Telugu text. 

In the realm of Telugu language recognition, Inception-ResNet stands out as the premier performer. ResNet 50 

closely trails in performance, approaching the capabilities of Inception-ResNet with the added advantage of fewer 

trainable parameters. ResNet 34, boasting a reduced parameter count, achieves a commendable recognition rate. 

However, Inception, characterized by a broader network and more trainable parameters, faces challenges in 

handling complex structured characters and unbalanced classes. Despite these challenges, its performance remains 

competitive compared to other ResNet models. 

ResNet-101 excels at extracting sophisticated features from data. Nevertheless, when grappling with limited 

datasets, these models encounter difficulties in extracting relevant features. The inadequacy of data points hampers 

Fig. 14 Comparison of confusion parameters for ResNet models. 
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the network's ability to recognize significant patterns, impacting overall performance. So ResNet models excel in 

recognition of handwritten Telugu text, when the model selection must be based on the dataset used. 
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