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Abstract: - To ensure that there is enough food produced for a growing population, trends in population growth and food consumption 

must be monitored. Therefore, farmers adopt various strategies without taking into account their detrimental effects on the surroundings to 

fulfil the necessary requirements. These kinds of actions frequently result in higher emissions of greenhouse gases . The use of fertilizer, 

soil, animals, and other factors all contribute to GHGs  in the agriculture sector. In this Manuscript, Gas emission characterization and 

monitoring algorithm in the process of agricultural waste resource treatment (GECMA-AWRT-RDCNN)is proposed. Initially, the data is 

collected from Agri-food CO2 emission dataset. Then, the collected data is fed into pre-processing utilizing Implicit Bulk‑Surface 

Filtering (IBSF). The IBSF is used for data cleaning. Then the preprocessed data undergoes feature selection process. Here, it selects 14 

features by utilizing High Level Target Navigation Pigeon Inspired Optimization (HLTNPIO). Then the selected features are given to 

Robust Deformed Convolutional Neural Network (RDCNN) for predicting Gas Yield (GY) generated by energy recovery from agricultural 

waste. RDCNN often does not explain techniques for optimising parameters through adaptation. Hence, the Fractional Order Water Flow 

Optimizer(FOWFO)to optimize Robust Deformed Convolutional Neural Network which accurately predict the Gas Yield. The proposed 

GECMA-AWRT-RDCNN approach is implemented in Python. The proposed method’s performance examined utilizing performance 

metrics likes Accuracy, Mean-squared error (MSE), Root mean squared error (RMSE), Mean bias error (MBE), Determination coefficient , 

Relative root mean squared error (rRMSE), ,Mean absolute percentage error (MAPE) and Loss. The proposed GECMA-AWRT-RDCNN 

approach contains 28.0%, 27.5%, and 26.5% higher accuracy, 26.0%, 23.5%, and 28.5% higher Determination Coefficient and 12.0%, 

17.5%, and 16.5% lower Mean Squared Error compared with existing methods, such as Electricity production based forecasting of 

greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms (EP-GHGE-

SVM) Prediction of Agricultural Emissions in Malaysia Using Machine Learning Algorithms (PAEM-ARIMA)  and Role of deep learning 

for prediction of greenhouse gas emission from agriculture: enabling technology (PGHGA-LSTM), respectively. 

Keywords: Agricultural Waste, Fractional Order Water Flow Optimizer, Gas Emissions, High Level Target Navigation 

Pigeon Inspired Optimization, Implicit Bulk‑Surface Filtering and Robust Deformed Convolutional Neural Network. 

 

I. INTRODUCTION 

The agriculture sector contributes to climate change through anthropogenic greenhouse gas emissions [1]. The 

earth's surface emits heat energy, which greenhouse gases absorb and reradiate back, creating the greenhouse 

effect that leads to global warming. Numerous factors, such as altered average temperatures, altered rainfall 

patterns, an increase in floods and droughts, rainstorms, and fluctuations in sea level rise, are all impacted by 

climate change and have an impact on agriculture [2-4]. Ground level ozone concentrations and atmospheric 

carbon dioxide are both impacted by climate change. As the average temperature rises, crop productivity in 

quantity and quality suffers, as do growth rates. Greenhouse Gas (GHG) emissions are on a historic climb. GHG 

emissions are creating climate change, leading to rising surface temperatures [5-7]. The IPCC estimates that 

between 1880 and 2012, land-ocean temperatures rose globally by 0.85 °C. The IPCC claims that the 

temperatures between 1983 and 2012 were the highest in 800 years. Nitrous oxide (3-7%), carbon methane (4-

9%), Water vapour (36-70%), dioxide (9-26%), HFC, and SF6 are the six gases that are classified as greenhouse 

gases. The IPCC ranks methane as the second most significant contributor to global warming, accounting for 21-

25%.The agricultural sector accounts for around 25% of global GHG emissions. With a rapidly expanding 

global population, there is a pressing need for increased food production [8-11]. Livestock emit methane as part 

of their digestion process. It is generated by the rumen of animals [12-14]. It promotes microbial activity and 

produces incombustible gasses. Ruminants' enteric fermentation contributes to 15-18% of methane emissions 

[15, 16]. Studies indicate that 19.9 GtCO2 is the approximate amount of emissions resulting from land 

utilisation, forestry, and agriculture. Fertiliser with nitrogen produces an additional 0.4 GtCO2 emissions. The 

primary sources of agricultural emissions are fertiliser (0.6 GtCO2), manure (1.8 GtCO2), on-farm energy (1.0 
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GtCO2), rice cultivation (2.1 GtCO2), and enteric fermentation (8.3 GtCO2) [17, 18]. The need for additional 

food, especially protein, is rising as the world's population gets closer to 10 billion [19]. Given the current rate 

of deforestation, emissions are expected to grow by approximately 23.4 GtCO2 by 2050. According to a 2018 

IPCC study, significant change is needed to keep global warming to 1.5 degrees Celsius [20].  

Limitation of the previous research is the narrow scope of input variables and waste treatment technology. The 

research only looked at input variables for estimating gas yield from agricultural waste, which may have 

overlooked other key aspects that could have an impact on prediction accuracy. The model's predictive powers 

may be limited by ignoring key variables that may have a substantial impact on gas yield, resulting in potential 

mistakes in gas production estimates.  For gas yield prediction, without investigating its applicability in other 

waste treatment processes such as biological gasification. This narrow emphasis may limit the findings' 

application to a larger range of waste management settings. 

To overcome the limits of the research, the input variables examined in the prediction model can be expanded to 

include a broader spectrum of factors influencing gas yield. The chief aim of the research is to create and 

suggest a model for gas yield prediction using the FOWFO algorithm and the RDCNN model.  While the local 

minimum can increase an RDCNN model's performance by identifying a better way to train the network, 

choosing and calculating the ideal weights and biases remains difficult for RDCNN. On the other hand, for 

optimization issues, the FOWFO algorithm can carry out a global optimization. Therefore, the GECMA-AWRT-

RDCNN model, which is an RDCNN model, has its weights optimized using the FOWFO algorithm. The 

sections that follow provide a description of the GECMA-AWRT-RDCNN model's framework for forecasting 

gas yield. 

Below is a summary of this research work's principal contributions. 

• In this research, Gas emission characterization and monitoring algorithm in the process of agricultural 

waste resource treatment (GECMA-AWRT-RDCNN)is proposed. 

• Initially the input image is collected from the Agri-food CO2 emission dataset. 

• The proposed GECMA-AWRT-RDCNN method integrates multiple advanced techniques, including 

Implicit Bulk‑Surface Filtering (IBSF) for preprocessing. The preprocessed image undergoes feature selection 

using HLTNPIO.  

• Then the selected 14 features are given to Robust Deformed Convolutional Neural Network (RDCNN) 

for predicting Gas Yield. 

• Unlike traditional RDCNN approaches, which lack optimization methods for computing optimal 

parameters, the proposed method incorporates Fractional Order Water Flow Optimizer (FOWFO).FOWFO 

optimizes the weight parameters of RDCNN. 

• The effectiveness of the proposed approach is examined using current techniques, like CM-PGHGA-

LSTM, PAEM-ARIMA and EP-GHGE-SVM models respectively. 

The remaining manuscripts are arranged as follows: The literature review is reviewed in Part 2, the technique is 

explained in Part 3, the results are verified in Part 4, and the article is concluded in Part 5. 

II. LITERATURE SURVEY 

Several works have presented previously in literatures were depending on the prediction ofgas yieldusing deep 

learning. Few of them were mentioned here, 

Kosamkar and Kulkarni [21] have presented a PGHGA-LSTM .The agriculture sector adds to  GHS emissions 

through cattle, soil, and fertilizer use. An extensive examination of greenhouse gas emissions from the 

agriculture sector is provided in this research. The research found a link between agricultural activities such as 

land utilization, nitrogen fertiliser application, and GHG emissions from agriculture. Suggested architecture uses 

an LSTM deep learning model to analyze and predict greenhouse gas emissions from agriculture. The 

disadvantage of this method was that it may oversimplify complex agricultural systems and rely too heavily on 

technology while failing to address broader socioeconomic and policy aspects influencing emissions. This 

method attains high loss and low accuracy. 

Homaira and Hassan[22] have presented a PAEM-ARIMA. Developing a model that predicts agricultural 

emissions using the 3 most dependable forecasting techniques was the aim of this study. Two models are used in 

the time series analysis: a simple linear regression model and the ARIMA and LSTM. Malaysia's predicted 

growing trend values are displayed in these models until 2040. While the LSTM model produced a diminishing 
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curve for each value loss epoch, suggesting that it was a poor forecasting model, the ARIMA model produced 

strong prediction curves that were close to the real values recorded since 1960. The disadvantage of this strategy 

was that it may focus too heavily on technical solutions without adequately addressing broader socioeconomic 

or policy factors driving agricultural emissions. This method attains high Mean-squared error and low 

Determination Coefficient. 

Bakay and Ağbulut [23] have presented an EP-GHGE-SVM alogrithm. Fossil fuels currently provide for 85% of 

the world's primary energy needs. The widespread usage of fossil-based fuels has resulted in an increasing 

release of GHG  over the world. The power and heat generating industry accounts for the majority of overall 

GHG emissions (25%). This research aims to anticipate GHG emissions (N2O, CH4 F-gases, total GHGand  

CO2 ) from Turkey's electricity generating sector using ANN, DL, and SVM. The Turkish Statistical Institute 

contributed the dataset, which spans the years 1990–2018.The method may overlook broader contextual 

elements influencing emissions and energy production. This method attains high Loss and low Determination 

Coefficient. 

Nielsen et al. [24] have  presented how geochemistry is related to soil GHG emissions from agricultural bare 

peat mesocosms that have been drained and rewetted.. Rh emissions in five Danish fens and bogs are shown to 

be driven by soil and site-specific geochemical components. Additionally, it looks at emission magnitudes in 

both drained and rewetted scenarios. A mesocosm experiment was carried out with water table depths adjusted 

to -40 cm or -5 cm, and equivalent exposure to climatic conditions. Overall, evaluations employing generalized 

additive models (GAM) revealed that geochemical variables adequately described emission magnitudes. Soil pH 

and phosphate (P) were significant predictors of CO2 flux magnitudes under drained circumstances. This 

research may limit its applicability to real-world situations, perhaps disregarding larger biological and climatic 

aspects impacting peat land GHG emissions. This method attains high Relative root mean squared error and low 

accuracy. 

Raihan et al. [25] have presented an econometric study of Bangladesh's greenhouse gas emissions resulting from 

several agricultural variables. Due to its impact on greenhouse gas emissions, agriculture contributes 

significantly to environmental degradation and was particularly vulnerable to Climate Variability. Thus, the 

current study experimentally investigates the dynamic relationships between GHG emissions in Bangladesh and 

agricultural value added,  agricultural land expansion, crop output, animal and fisheries production, agricultural 

energy usage, fertiliser use, and forest area. Time series data covering the years 1990 to 2018 were analyse This 

approach may overlook deeper systemic difficulties and relies primarily on statistical correlations, thus leaving 

out socioeconomic and policy factors critical for effective emission reduction initiatives.This method attains 

high Root mean squared error and low accuracy. 

Gołasa et al.[26] have presented a Agriculture's Sources of Greenhouse Gas Emissions, with a Focus on 

Emissions from Energy Used. The economic sector most impacted by the recent changes was agriculture. Being 

a significant source of GHG emissions, the necessity to reduce these emissions was becoming more and more 

apparent. The purpose of the research was to assess the structure of GHG emissions on farms and to pinpoint the 

kinds of farms where GHG emissions may be decreased by improved energy management, using data from the 

FADN. The IPCC methodology was modified for use with FADN data in order to compute the emission 

volume. When compared to other emission sources, energy production was determined to have very low 

emissions. The methods may oversimplify emission reduction efforts by focusing primarily on farm types, 

potentially ignoring broader systemic variables and taxation's socioeconomic implications. This method attains 

high MBE and low MAPE . 

Sharafi et al. [27] have  presented an estimate of the amount of energy used and GHG emissions in crop 

production. A ML approach. In order to evaluate the long-term energy efficiency of essential crops, the research 

gathers and analyses energy inputs and GHG emissions from 17 Iranian crops in 5 main categories ( tubers, 

pulse fibre, cereal and oilseed) from 1970 to 2019. To quantify the link between GHG emission models and the 

resources utilised per unit of energy output, three machine learning (ML) techniques were developed. Three 

numerical statistics were used to assess the models. Every physical and chemical input required to produce the 

principal crops is considered in the study. These energy-related factors include manpower, irrigation water 

,equipment, electricity, fossil fuels, pesticides, fertilisers ( nitrogen, phosphate and potassium), and seed rate 

.The method may overlook important socioeconomic and environmental elements that influence energy 
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efficiency and emissions, thus leading to oversimplified models and solutions. This method attains high mean 

bias error and low Determination coefficient. 

III. PROPOSED METHODOLOGY 

In this segment, Gas emission characterization and monitoring algorithm in the process of agricultural waste 

resource treatment (GECMA-AWRT-RDCNN) is proposed.  The approach involves five steps: Data 

Acquisition, Pre-processing, feature selection, prediction and optimization. The process begins with the 

acquisition of Agri-food CO2 emission dataset, a crucial step in ensuring the availability of reliable and relevant 

data for analyses. Following Data acquisition, the data’s undergo pre-processing using an Implicit Bulk‑Surface 

Filtering (IBSF)for data cleaning. In the Feature selection stage, the HLTNPIO is used to choose features from 

the pre-processed data. The selected 14 features are then input into a Robust Deformed Convolutional Neural 

Network (RDCNN)for the purpose of prediction. The RDCNN, known for its robustness and ability to handle 

complex data, is tasked with the critical role of prediction. By leveraging its deep learning capabilities, the 

RDCNN predict the gas yield (GY) generated by energy recovery from agricultural waste. To further enhance 

the performance of the RDCNN and optimize its parameters for improved accuracy and efficiency, the FOWFO 

technique is employed. Proposed GECMA-AWRT-RDCNN block diagram is  illustrated in figure 1. 

 
Figure 1: Proposed GECMA-AWRT-RDCNN block diagram 

A. Data Acquisition 

Firstly, the input data’s are collected from Agri-food CO2 emission dataset [28].The FAO and the IPCC 

provided data, and these sources were combined and reprocessed to create the agricultural CO2 emission 

dataset. To produce a thorough and coherent dataset for analysis and forecasting, these datasets were cleaned, 

preprocessed, and combined. The dataset, as shown in the notebook, details the CO2 emissions associated with 
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agri-food, which make up about 62% of all annual emissions worldwide. In fact, when researching climate 

change, the emissions from the agri-food industry are important. These emissions add significantly to the annual 

emissions worldwide, as the dataset demonstrates. In order to mitigate climate change and establish sustainable 

practices within the agri-food industry, it is imperative to comprehend and address the environmental impact of 

this sector. Table 1 shows the features of Agri-food CO2 emission dataset. 

Table 1: List of features Agri-food CO2 emission dataset 

Sl.No Features Sl.No Features 

1 Savanna fires 13 Forest fires 

2 Crop Residues 14 Rice Cultivation 

3 Drained organic soils (CO2) 15 Pesticides Manufacturing 

4 Food Transport 16 Forestland 

5 Net Forest conversion 17 Food Household Consumption 

6 Food Packaging 18 Agrifood Systems Waste Disposal 

7 Food Processing 19 Fertilizers Manufacturing 

8 IPPU 20 Manure applied to Soils 

9 Manure left on Pasture 21 Manure Management 

10 Fires in organic soils 22 Fires in humid tropical forests 

11 Food Retail 23 On-farm Electricity Use 

12 On-farm energy use 24 total_emission 

 

B. Pre-Processing Using Implicit Bulk‑Surface Filtering(IBSF) 

In this section, pre-processing using Implicit Bulk‑Surface Filtering (IBSF) [29] is discussed. In the 

preprocessing, IBSF is used for data cleaning. By integrating bulk and surface measurements, Implicit Bulk-

Surface Filtering (IBSF) improves gas emission monitoring in the treatment of agricultural waste. Its capacity to 

preserve volume mesh quality and guarantee surface smoothness at the same time is important when discussing 

gas emission in the treatment of agricultural waste. By taking a comprehensive approach, gas emission dynamics 

modeling becomes more accurate and computationally efficient. This leads to more accurate assessments of 

emission patterns and more efficient waste treatment process development. In agricultural waste treatment 

plants, it supports efficient decision-making for environmental management and regulatory compliance by 

ensuring strong and trustworthy numerical computations. 

=+−  insxr H ,.)( 2                                (1) 

Here represent the conventional spatial gradient operator, x represent the generalized Robin boundary 

condition ,
 

Hr represent the Helmholtz bulk filter radius,, 
 represent an equivalent 2nd order tensor to 

continuum mechanics' Cauchy stress tensor, and s represent the partial differential equation.  

)(2))(( xIxtr  +=                 (2) 

Here   indicates the tensor of strain operating on geometry,  and   are the Lame constants, 
tr represent the 

trace operator, , I represent the identity tensor. 
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Where 
2)( Hr and 

2)( Hr represent the corresponding weights,  represent the geometry's overall strain energy, 

A uniform distribution throughout the integration domains is assumed by d and 
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smoothness of the design boundary.  

10,
:

.)(

)(

2

2 




=










 



d

xdxr

r

TH

H                                          (4) 



J. Electrical Systems 20-7s (2024): 3158-3173 

 

 

3163 

Where  represent the weighting factor. d  indicates the geometry's overall strain energy. 
Hr represent the 

Helmholtz bulk filter radius, 
Tx represent the smoothness of the design boundary.  represent an equivalent 

2nd order tensor to continuum mechanics' Cauchy stress tensor. Data is cleaned in equation (5) 

( ) =  dCBBrK TH

e
e

2
                                                        (5) 

Where C represent the isotropic constitutive matrix that is linear-elastic. The bulk shape functions N  spatial 

gradients are contained in B .
H

er


represent the elemental Helmholtz bulk filter radius. Finally, the IBSF cleaned 

the data. Then, the pre-processed output is fed  to HLTNPIO for Selecting Features. 

C. Feature Selection UsingHigh Level Target Navigation Pigeon Inspired Optimization (HLTNPIO) 

In this section, the feature selection using HLTNPIO [30] is discussed. An effective strategy for improving gas 

emission management in the treatment of agricultural waste is provided by the cutting-edge ideas incorporated 

into HLTNPIO. By improving worldwide search capabilities, striking a balance between exploitation and 

exploration, and promoting the synergistic evolution of solutions, HLTNPIO makes it possible to manage gas 

emissions more effectively and adaptively, which eventually helps agricultural waste treatment processes 

comply with regulations and the environment.  

 

Step 1: Initialization 

The starting population of HLTNPIO is generated randomly. Then the initialization is derived in equation (6). 

( )minmaxmin, BBrandBT ini
di −+=                              (6) 

Where maxB  and minB  denotes the bound's maximum value and  minimum value, respectively. 

Step2: Random Generation 

Following startup, HLTNPIO caused the input fitness function to become random. 

Step 3: Fitness Function 

Based on the present best position , the initialised parameters are determined. Determine the fitness level of 

every person. 

][ FeaturesOptimalSelectingfunctionFitness =                            (7) 

Step 4:Selection 

The first strategy's final phase, selection, attempts to separate high-level targets from intermediate targets. Since 

the target group is a changing population, it is necessary to replace outdate targets with more suitable ones. The 

following operations are carried out by the selection component to weed out the ultimate targets.  
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Where ( )t
iTf denotes the 

thi target's fitness value in the 
tht generation . ( )t

iMTf denotes the 
thi intermediate 

target's fitness value in the 
tht generation . 

t

iT denotes the ( ) tht −+1 generation's 
thi objective. 

Step 5: Levy Based Map Compass Strategy
 

Pigeons fly toward objectives in the LMS and investigate possible locations nearby. Based on PIO's original 

map compass strategy, LMS has been modified. Second, the LMS's random search functionality is improved by 

introducing the Levy flight model. 
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Where iT represents the ith high level target,
 iV  denotes the ith pigeon's velocity , rand denotes the random 

number and iX represents the ith  pigeon’s position with d dimension search space. 
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Where 
t

diR ,  represents the map-compass factor of the 
thi pigeon in the tht  generation's dth pigeon variable,

 iV  

denotes the the ithpigeon's velocity ,
 

diT , represents the ithhigh level target with d dimension search space, 

denotes the levy flight step length   and diX , represents the ith  pigeon’s position with d dimension search 

space, 

Step 6: Enhanced Landmark Strategy 

PIO accelerated convergence in the latter search stage and improved local exploitation capabilities by utilising 

the map-compass technique. The centre of the existing population is designated as the landmark in the first map-

compass method of PIO, all pigeons fly towards it, and the population is gradually reduced. Although this 

approach is effective in utilizing precise solutions, it lessens population variety. In order to solve the issue, ELS 

chooses a subset of the targets' elites and uses their canters as landmarks to guide the pigeons' movements rather 

than using the population's center as a reference point.
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Where diV , denotes the velocity of the ith  pigeon with d dimension search space, rand denotes the random 

number, diT , represents the ith high level target with d dimension search space, diX , represents the ith  

pigeon’s position with d dimension search space, 
d represents the current dimension , i denotes the current 

pigeon number, and 
t

eC  represents the center position of the elites. 

Step 7: Termination 

In this step, HLTNPIO completes, best solution obtained through each process iterations returned as output. 

HLTNPIO selected 14 features from Agri-food CO2 emission dataset. Then the selected features are given to 

RDCNN. Selected features from Agri-food CO2 emission dataset shown in table 2. 

 

Table 2: Selected Features 

Sl.No Features Sl.No Features 

1 Drained organic soils 8 Pesticides Manufacturing 

2 Food Transport 9 Forestland 

3 Net Forest conversion 10 Food Household Consumption 

4 Food Packaging 11 Agrifood Systems Waste Disposal 

5 Fires in organic soils 12 Fires in humid tropical forests 

6 IPPU 13 On-farm Electricity Use 

7 On-farm energy use 14 total_emission 

D. Prediction UsingRobust Deformed Convolutional Neural Network (RDCNN) 

In this section Robust Deformed Convolutional Neural Network (RDCNN) [31] is utilized. RDCNN is used to 

predict Gas Yield (GY) generated by energy recovery from agricultural waste. A powerful tool for improving 

gas emission characterization and monitoring in agricultural waste treatment, the Robust Deformed 

Convolutional Neural Network (RDCNN) offers significant advantages in gas emission characterization and 

monitoring for agricultural waste treatment. Its deformed convolutional layers allow for the capture of intricate 

patterns in emission data, enhancing accuracy. Additionally, RDCNN's robustness to variability ensures 

consistent performance across diverse conditions, which is crucial given the often-variable nature of agricultural 

waste treatment processes. 

( ) ( )
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(12) 

Where ( )Q  represents the loss function, m represents the geometric reshaping capability, RDCNN  represents 

the robust deformed convolutional neural network, 
j

mQ adjust position of the sampling point. 

( ) ( )( )( )mmDB QDCQBCRQDBQ 11==
                                                                                 

(13) 
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Where DBQ represents the output of DB , DB  represents the deformable block, mQ represents the low 

computation time in contextual information, BCR11 represents the eleven stacked deformable block, Q  

represents the input adjust position, C represents the reshaping capability, D represents the improved clarities.  

( ) ( ) ( )yyjGajjYjjX ay

m

a

yxyx ++=
=1

,, ,                                                                           (14)                    

Where X represents the obtained features, yx jj , represents the location of the centre point, Y represents the 

obtained feature map, a represents the convolutional operation, G represents the total number of pixels obtained 

from features, ay denotes the offset, y represents the horizontal offset.  

( )BDBD QEBQ =                                                                                                                 (15) 

Where BDQ denotes the original images,   represents the high accuracy adjust position of the images, EB  

represents the elastic block, ( )BDQBE  represents the output of the original images. Gas Yield is predicted in 

equation (16) 

( )EBd OQNR =                                                                                                                       (16) 

Where dR represents the forged images, Q  represents the residual block, N represents the residual operation, 

EBO represents the latent clean image. Finally, Gas Yield (GY) generated by energy recovery from agricultural 

waste is predicted using RDCNN. In this work, FOWFO is assigned to enhance RDCNN. Here, FOWFO is 

assigned for turning weight   parameter of RDCNN. 

E. Optimization using Fractional Order Water Flow Optimizer(FOWFO) 

In this segment, FOWFO [32] is discussed. It determines the parameters such as dBD RandQ .The FOWFO-

based technology assists in reducing environmental concerns related to the treatment of agricultural waste by 

precisely defining and tracking gas emissions. It makes sure that harmful emissions are kept to a minimum, 

which promotes sustainability and environmental preservation. When compared to conventional control 

techniques, the fractional order control mechanisms used by FOWFO offer more resilience and flexibility.  

Step 1: Initialization 

The starting population of FOWFO is generated randomly. Then the initialization is derived in equation (17). 
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(17) 

Where,  )( minH  is the minimum value that the initialize current solution of )(H  at iteration )(t  can achieve 

while )( maxH is the maximum possible attainable value that can be achieved. 

Step 2: Random Generation 

Through FOWFO, the input fitness function acquired randomization upon initialization. 

Step 3: Fitness Function  

Based on the current best position , the initialised parameters are resolved. Determine each person's fitness 

value. 

)( dBD RandQoptimizeFunctionFitness =                                        (18) 

Where dR is used to reduce the MSR and BDQ
is used to increase the accuracy. 

Step 4: Enhancement the Laminar Operator of Water Flow Optimizer BDQ  

FO is added to the laminar operator during the exploitation stage by exchanging information across solutions, 

making use of its memory characteristic for previous events to improve the accuracy and convergence speed of 

the solution.  

cvlYlYlYC jji


=−+=+ )()1()]1([                                                                                     (19) 
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Where C  represent the position of the particle, iY represents the shifting coefficient, jY represents the random 

number, l  represents the position of the particle chosen at random, v represents the direction of the moving 

particle,   represents the laminar operator, c


represents the constant. 

cvlYC j


=+ )]1([                                                                                                                (20) 

Where 
C  represents the arbitrary phase. represents the laminar operator, c


represents the constant. 

Step 5: Linear Increase of Laminar Probability dR  

When Coef is low in the early stages of iteration, the algorithm is more likely to focus on global exploration. 

The algorithm is more prone to local exploitation at this later iteration since Coef has a large value. The entire 

procedure helps to maintain a balance between exploitation and exploitation. 

cvYYY l
j

l
j

l
j


+−+= −+ 11 )1(

!2

1

!1

1
                                                                                 (21) 

Where 
1+l

jY represents the space among water surface, represents the coefficient vector, 
l

jY  represents the 

flowing water, −1  represents the sampling period, 
1−l

jY  represents the number of terms from the previous 

events. Figure 2: shows Flowchart of FOWFO. 

 
Figure 2: Flowchart of FOWFO 

Step 6: Termination 

In this stage, the weight parameter dBD RandQ of Robust Deformed Convolutional Neural Network are 

optimized with the help of FOWFO, iteratively repeat the step 3 until the halting is 1+=HH met. Then 

finally proposed GECMA-AWRT-RDCNN predicted thegas yield with higher accuracy. 
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IV. RESULT WITH DISCUSSION 

This part discusses the results of the proposed technique. The proposed GECMA-AWRT-RDCNN method is 

then simulated in Python and compiled utilizing Jupiter notebook and executed in Mac Book Pro along Intel 

core i7 processor of 2.7 GHz, 8GB of RAM speed. The obtained outcome of the proposed GECMA-AWRT-

RDCNN approach is analysed with existing systems like PGHGA-LSTM, PAEM-ARIMA and EP-GHGE-SVM 

respectively. 

A. Performance Measures 

Selecting the best classifier requires taking this critical step. Performance is evaluated using a variety of 

performance metrics, such as accuracy, MAPE, determination coefficient, MSE, RMSE, MBE, and rRMSE . 

Performance measurements are scaled using the judged performance metric. It is necessary to have True 

Negative (TN), False Positive (FP), and False Negative (FN) samples in order to scale the performance 

indicator, True Positive (TP). 

1) Accuracy
 

Equation (22) provides the accuracy, which quantifies the percentage of samples (both positive and negative) 

relative to the entire samples. 

FNFPTNTP

TNTP
Accuracy

+++

+
=                            (22) 

 

2) Mean Squared Error (MSE)  

The term "mean square error" refers to “the average of the squares of the errors” or variances between the actual 

and anticipated values in a dataset. The formula to calculate MSE is as follows:  

( )
2

ˆ
1

 −







= ii xx

n
MSE

                                        (23) 

3) Root Mean Square Error (RMSE)
 

The two main metrics used to assess the efficiency of a regression model are its accuracy and its RMSE, which 

computes the average difference between values predicted by the model and values that actually occur. The 

accuracy of the model's prediction of the target value is estimated by it. 

( )
nobservatioofNumber

ValueedictedValueActual
RMSE

2
Pr−

=

                                       (24)

 

4) Mean Bias Error (MBE) 

A statistic called MBE calculates the average difference between a dataset's actual and predicted values. The 

formula to calculate MBE is as follows: 

( ) −







= ii xx

n
MBE ˆ

1

                                         (25) 

5) Relative Root Mean Squared Error (rRMSE) 

rRMSE is derived by dividing the RMSE by the average of the real values. It provides a normalized measure of 

the RMSE while accounting for the data's scale.  

( )
100








=

esactualvalumean

RMSE
rRMSE              (26)

 

6) Determination Coefficient 

The Determination Coefficient (R2) in a regression model represents how well the independent variables are able 

to predict the variance of the dependent variable. To calculate the Determination Coefficient (R²), use the 

formula below: 

( )
SStot

SSresR −=12

                                          (27) 

Where SStot  indicates  the total sum of squares and SSres  represent the sum of squares of residuals . 

7) Mean Absolute Percentage Error (MAPE)
 

The MAPE is a metric for determining the accuracy of a forecasting model by measuring the average percentage 

difference between anticipated and actual values. The formula for computing MAPE is given below: 
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( )
100

1







 −







=  Actual

ForecastedActual

n
MAPE           (28) 

 Here n represent the  count of observations. Forecasted represent the forecasted value. 

8) Loss 

The loss curve indicates the values of the model’s loss over time. The loss is initially substantial but steadily 

lowers, demonstrating that the model’s performance is increasing. 

( )
nobservatioofNumber

ValueedictedValueActual
Loss

2
Pr−

=

                          (29)

 

B. Performance Analysis  

Figure 3 to 10 illustrates the simulation outcome of proposed GECMA-AWRT-RDCNN technique .  Then, the 

proposed GECMA-AWRT-RDCNN technique is likened with existingPGHGA-LSTM, PAEM-ARIMA and EP-

GHGE-SVMmethods respectively. 

 

Figure 3: Performance Analyses of Accuracy 

Figure 3 displays performance analyses of accuracy.The GECMA-AWRT-RDCNNmodel, optimized with the 

FOWFO method, demonstrated improved accuracy and predictive capacities in forecasting gas yield during the 

gasification of agricultural waste. The optimization procedure increased the RDCNNmodel's performance and 

contributed to more trustworthy GY predictions, emphasizing the importance of algorithmic optimization in 

boosting model accuracy.  The proposed GECMA-AWRT-RDCNNmethod attains 28.0%, 27.5%, and 

26.5%higheraccuracy estimated to the existing method such as PGHGA-LSTM, PAEM-ARIMA and EP-

GHGE-SVM models respectively. 

 
Figure 4: Performance Analysis of Mean Squared Error 
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Figure 4 displays performance analyses of Mean Squared Error. The MSE analysis demonstrated the 

effectiveness of the FOWFO algorithm in optimizing the RDCNNmodel for estimating gas output from 

municipal solid waste. The decrease in MSE values in the GECMA-AWRT-RDCNNmodel revealed the 

improved accuracy and predictive capacities acquired by algorithmic optimization, stressing the importance of 

MSE as a performance parameter in evaluating model accuracy and efficacy. The proposed GECMA-AWRT-

RDCNNmethod attains 12.0%, 17.5%, and 16.5%lowerMean Squared Error estimated to the existing method 

such as PGHGA-LSTM, PAEM-ARIMA and EP-GHGE-SVM models respectively. 

 
Figure 5: Performance Analyses of Root Mean Squared Error 

Figure 5 illustrates performance analyses of Root Mean Squared Error.The RMSE performance graph for 

agricultural waste with percentages illustrates the forecasting model's accuracy in predicting agricultural waste 

quantities. It enables stakeholders to evaluate the model's performance, spot patterns in prediction mistakes, and 

make informed decisions based on RMSE values. Compare the RMSE percentages of various forecasting 

models or time periods to determine which one has the lowest RMSE percentage, suggesting the most accurate 

projections of agricultural waste levels. The proposed GECMA-AWRT-RDCNNmethod attains 17.0%, 14.5%, 

and 16.5%lower RootMean Squared Error estimated to the existing method such as PGHGA-LSTM, PAEM-

ARIMA and EP-GHGE-SVM models correspondingly. 

 
Figure 6: Performance Analyses of Mean Bias Error 

Figure 6   illustrates performance analyses of Mean Bias Error.The MBE graph typically depicts MBE values 

over time or various data points pertaining to agricultural waste amounts. Each data point on the graph reflects 

the model's average bias or propensity as compared to the actual values for a given period or observation. 

Analyzing the MBE percentages in the graph provides insight into the direction and extent of bias in the model's 

estimates of agricultural waste quantities. Positive MBE percentages imply an overestimation bias, whilst 
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negative MBE numbers indicate an underestimate bias. The proposed GECMA-AWRT-RDCNNmethod attains 

17.0%, 24.5%, and 11.5%lower Mean Bias Errorestimated to the existing method such as PGHGA-LSTM, 

PAEM-ARIMA and EP-GHGE-SVM models respectively. 

 
Figure 7: Performance Analyses of Relative Root Mean Squared Error 

Figure 7 displays performance analyses of Relative Root Mean Squared Error.A lower rRMSE suggests greater 

performance since it indicates that the forecasting model has a less relative error than the mean actual values. 

Examining the trend of rRMSE percentages over time can reveal information about the consistency of relative 

errors in the model's predictions. Fluctuations in rRMSE percentages may suggest differences in the model's 

predictive accuracy of agricultural waste quantities. Compare the rRMSE percentages of various forecasting 

models or time periods to determine which has the lowest rRMSE percentage, indicating the best accurate 

predictions relative to mean real agricultural waste levels. The proposed GECMA-AWRT-RDCNNmethod 

attains 18.0%, 13.5%, and 11.5%lower Relative Root Mean Squared Errorestimated to the existing method such 

as PGHGA-LSTM, PAEM-ARIMA and EP-GHGE-SVM models respectively. 

 
Figure 8: Performance Analyses of Determination Coefficient 

Figure 8 displays performance Analyses of Determination Coefficient.Determination Coefficient values can be 

interpreted as the percentage of variance in agricultural waste quantities that the model can explain. A larger 

percentage in the Determination Coefficient graph suggests that the model can better account for the variation in 

agricultural waste quantities. A lower percentage, on the other hand, indicates that the model may not capture all 

of the data's volatility. The proposed GECMA-AWRT-RDCNNmethod attains 26.0%, 23.5%, and 28.5%higher 

Determination Coefficientestimated to the existing method such as PGHGA-LSTM, PAEM-ARIMA and EP-

GHGE-SVM models respectively. 
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Figure 9: Performance Analysis of Mean Absolute Percentage Error 

Figure 9 displays performance analysis of Mean Absolute Percentage Error.The MAPE graph typically depicts 

MAPE values over time or various data points pertaining to agricultural waste quantities. Each data point on the 

graph reflects the percentage error between projected and actual values for a given time period or observation. A 

lower percentage in the MAPE graph indicates that the forecasting model is more accurate in estimating 

agricultural waste levels. In contrast, a higher percentage indicates a larger average error in the model's 

predictions. The proposed GECMA-AWRT-RDCNNmethod attains 16.0%, 13.5%, and 18.5%higher Mean 

Absolute Percentage Errorestimated to the existing method such as PGHGA-LSTM, PAEM-ARIMA and EP-

GHGE-SVM models respectively. 

 
Figure 10: Performance Analyses of Loss 

Figure 10 displays performance analyses of Loss.This shows that using RDCNN to optimize the loss function 

improves performance in forecasting losses related with agricultural waste gas emissions, demonstrating its 

effectiveness in decreasing environmental impact through more accurate modeling and prediction. The proposed 

GECMA-AWRT-RDCNNmethod attains 12.0%, 13.5%, and 14.5%lower loss estimated to the existing method 

such as PGHGA-LSTM, PAEM-ARIMA and EP-GHGE-SVM models respectively. 

C. Discussion 

Gas emission characterization and monitoring algorithm in the process of agricultural waste resource treatment 

(GECMA-AWRT-RDCNN)is developed in this research.Countries and metropolitan regions are very concerned 

about agricultural waste. If not treated correctly, it has a negative impact on both humans and the environment. 

Recycling and recovering energy from agricultural waste is thought to be a practical way to increase the amount 

of renewable energy that countries produce, minimize their negative effects on the environment, and produce 

cleaner products overall. To reduce surplus hazardous gases,  like hydrogen (H), nitrogen (N) oxygen (O), 

sodium(S) and carbon(C), improve energy efficiency, the recycling and recovery of energy from agricultural 

waste should be precisely forecasted. Consequently, GECMA-AWRT-RDCNNwas created and presented in this 
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research in order to accurately forecast GY produced by energy recovery from agricultural waste. With the use 

of this model, agricultural waste processing facilities can precisely forecast the volume of gas yield that would 

be extracted from agricultural waste sources, enabling them to strategically distribute and adapt their energy 

resources. Additionally, in order to optimize GYs and prevent the release of surplus hazardous gases into the 

surrounding environment, the suggested GECMA-AWRT-RDCNN model may be taken into consideration for 

component adjustment. The derived findings showed that the suggested GECMA-AWRT-RDCNN model was 

accurate and consistent in forecasting GY produced by energy recovery from agricultural waste. By changing 

the input parameters, this model can assist the gasification process operates better (i.e., C, H, N, S, Oand Temp). 

Temp and H have the highest importance based on the inputs' importance scores. These research investigations 

suggest that by modifying the input variables with high relevance scores, the gasification performance can be 

enhanced. The proposed GECMA-AWRT-RDCNN model attains higher accuracy 99.9%comparing with 

existing methods like PGHGA-LSTM, PAEM-ARIMA and EP-GHGE-SVM methods correspondingly. 

V. CONCLUSION 

In this section, Gas emission characterization and monitoring algorithm in the process of agricultural waste 

resource treatment (GECMA-AWRT-RDCNN)is successfully implemented. The proposed GECMA-AWRT-

RDCNN approach is implemented in Python. The performance of the proposed GECMA-AWRT-RDCNN  

technique contains 28.0%, 27.5%, and 26.5% higher accuracy, 26.0%, 23.5%, and 28.5% higher Determination 

Coefficient and 12.0%, 17.5%, and 16.5% lower Mean Squared Error when analysed to the existing methods 

like PGHGA-LSTM, PAEM-ARIMA and EP-GHGE-SVM methods respectively. Future research will estimate 

farm emissions following application of the regenerative agriculture method and identify changes contributing to 

emission reduction in order to better understand how regenerative agriculture can impact climate change. 

Furthermore, for their analyses, the majority of researchers have been using field data for at least three years. 

The satellite or picture data can also be used to track greenhouse gas emissions from agriculture.  
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