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Abstract: - Granger causality, widely recognized for its ease of use, intuitive interpretability, and applicability to complex multivariate 

systems, facilitates the inference of causal connections between variables through observational data and elucidates their dynamic 

interactions. With the advancement of the significant data era, an increasing multiscale characteristic of data is evident, presenting dynamics 

across multiple temporal scales. Current research in this domain typically relies on vector autoregressive models and wavelet 

transformations, which are susceptible to noise and dependent on substantial prior knowledge for selecting basis functions. To more 

accurately interpret and analyze Granger causality at multiple scales, this paper employs state space models and Empirical Mode 

Decomposition, introducing a novel multiscale Granger causality analysis approach based on serial decomposition state space models 

(SD2S). Experiments on simulated and real datasets confirm that (1) the integration of Empirical Mode Decomposition with state space 

models enhances the analysis of multiscale Granger causality; (2) serial decomposition state space models can improve the accuracy of 

multiscale analysis and effectively reduce computation time; (3) the proposed method successfully identifies dynamic causal relationships 

that vary with time scales in real-world data. 
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I.  INTRODUCTION  

In disciplines such as physics, biology, and many others, complex time-series data often exhibit dynamics that span 

multiple timescales, known as multiscale data. Understanding the multiscale characteristics of these time series is 

crucial for uncovering the internal mechanisms of the sequences because they help reveal underlying physical laws, 

biological processes, and mechanisms of information transmission. Previous research [1–5] has deeply explored 

these issues by resampling original measurement data at various timescales to assess the dynamics of rescaled series, 

thus investigating their multiscale properties. This approach has achieved notable success in quantifying the 

multiscale behaviors of individual dynamic processes and has provided powerful tools for research in related fields. 

Granger causality (GC), initially proposed by Norbert Wiener [6] and further developed by Clive Granger [7–9], is 

a method used to determine if there is a causal relationship between two events. If using historical information about 

Y significantly improves predictions about future changes in X, then Y can be considered a Granger cause of X. 

Over time, Granger causality has been increasingly applied in fields such as economics, engineering, and 

neuroscience [10,11]. 

As data exhibits multiscale characteristics [12], there is a need to understand more profoundly the challenges and 

impacts of multiscale data on Granger causality analysis to mine Granger causality relationships at multiple scales 

effectively. Although empirical studies [13,14] have attempted to explore this area, the information transmission 

process involves complex interactions and influences between scales. Thus, accurately describing and computing 

the complexity of causality within a multiscale framework remains an urgent problem to solve.  Most current 

research on Granger causality uses vector autoregressive (VAR) models for modeling [15], which are easily affected 

by noise, leading to inaccurate estimates.  Additionally, the commonly used wavelet transform methods for 

extracting multiscale features require extensive prior knowledge to select appropriate wavelet bases[16]. 

Numerous scholars have pursued improvements in addressing the deficiencies of vector autoregressive models, 

particularly in handling noise and downsampling. In 1991, Aoki M and others introduced the state-space model for 

time series modeling, and Solo V emphasized that state-space models could maintain robust Granger causality 

without the influence of noise and downsampling, advocating for the use of state-space models over VAR models 

[17]. Barnett L and colleagues substantiated through comparative experiments that state-space models enhance 

statistical power and reduce bias in estimating Granger causality [18].  Hence, this study considers employing state 

space models to estimate Granger causality. 
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In light of the extensive prior knowledge required by traditional wavelet transformations, researchers have 

developed Empirical Mode Decomposition (EMD), an adaptive decomposition method that leverages the local 

characteristics of signals without predetermined basis functions. EMD iteratively decomposes signals to extract 

intrinsic mode functions (IMFs), representing local oscillatory patterns of the signal, and it has been proven to have 

excellent local feature extraction capabilities. Improved EMD approaches, introducing noise or adjusting iterations, 

have mitigated the problem of mode mixing, thereby enhancing the accuracy and stability of decomposition [19]. 

Variational Empirical Mode Decomposition (VMD), a signal decomposition method grounded in optimization 

theory, extracts finer local features by minimizing the discrepancy between the signal and its IMFs [20]. Beyond 

improving prediction accuracy [21,22], EMD has also been applied for multiscale analysis, with He K and others 

using it to reveal underlying driving factors [23] more clearly. 

However, with increasing signal dimensions, traditional EMD algorithms face significant computational load 

challenges. To address this issue, Zhang et al proposed Serial-EMD, an innovative rapid EMD method that 

significantly reduces the computational complexity of multidimensional signal decomposition through serialization 

techniques [24]. 

This paper aims to explore multiscale Granger causality by introducing EMD and serial-EMD methods to capture 

signal characteristics across various timescales. Combined with state space models, it estimates multiscale Granger 

causality between variables, enhancing the accuracy and efficiency of computations. 

The paper is structured as follows: Section 2 introduces the proposed SD2S method in detail, providing definitions 

for empirical mode decomposition, multiscale Granger causality, and state space models. Section 3 outlines the 

evaluation metrics utilized in this study, presents comparative experiments against vector autoregression-based 

methods, and includes an application on a real GDP dataset, analyzing Granger causality relationships across four 

different timescales for ten countries. Finally, Section 4 concludes the research and suggests future work directions. 

II. MATERIALS AND METHODS 

A. Overview of the methodology 

To enhance the analysis of multiscale Granger causality relationships, this paper introduces a novel analysis method 

termed Serial Decomposition State Space Models (SD2S) for Multiscale Granger Causality Analysis. This approach 

is founded on state space models and incorporates serial complete ensemble empirical mode decomposition with 

adaptive noise (SCEEMDAN) technique to investigate Granger causality across multiple scales. 

 
Figure 1 Method Flowchart 

Initially, the framework for multiscale Granger causality analysis based on the SD2S method is presented, with the 

steps of the SD2S method delineated within a green dashed box in Figure 1.  An augmented Dickey-Fuller test is 

initially conducted to assess data stationarity within this framework. If the data is stationary, the analysis proceeds 

directly to the Granger causality analysis. Conversely, if the data exhibits non-stationary characteristics, it must 

undergo differencing transformations until stationarity is achieved, after which the SD2S method is applied. 

The core of the SD2S method lies in multiscale transformation, which includes two critical steps: multiscale 

decomposition using SCEEMDAN and the replacement of driver variable data. 

The SD2S is applied at each scale s to unveil potential causal links at different temporal scales. Subsequently, the 

scale value s is altered, and the multiscale transformation and causality estimation process is iterated to determine 
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Granger causality relationships across all scales. After completing the SD2S method and hypothesis testing, the 

final results of the multiscale Granger causality analysis are obtained. 

B. Serial Empirical Mode Decomposition 

1) Empirical Mode Decomposition and Class Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) is an adaptive signal processing method introduced in 1998 by American 

scientist N. E. Huanget al. [25], primarily designed for analyzing nonlinear and non-stationary signals. This method 

iteratively identifies local extrema in the signal, interpolates these extrema to estimate the upper and lower 

envelopes, and then removes the mean of these envelopes to obtain a low-pass trend line, thereby isolating the high-

frequency oscillatory components as mode signals. By repeating this process, it is possible to extract Intrinsic Mode 

Functions (IMFs), each representing a local oscillatory mode of the signal, which helps to reveal more about the 

signal’s intrinsic structure. However, EMD has limitations such as boundary effects, sensitivity to noise, and 

potential mode mixing in the presence of high-frequency noise [25]. 

Ensemble Empirical Mode Decomposition (EEMD) is an improved method over EMD, which enhances the original 

technique by adding white noise to the signal multiple times and performing multiple EMD decompositions. By 

averaging these decomposition results, artificially added random noise is eliminated, and the multi-frequency 

components of the signal are appropriately projected onto different scales. This method effectively reduces the 

mode mixing issues found in EMD and enhances the stability and accuracy of the decomposition. 

Each xi(t) in the EEMD algorithm is decomposed independently under different added white noise and each 

decomposition may produce different modes and residuals of ri(t). To address the shortcomings of EEMD, M.E. 

Torres et al [19] proposed the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN). Compared to EEMD, the CEEMDAN method introduces an additional signal-to-noise ratio to 

control the noise level during each decomposition process and can resolve the issue of mode mixing by 

decomposing the original data into IMFs of different frequencies.  Although CEEMDAN resolves the problems of 

large reconstruction errors and inconsistent mode numbers due to different noise realizations seen in EEMD, it still 

presents some notable issues. For example, the modes may contain some noise involved, and signal information 

may appear later than in the EEMD method, resulting in some spurious modes in the early stages of decomposition 

[26]. 

Variational Mode Decomposition (VMD) is a signal decomposition technique based on variational optimization, 

introduced by N. Dragomiretskiy and D. Zosso [20], primarily designed to decompose complex nonlinear and non-

stationary signals into a series of IMFs with varying frequencies and amplitudes. In VMD, each IMF is constructed 

as an analytic signal through the Hilbert transform to compute its unilateral spectrum.  The spectral contents are 

then shifted to the baseband using the shifting properties of the Fourier transform, and bandwidths are estimated 

using H1 Gaussian smoothness. VMD aims to decompose the original signal into multiple smooth, decreasing-

frequency modes by minimizing the total spectral bandwidth of all IMFs. This enhancement improves the 

practicality and accuracy of VMD in signal processing. 

Furthermore, Rehman and Aftab expanded on VMD to develop Multivariate Variational Mode Decomposition 

(MVMD) for handling multichannel or multivariate data[27]. The core of MVMD lies in identifying a series of 

common multivariate modulated oscillations that share a common frequency component across all input data 

channels. This method extracts a set of multivariate modes with minimal collective bandwidth through a variational 

optimization problem, ensuring these modes can fully reconstruct the input signal.  MVMD solves the optimization 

problem directly in the frequency domain using the method of multipliers and alternating directions without the 

need for additional user-defined parameters. This technique achieves mode alignment in multichannel data 

processing, ensuring oscillations with similar frequencies across multiple channels are assigned to the same mode. 

Consequently, MVMD performs well in handling multichannel signals, providing richer and more accurate signal 

features for fields such as biomedical signal analysis. 

2) Serial Empirical Mode Decomposition 

With the advent of the big data era, the surge in data volume has escalated the demand for real-time signal analysis, 

posing a challenge to traditional Empirical Mode Decomposition (EMD) and its variants in balancing data 

dimensionality growth with analysis speed. Zhang Jin et al [24] introduced a Serial Empirical Mode Decomposition 

method (SEMD) based on serialization technology to accelerate the decomposition of multidimensional signals. 

This method serializes multivariate or multidimensional signals into one-dimensional signals, allowing for the 

decomposition of multidimensional signals using the one-dimensional EMD algorithm. Such serialization not only 
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significantly reduces computation time but also offers a new perspective for optimizing current EMD algorithms, 

which is to transform the structure of the input signal rather than developing new envelope identification techniques 

or multi-EMD algorithms. 

EMD often confronts the challenge of mode mixing, where components of signals at different scales may be 

amalgamated within the same IMF, or similar scale signals maybe scattered across different IMFs. The CEEMDAN 

method substantially reduces this mode mixing phenomenon by introducing ensemble averaging, albeit at the 

expense of significantly increased computation time. While the SEMD method reduces the computation time of 

traditional EMD, it does not effectively resolve the mode mixing problem. However, Serial-CEEMDAN 

(SCEEMDAN) leverages its serial processing attribute to effectively lower mode mixing issues and significantly 

shorten computation time, enhancing overall performance. 

Therefore, the SD2S method proposed in this paper employs SCEEMDAN for multi-scale decomposition. The 

main steps of the SCEEMDAN method include signal serialization, signal decomposition, and IMF deserialization. 

A multidimensional signal, initially considered a composite multivariate signal composed of multiple one-

dimensional signals, is serialized into a one-dimensional signal through a specific transformation function for 

further analysis.  This conversion retains the original signal information and creates a smooth transition zone via 

linear interpolation between the ends of consecutive signals, ensuring continuity. Notably, the length of the 

transition zone is crucial; it not only influences the smoothness of signal transitions and preservation of original 

signal characteristics but also significantly affects computational load and efficiency. Therefore, in some instances, 

choosing an appropriate transition length is vital for correctly separating different modes within the signal. 

CEEMDAN can decompose the serialized one-dimensional signal during the decomposition phase to obtain 

Intrinsic Mode Functions (IMFs).  For a given signal x(t), let 𝐼𝑀𝐹𝑖̅̅ ̅̅ ̅̅ (𝑡)denote the i-th IMF obtained by the 

CEEMDAN method. Let EMD j(·) denote the j-th IMF obtained by EMD decomposition. 

Step 1: Add white noise with a signal-to-noise ratio of ε0 to x(t)  for a total of I times; 

𝑥𝑖(𝑡) = 𝑥(𝑡) + 𝜀0𝑤𝑖(𝑡), 𝑖 = 1,2,… , 𝐼 

Step 2: Perform EMD decomposition on 𝑥𝑖(𝑡) quentially, taking the first IMF from each decomposition 

as IMF i,1 . Compute the first IMF for CEEMDAN,𝐼𝑀𝐹𝑖̃(𝑡) , and the corresponding residue 𝑟1(𝑡) using 

IMF i,1; 

𝐼𝑀𝐹̃1(𝑡) =
1

𝐼
∑  

𝐼

𝑖=1

IMF𝑖,1⁡(𝑡) = IMF
¯

1(𝑡)

𝑟1(𝑡) = 𝑥(𝑡) − MF̃1(𝑡)

 

Step 3: Add an adaptive noise term ε1EMD1(w𝑖(t))⁡ to r1(t). Here, ε1 is the signal-to-noise ratio, and is the 

EMD1(w𝑖(t)) first IMF obtained from the EMD decomposition of w𝑖(t). Then perform EMD decomposition I 

times, obtaining the average of the Idecompo- sitions as the new IMF; 

IMF̃2(𝑡) =
1

𝐼
∑  

𝐼

𝑖=1

EMD1⁡(𝑟1(𝑡) + 𝜀1EMD1⁡(𝑤𝑖(𝑡)))

𝑟2(𝑡) = 𝑟1(𝑡) − IMF̃2(𝑡)

 

Step 4:  To r𝑘(t), k  = 2, . . . , K, add an adaptive noise term, which is the first IMF obtained from the EMD 

decomposition of the white noise w𝑖(t) with a signal-to-noise ratio ε𝑘, and obtain the new IMF; 

IMF̃𝑘(𝑡) =
1

𝐼
∑  

𝐼

𝑖=1

EMD1⁡(𝑟𝑘−1(𝑡) + 𝜀𝑘−1EMD𝑘−1⁡(𝑤𝑖(𝑡)))

𝑟𝑘(𝑡) = 𝑟𝑘−1(𝑡) − IMF̃𝑘(𝑡)

 

Step 5: Repeat step 4 until the residue can no longer be decomposed, that is, when the number of extrema in the 

residue does not exceed two. At this point, the final residue is: 

𝑅(𝑡) = 𝑥(𝑡) −∑  

𝐾

𝑘=1

IMF̃𝑘 
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Therefore, the original signal can be reconstructed as follows: 

 

𝑥(𝑡) = 𝑅(𝑡) +∑  

𝐾

𝑘=1

IMF̃𝑘 

During the signal decomposition process, the transition interval of the serialized signal is also decomposed. To 

extract the IMFs of the original signal, the IMF deserialization is done by reshaping and slicing to eliminate the 

transition interval, thus extracting the original signal’s IMFs from the serialized IMFs. 

SCEEMDAN, by serializing multidimensional signals into one-dimensional signals, reduces the computational load 

of finding local extrema and decomposing signals in high-dimensional spaces, thereby reducing mode mixing 

effects and significantly increasing decomposition speed.  This provides a more flexible way to handle signal 

structures. In summary, SEMD adopts an effective method for multidimensional signal processing, facilitating rapid 

decomposition and real-time analysis of multidimensional signals. 

C. State space model 

Let’s examine a typical constant State Space (SS) model, 

𝑋𝑡+1 = 𝐴𝑋𝑡 +𝑊𝑡

𝑌𝑡 = 𝐶𝑋𝑡 + 𝑉𝑡
(1) 

in which Wt  and Vt  represent noise components, possessing semi-positive definite covariance matrices expressed 

as var (
𝑊𝑡

𝑉𝑡
) = (

𝑄 𝑆

𝑆𝑇 𝑅
)⁡The defining parameters of the model (1) are (A, C, Q, R, S). 

Projecting the state variable onto a subspace influenced by the historical values of the observed variable yields 𝑍𝑡 =

𝔼{𝑋𝑡|𝑌𝑡−1
− }, where 𝑌𝑡−1

− = [𝑌𝑡−1
𝑇 , 𝑌𝑡−2

𝑇 …]𝑇  forms an infinite column vector. Consequently, Zt  is the updated state 

variable and linear regression residuals on yt using its infinite past. 

Thus, the innovation model of the state space (ISS) for Zt, mirroring the SS model, is delineated as: 

𝑍𝑡+1 = 𝐴𝑍𝑡 + 𝐾𝐸𝑡

𝑌𝑡 = 𝐶𝑍𝑡 + 𝐸𝑡
(2) 

Here, the innovation Et is defined as 𝐸𝑡 = 𝑌𝑡 − 𝔼{𝑌𝑡|𝑌𝑡−1
− } and its covariance matrix is denoted by ∑ = 𝔼{𝐸𝑡𝐸𝑡

𝑇}. 

The parameters for the model (2) include (𝐴, 𝐶, 𝐾,∑). 

Regarding the ISS model, the error from a comprehensive regression is captured as 𝜆𝑓𝑢𝑙𝑙 = ∑(𝑗, 𝑗). Regarding the 

ISS model, the error from a comprehensive regression is captured as: 

𝑍𝑡+1 = 𝐴𝑍𝑡 + 𝐾𝜀𝑡

𝑌𝑡
(𝑗𝑘) = 𝐶(𝑗𝑘)𝑍𝑡 + 𝜀𝑡

(𝑗𝑘) (3) 

where (jk) indicates selecting the j, k rows of the matrix. Consequently, the parameters of this adjusted state space 

model (3) are listed as (𝐴, 𝐶(𝑗𝑘), 𝐾∑𝐾𝑇 , ∑(𝑗𝑘, 𝑗𝑘), 𝐾∑(: , 𝑗𝑘)). Notably, the ISS and SS models are interchangeable 

[18]. SS model parameters are transposed into ISS model parameters via solving the DARE equation, hence 

obtaining the error 𝜆𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = ∑𝑅(𝑗, 𝑗) for the restricted model. 

Ultimately, Granger causality is computed as follows: 

𝐹𝑖→𝑗 = 𝑙𝑛
∑𝑅(𝑗, 𝑗)

∑(𝑗, 𝑗)
 

D. Multiscale Granger causality 

Begin with n smooth complex processes 𝑌𝑛⁡ =⁡ [𝑦1,𝑛, . . . , 𝑦𝑀,𝑛⁡]
𝑇, each being a zero-mean scalar process. Let 𝑦

𝑖 

represent the target variable and 𝑦
𝑖 
the driver variable, while the rest, constituting⁡𝑀 − 2⁡processes of 𝑌𝑛, form 

𝑌𝑘, where 𝑘 represents the complementa set in {1, 2, . . . , 𝑀} excluding {𝑖, 𝑗}.  The notation 𝑌𝑛
− indicates the 

historical data of 𝑌𝑛, and 𝑌𝑛
−

 denotes the past information of 𝑦𝑛. Granger causality from 𝑦𝑖 to 𝑦𝑗 assesses how 

much including the historical data of 𝑦𝑖, denoted as 𝑦
𝑖,𝑛
−  , enhances the prediction of 𝑦𝑗,𝑛 using the past data  𝑦

𝑗,𝑛
−    

and  𝑦
𝑘,𝑛
− . 

To predict the current state of the target variable using all past processes, referred to as the full regression, the 

prediction error is calculated as follows: 

𝜀𝑛 = 𝑦𝑗,𝑛 − 𝔼[𝑦𝑗,𝑛|𝑌𝑛
−] 
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Here, E represents the expectation operator. 

The error from the restricted regression, which utilizes the historical data of all variables except the driver 

variable for predicting the current state of the target, is given by: 

𝜀𝑛
𝑅 = 𝑦𝑗,𝑛 − 𝔼[𝑦𝑗,𝑛|𝑦𝑗,𝑛

− , 𝑌𝑘
−] (4) 

where the superscript R indicates reduced regression. 

By evaluating the log-likelihood of the errors from both the full and restricted regressions, which are 𝜆 =

𝔼[𝜀𝑛𝜀𝑛
𝑇] and 𝜆

𝑅 = 𝔼[𝜀𝑛
𝑅(𝜀𝑛

𝑅)𝑇] respectively (with T representing transpose), the Granger causality measure 

from yi to yj is determined as: 

𝐹𝑖→𝑗 = ln⁡
𝜆𝑅

𝜆
 

To compute the multiscale Granger causality estimates, Empirical Mode Decomposition employed to derive 

intrinsic mode functions 𝑐𝑠 at various scales, and the driver variable 𝑦𝑖  is replaced with the corresponding scale’s 

𝑐𝑠 to extract signal information better.  As the reduced regression does not utilize the driver variable 𝑦𝑖   data, the 

error in reduced regression remains unaffected by the multiscale transformation. It is still as depicted in equation 

(4) . At this point, the prediction error for the full regression is given as  𝜀𝑠 = 𝑦𝑗 − 𝔼[𝑦𝑗|𝑦𝑗
−, 𝑌𝑘

−, 𝑐𝑠
−
] , thus 

Σ𝑠
𝑅(𝑗, 𝑗) = 𝔼[𝜀𝑠𝜀𝑠

𝑇]. 

Hence, at scale 𝑠(𝑠⁡ = ⁡1, . . . , 𝑁), the Granger causality value from yi to yj is expressed as 

𝐹𝑖→𝑗 = ln
∑ (𝑗, 𝑗)𝑅
𝑠

∑(𝑗, 𝑗)
 

III. SIMULATION STUDY AND RESULTS 

A. Evaluation Indicator 

Several evaluation metrics are utilized to facilitate the experiments, and their computation methods are subsequently 

detailed. 

Initially, a reject rate (RR) is established based on the significance test outcomes as follows: 

RR =
𝑁𝑅𝑆

𝑇𝑁𝑆
 

Here, NRS is the count of rejections from significance tests, and TNS is the total number of these tests conducted. 

A low reject rate under true causality suggests the algorithm’s effectiveness in achieving accurate estimations before 

hypothesis testing, thus minimally depending on such testing methods. Conversely, a high reject rate when absent 

causality suggests that hypothesis testing can help mitigate estimation errors. 

To encapsulate the effects comprehensively, this study amalgamates the reject rates from both scenarios into 

a single metric termed the overall reject rate (ORR), defined as: 

ORR = RR𝐸 + 1 − RR𝑁 

Here, RRE denotes the RR when Granger causality is truly present, and RRN is the rate at which Granger causality 

does not exist. 

This study incorporates the metrics of Accuracy and Precision, defined as follows: 

Accuracy =
TP + TN

TP + FN + FP + TN
 

Precision =
TP

TP + FP
 

Here, TP represents the count of items correctly identified as causally related both in prediction and reality. FN 

counts the items wrongly predicted as non-existent, though present; TN is the count of items correctly identified as 

file:///E:/weichat/WeChat%20Files/wxid_lfp2tbcpx62i22/FileStorage/File/2024-05/JES_0424_29510-version.docx%23bookmark28
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non-existent both in prediction and reality, and FP is the count of items wrongly identified as present, though they 

are absent. 

B. Simulation Model 

1) Data Description 

We employ a VAR(3) model for simulation and theoretical analysis. The equations of the VAR model are as 

follows: 

[

𝑥1
𝑥2
𝑥3

] = [

2𝑟1 cos(𝜃1) 0 0

−0.356 2𝑟2 cos(𝜃2) 0

0 −0.3098 2𝑟3 cos(𝜃3)
] [

𝑥1,𝑡−1
𝑥2,𝑡−1
𝑥3,𝑡−1

] + [

−𝑟1
2 0 0

0.7136 −𝑟2
2 0

0 0.5 𝑟3
2

] [

𝑥1,𝑡−2
𝑥2,𝑡−2
𝑥3,𝑡−2

]

+ [
0 0 0

−0.356 0 0

0 −0.3098 0

] [

𝑥1,𝑡−3
𝑥2,𝑡−3
𝑥3,𝑡−3

] + [

𝜔1,𝑡

𝜔2,𝑡

𝜔3,𝑡

]

(5) 

Here, 𝑟𝑖 = {0.9,0.7,0.8}, 𝜃𝑖 = 𝑓𝑖Δ𝑡2𝜋, 𝑖 = {1,2,3}, 
1

Δ
= 120𝐻𝑧, and considering the sample 

rate is 
1

Δ
= 120𝐻𝑧, with 𝑓𝑖 = {40,10,50}Hz. This setup facilitates modeling the causality from 

x1to x2 and from x2 to x3. 

2) Validation of state space model validity 

The following experiments were conducted to verify the influence of the state space model on the validity of the 

empirical modal decomposition. Firstly, based on the VAR(3) model (5), we generated experimental data with a 

length of 512 and 10 trials. Under four modes and a significance level of α = 0.05, empirical mode decomposition 

was performed using state-space and VAR-based methods to analyze multiscale Granger causality, and various 

evaluation metrics was calculated. All subsequent experiments were conducted using this dataset and conditions. 

Table 1 Multiscale Estimation Effects of the SD2S Method 
 

% 
EMD EEMD CEEMDAN VMD MVMD 

VAR SS VAR SS VAR SS VAR SS VAR SS 

Accuracy 71.25 75.4 2   69.17 77.0 8   72.50 77.92 32.50 55.4 2   39.17 65.83 

ORR 31.29 24.5 8   31.58 22.9 2   30.55 22.08 44.67 44.5 8   42.77 34.17 

Precision 60.38 88.8 9   54.84 87.8 8   60.00 84.62 32.48 41.8 2   34.58 49.29 

The table shows that the SD2S method outperforms the VAR method, particularly in the VMD and MVMD 

approaches, with SD2S improving accuracy by up to 20%. This underscores the effectiveness of the SD2S method 

in multiscale Granger causality analysis, especially when using state space models, significantly enhancing the 

accuracy of multiscale GC estimates under empirical mode decomposition. Furthermore, EMD’s decomposition 

based on local extrema enables better capture of signal local features to identify causal relationships between 

variables. In contrast, VMD and similar methods perform poorly, likely due to their global optimization approach 

to decomposition, which may not be sensitive enough to signal local features.  Additionally, the table data indicate 

that the MVMD method significantly improves over VMD in all metrics, likely due to its attribute of mode 

alignment in decomposition, which is crucial for multivariate data analysis. 

3) Validation of SD2S validity 

Next, we employ VAR and SD2S methods based on serial empirical mode decomposition to estimate multiscale 

Granger causality. The results are displayed in Table 2, where SVMD, SEMD, SEEMD, and SCEEMDAN 

represent the serial VMD, EMD, EEMD, and CEEMDAN decomposition methods. 

Table 2 Estimation Results Using Serial Decomposition Methods 

% 
VAR SS 

SD2S 

SVMD SEMD SEEMD SCEEMDAN SVMD SEMD SEEMD 

Accuracy 38.75 72.50 67.08 71.25 58.75 75.83 78.75 81.67 

ORR 45.17 30.18 31.82 31.22 41.25 24.17 21.25 18.33 

Precision 35.11 62.96 50.75 57.14 43.45 95.83 89.19 90.91 
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Notably, lower is generally considered better according to the rejection rate definition. In the table, most methods 

show a decrease in rejection rates compared to the original data, while only a few show an increase, but none exceed 

a 3% increase. Therefore, from the perspective of rejection rates, it can be said that the serial methods have 

effectively improved the accuracy of estimating multiscale Granger causality relations. 

Overall, using the serial method, almost all evaluation metrics have improved. Par- particularly, the State Space 

(SS) method performs better than the original across all metrics. Meanwhile, our proposed SD2S method 

outperforms other methods in both Accuracy and Overall Rejection Rate (ORR), and ranks just below the SEMD 

method in Precision. This suggests that the SD2S method, compared to the SEMD method, demonstrates better 

generalization effects overall. Although the SEMD method excels at identifying variable combinations where causal 

relationships exist, its overall performance does not match that of the SD2S method. 

Additionally, the main advantage of the serial method is its significant reduction in the decomposition process 

runtime. We estimated the runtime and calculated the mean and standard deviation across ten trials to verify this. 

Table 3 Runtime Using Original and Serial Methods 
 

Method EMD EEMD VMD CEEMDAN 

Original 0.192±0.011 47.211±0.517 0.463±0.150 30.762±0.391 

Serial 0.193±0.020 28.585±0.018 0.371±0.244 25.281±0.443 

The data in Table 3 displays the runtime in seconds for the original methods EMD, VMD, EEMD, CEEMDAN, 

and their serial counterparts. Aside from EMD, which already had a relatively short runtime, the VMD, EEMD, 

and CEEMDAN methods showed time reductions of 19.87%, 39.45%, and 17.82%, respectively, when using the 

serial versions. Furthermore, the runtime difference between SEMD and EMD is negligible.  Thus, it can be 

concluded that integrating the serial method effectively reduces the runtime of decomposition methods, especially 

as the number of variables and signal length increase, where the advantages of the serial method become even more 

apparent. 

C. Practical Application 

For a long time, fluctuations in economic growth cycles have been a topic of significant interest among economists. 

In the context of globalization, the dependence and interconnection between national economies have continuously 

strengthened. Fluctuations in one country’s economy often affect others and trigger a chain reaction. Therefore, in-

depth study of macroeconomic data, especially the relationship between economic fluctuations in different 

countries, is crucial for grasping global economic dynamics, predicting economic trends, and formulating effective 

economic policies. 

In 2003, Lee et al. proposed using the VAR model to analyze how the business cycles of the United States and 

Japan affect the Australian economy [28]; other scholars have used wavelet analysis to study the relationship 

between energy consumption and economic growth within the same country at different timescales [29,30]. 

However, studies on the impact of economic fluctuations between different countries are relatively scarce. 

This study selects GDP data from 1970 to 2022 for ten countries from the World Bank’s World Development 

Indicators database [31]. All countries’ data are based on the year 2015, and the rate of GDP change is calculated 

using the following formula, where Sn represents the GDP data for year n: 

 

GDP is chosen as the main indicator because it is the core measure of a country’s economic size and total economic 

activity, and its fluctuations directly reflect the stability and growth potential of the nation’s economy. Additionally, 

this study will use Granger causality analysis to deeply explore the potential connections and mutual influence 

mechanisms between economic fluctuations of different countries, thus providing theoretical support for 

international economic cooperation and coordination. 

Through in-depth analysis of macroeconomic data, we can reveal the intrinsic connections between economic 

fluctuations in different countries and explore the underlying economic logic and transmission mechanisms. This 

not only helps us better understand the operational laws of the global economy but also provides important decision-

making bases for policymakers, thereby promoting the stability and sustainable development of the global economy. 

1) Data Description 

Before conducting a multiscale Granger causality analysis, we first calculated the GDP change rates of various 

countries and plotted them, as shown in Figure 2. 
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From the figure, it can be observed that over time, each country’s GDP exhibits varying degrees of fluctuation. For 

example, the fluctuations in China’s GDP time series are more pronounced than in other countries, while similar 

fluctuation patterns are evident in other countries during different periods. 

Furthermore, Table 4lists the basic descriptive statistics for ten countries, including Brazil, the United States, and 

France, covering mean, standard deviation, minimum, median, maximum, skewness, and kurtosis, to help us 

understand the overall trends and fluctuations of the data. 

 

 
Figure 2 GDP Change Rates of Various Countries 

As shown in Table 4, the mean values of GDP change rates for countries like the United States, France, and 

Germany are lower than their medians, and the skewness is less than zero, indicating that the sample’s GDP change 

rates are mostly left-skewed with most changes being minimal. All countries have positive kurtosis, indicating that 

the distribution of GDP change rates is more concentrated than a normal distribution. Spain and the UK especially 

have higher kurtosis, suggesting that their change rates are more concentrated within a specific range. 

Table 4 Descriptive Statistics of GDP Change Rates for Various Countries 
 

 
Mean 

Standard 

Deviation 
Minimum Median Maximum Skewness Kurtosis 

Brazil 0.0143 0.0172 -0.0193 0.0141 0.0568 0.1205 0.0720 

USA 0.0117 0.0089 -0.0122 0.0119 0.0303 -0.7341 0.7632 

France 0.0089 0.0095 -0.0340 0.0092 0.0271 -1.7430 7.5644 

Germany 0.0080 0.0089 -0.0255 0.0082 0.0222 -1.2803 3.4343 

Italy 0.0070 0.0123 -0.0408 0.0073 0.0347 -1.0577 4.2834 

Spain 0.0103 0.0134 -0.0514 0.0120 0.0340 -2.0279 8.1184 

UK 0.0091 0.0126 -0.0475 0.0110 0.0361 -1.9905 7.7244 

China 0.0355 0.0135 -0.0069 0.0358 0.0614 -0.5997 1.0258 

India 0.0224 0.0135 -0.0261 0.0252 0.0399 -1.7800 4.1829 

Japan 0.0095 0.0114 -0.0255 0.0090 0.0351 -0.4013 1.1677 

To preliminarily understand the correlations among different countries, this paper presents a heatmap of Pearson 

correlation coefficients between ten countries, as shown in Figure 3. The results indicate that most countries have 

correlation coefficients above 0.9, with a few around 0.7, suggesting strong positive correlations among these 

nations. It is important to note that correlation coefficients reflect the similarity between variables and provide a 

preliminary basis for causality research. 

2) Multiscale Granger Causality Analysis 

This section uses the Multiscale Granger Causality Analysis Method based on the Serial Decomposition State Space 

Model (SD2S) to explore the causal relationships between GDP growth rates among different countries. 

Western economists have defined and classified economic cycles based on their durations: short-term economic 

cycles, usually triggered by changes in inventory levels, last  3 to 5 years and are known as "Kitchen cycles"; 

medium-term economic cycles, caused by changes in fixed investments in industrial and financial sectors, last 7 to 

11 years and are called "Juglar cycles"; medium-long-term economic cycles, initiated by changes in construction 
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investments, last 15 to 20 years and are known as "Kuznets cycles"; long-term economic cycles, driven by 

technological innovations, last 50 to 60 years and are referred to  as "Kondratieff cycles" [32]. We set the maximum 

decomposition scale to 4 and used the SCEEMDAN method to decompose the data for further analysis. 

According to the experimental results, we present the Granger causality relationships among ten countries at 

different scales, displayed as directed graphs, as shown in Figure 4. The figure shows the causality-directed graphs 

for the first three scales. According to the results, no causality was found at the fourth scale.  This may be due to 

the gradual weakening of economic trade and interactions among countries over time. Conversely, the data sample 

covering only 1970-2022 may be insufficient to detect long-term relationships. This indicates that short-term 

economic activities and interactions deserve more attention and are likely the primary factors influencing 

international relations. 

 
Figure 3 Heatmap of GDP Correlation Coefficients Among Countries 

From Figure 4a, it is observed that compared to other countries, Japan and the UK receive more arrows, suggesting 

that they are more susceptible to influences from other nations. Conversely, Italy and France appear to be dominant 

in driving economic activities to some extent.  Additionally, the causal relationships among Spain, Italy, and France 

indicate that these geographically adjacent EU member countries have close economic ties and trade relations, all 

using the euro and influenced by the same monetary policy. 

From Figure 4b, it is evident that the United States has a significant impact on Japan during the medium-term 

economic cycle.  The Plaza Accord signed in 1985 with Japan severely affected Japan’s export trade, impacting the 

stock market and leading to a bubble burst and prolonged economic slump, which slowed down GDP growth [33]. 

 
Figure 4 Multiscale Granger Causality Relationships of GDP Among Countries 

As seen in Figure 4c, the UK significantly influences India.  As a former colonial ruler, the UK has profoundly 

impacted India’s political, legal, educational, and economic aspects, with these influences continuing to this day. 

           

     

             

       

(a)  Scale 1 (b)  Scale 2 (c)  Scale 3
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Over the past few decades, investment relations between the UK and India have grown rapidly, with the UK being 

the largest investor from the G20 countries in India [34]. Also, it is a major export destination for India [35]. 

These observations reveal that the results of multiscale Granger causality analysis differ from those of correlation 

coefficient analysis. This discrepancy is partly because correlation coefficients only reflect the similarity between 

datasets, whereas Granger causality analysis investigates how historical data affects current data to establish 

causality. Moreover, the analysis method adopted in this paper focuses on Granger causality at different scales, 

identifying the inherent multiscale complexities that are not captured by correlation coefficients and traditional 

Granger causality methods. 

IV. CONCLUSIONS 

With the advent of the big data era, data increasingly exhibits multiscale and multi-dimensional characteristics, 

posing new challenges for analyzing Granger causality. On the one hand, noise in multidimensional data may lead 

to significant biases when utilizing vector autoregressive models. On the other hand, traditional methods for 

multiscale feature extraction rely heavily on prior knowledge and do not fully utilize the inherent features of the 

data itself. To address these challenges, this paper proposes a new SD2S method that integrates SS models with the 

SCEEMDAN to enhance the accuracy of model estimates and the effectiveness and efficiency of multiscale 

decomposition.  This study initially compares the traditional vector autoregressive models with empirical mode de-

composition methods combined with state space models, revealing that the state space models improved across all 

evaluation metrics, with the highest accuracy increase of 18.8%, thus proving their effectiveness. Furthermore, the 

paper compares five different empirical mode decomposition methods, whether serial or not, demonstrating that the 

SCEEMDAN method reduced computation time by 18.82% compared to traditional CEEMDAN, with an improved 

accuracy rate. In summary, the SD2S method proposed in this paper effectively enhances the estimation of 

multiscale Granger causality and computational efficiency. 

Nevertheless, there is still room for improvement in this method. On the one hand, although this paper has compared 

state space models with vector autoregressive models, given that existing research has attempted to combine 

Granger causality with neural networks [36], future studies could consider integrating with more neural networks 

or deep learning algorithms for a more comprehensive exploration of Granger causality. On the other hand, the 

multiscale analysis framework in this paper involves model order selection based on information criteria and 

hypothesis testing based on statistical testing, where the inconsistency of mathematical foundations between these 

two methods could affect the consistency of results [37]. Future research could use methods such as description 

length to unify model complexity and error terms, simplify the model selection process, and further optimize the 

multiscale Granger causality analysis method.  
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