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Abstract: - Spam, typically unwanted material, can manifest in various forms, including images. While numerous machine learning techniques 

excel in detecting textual spam, they often falter when it comes to identifying image-based spam. This paper introduces a novel framework 

designed specifically for identifying image spams. Images are categorized into two groups: spam images, containing undesirable material, 

and ham images, encompassing everything else. In this paper, a novel technique based on CNN and gated recurrent unit (GRU) for image 

spam detection has been proposed. Our proposed methodology hinges on the utilization of diverse pre-trained deep learning models, such as 

InceptionV3, DenseNet121 (Densely Connected Convolutional Networks 121), ResNet50 (Residual Networks), VGG16 (Visual Geometry 

Group), and MobileNetV2, to effectively filter out unwanted spam images. We evaluate the performance of our approach using different 

Dataset. Additionally, we address the challenge of limited labeled data by leveraging transfer learning and employing data augmentation 

techniques. Experimental results demonstrate the efficacy of our proposed model, achieving impressive accuracy levels while maintaining 

computational efficiency, with testing times ranging from one to two seconds for the challenge dataset.    

Keywords: Deep Learning Framework, Data Augmentation, Pre-trained Models, Transfer Learning 

1. Introduction 

In the contemporary digital landscape, the practice of sharing moments via photos and videos on social media 

platforms has experienced an unprecedented surge in popularity. However, this widespread adoption and 

utilization of social media have also attracted individuals who exploit these platforms for personal gain, often 

through the dissemination of spam, including advertising content. Consequently, there exists a critical need for the 

development of robust systems capable of detecting and filtering out such spam, thereby ensuring that users can 

access authentic and meaningful information. While previous studies in the realm of image spam detection have 

predominantly concentrated on employing traditional classification methods to filter out inappropriate content, 

recent advancements have ushered in the era of Deep Convolutional Neural Networks (DCNN). This innovative 

technique has demonstrated superior accuracy in image classification tasks, obviating the necessity for manual 

feature extraction processes. The advent of deep learning technologies in the domain of image analysis promises 

a novel approach to security applications. By harnessing the potential of CNNs, raw data inputs—such as the 

image itself—can be processed, thereby automatically extracting crucial low-level features. However, it has been 

observed that the detection accuracy of existing CNN-based image spam detection models may significantly 

degrade when confronted with new and unseen instances of image spam.Previously, image spam detection 

primarily revolved around correctly identifying objects within images, often relying on various machine learning 

algorithms and handcrafted feature extraction methods. These methods would extract features from images, which 

could be local, global, or a combination of both, followed by the application of single or ensemble machine learning 

classification algorithms based on attributes like color, shape, or texture. In the contemporary landscape, the 

paradigm shift towards deep learning has yielded remarkable results across various computer vision applications, 

including image classification, object detection, security, and image processing. Deep learning, a subset of 

machine learning, automates both feature extraction and classification tasks, eliminating the need for manual 

intervention. The proliferation of image spam, characterized by the embedding of spam text within images, poses 

a significant challenge, as it enables spammers to circumvent text-based spam filters. The term "ham" is used to 

differentiate legitimate messages from spam, highlighting the core challenge of distinguishing between genuine 
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and spam images. However, one notable drawback of employing deep learning techniques is the requisite for 

extensive datasets for training, along with significant computational resources for model refinement. Deep learning 

necessitates substantial memory capacity, particularly during the feature extraction phase, and entails considerable 

computation time, often spanning several hours or days. Moreover, deep learning algorithms mandate specialized 

hardware, such as GPUs and TPUs, which can be prohibitively expensive and inaccessible to many. Despite 

advancements in data augmentation techniques, which aim to augment datasets to enhance model performance, 

challenges persist in assembling sufficiently large and diverse datasets representative of real-world scenarios. 

While data augmentation has mitigated some of these challenges, it also engenders increased storage requirements 

and computational overhead. So, we worked on a pre-trained model with deep learning. In summary, the primary 

contributions of our work include: 

● Leveraging a Deep Learning approach for automatic feature extraction 

● Utilizing pre-trained models 

● Fine-tuning deep learning models to enhance classification accuracy 

The subsequent sections of this paper are organized as follows: Section 2 reviews related works, Section 

3 provides an overview of the dataset, Section 4 outlines our proposed methodologies, Section 5 presents 

experimental results and discussions, and finally, Section 6 concludes the paper. 

2. RELATED WORKS 

Mahmood et al.[1] ‘introduced a ‘hybrid methodology’ for image classification. Their approach utilized the Res 

Net model to extract features from images, followed by fine-tuning these features using PCA-SVM for the 

classification task. They conducted experiments on four datasets: MIT-67, MLC, Caltech-101, and Caltech-256. 

Training the model involved utilizing 30 images from each class, resulting in superior performance compared to 

alternative methodologies. 

Kataoka et al.[2] Published research on evaluating the differences between deep learning methods for object 

recognition and exploration. Their experiments show that VGGN et architecture is better than AlexNet 

architecture. Th ey also performed regression analysis by combining s ome criteria of two factories and applied 

principal co mponent analysis (PCA) to them. They used pedestria n data from Caltech101 and Daimler in the 

experimen t and achieved 91.8% accuracy.. 

Ensemble approach that merges local and deep features to classify images. They evaluated multiple pre-trained 

convolutional neural networks to extract features and compared their performance. Their approach involved 

combining features extracted from Scale-Invariant Feature Transform (SIFT) with those from various pre-trained 

neural networks. The model was trained using an SVM classifier and further enhanced with a majority voting 

scheme for image recognition. Evaluation was performed on the CIFAR- 10 dataset, resulting in an accuracy of 

91.8%.[3]’ 

Fusion method that combines the VGG19 deep learning model for extracting features with the ‘support vector 

machine (SVM)’ for classifying images. They compared various neural models, including AlexNet, VGG16, and 

VGG19, for feature extraction. These models were fine-tuned using the GHIM10K and Caltech256 datasets for 

image classification tasks. Their results revealed that the VGG19 architecture surpassed both AlexNet and VGG16. 

Evaluation was conducted based on precision, recall, and F-score, illustrating VGG19's superior performance 

across these metrics[4]’. 

Kumar V et al [5] conducted an analysis focusing on the performance variations between ‘Deep Learning (DL) 

and Classical Machine Learning (CML)’ classifiers. They explored different feature vector representations and 

proposed an ensemble approach that combines DL and CML for classification tasks. The primary objective of 

their experiment was to enhance the performance of individual models by leveraging the strengths of both DL and 

CML techniques. 
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Several ‘pre-trained Convolutional Neural Network (CNN)’ models with fine-tuning for the purpose of detecting 

and classifying invasion ‘ductal carcinoma’. The models evaluated included ‘VGG16, VGG19, ResNet50, 

DenseNet, MobileNet, and Efficient Net’. Among these models, fine-tuned VGG19 demonstrated the most 

promising results, achieving a sensitivity of 93.05% and precision of 94.46%, which surpassed the performance 

of the other models tested. The experiment encompassed approximately 90,000 images[6] 

Kumaresan et al [7]proposed a technique for ‘detecting image spam based on color features’, employing the 𝑘-

nearest neighbor (𝑘-NN) algorithm. Their approach relied on RGB and HSV histograms as features. Through their 

research, they found that a simple 𝑘-NN classifier achieved an accuracy of 0.945 in detecting image spam. 

 ‘Support Vector Machines (SVM)’ to a set of 21 image features. By employing feature selection techniques based 

on linear SVM weights, they achieved an impressive accuracy rate of 97% using a relatively small subset of 

features. Furthermore, the authors introduced a challenge dataset designed to mimic image spam, which proved to 

be significantly more challenging to detect compared to real-world image spam instances[8]. 

Chavda et al [9]performed two sets of experiments utilizing Support Vector Machines (SVM) and image 

processing techniques. They utilized a comprehensive set of 41 image features and achieved impressive accuracy 

rates of 97% and 98% on two publicly available datasets. Additionally, the authors introduced a challenge dataset, 

demonstrating that it posed an even greater difficulty in detection compared to the dataset developed in the study 

by Annadatha and Stamp (2018). 

Fusion model is used to filter spam emails. Their approach involved processing the image and text components 

separately using a Convolutional Neural Network (CNN) for images and a ‘Long Short- Term Memory’ (LSTM) 

network for text. Subsequently, they combined the resulting classification probabilities from both models to 

determine whether the email should be classified as spam or not. This fusion technique allowed for a 

comprehensive analysis of both image and text content within emails to improve spam detection accuracy[10]. 

3. Material and Methods 

This section elaborates on the datasets utilized for conducting the diverse experiments, as well as the array of deep 

learning models employed. 

3.1 Image spam datasets 

The specifics of the datasets employed in the experiment are presented in Table 1. 

                                Table 1: DATASETS USED IN THE EXPERIMENT [22] 

Sl 

No 

Dataset Name Total 

Used 

Total Non- 

Spam 

                                                       

used

  

Remark 

1 Dredze [11] 1085 1029 This dataset comprises   2551 

images classified as non-spam, along with 

3238images classified as spam, and 9502 

images sourced  from  the Spam Archive.. 

                                                         

2 Image Spam 

Hunter [12] 

926 811 This dataset contains 811images 

categorized as non- spam and 926 images 

categorized 

                                                                        

as spam.  
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3 Improved [13] 1027 811 This dataset includes 811non-spam 

images and 1027 handcrafted ‘improved

 spam 

                     images’.  

4 Challenge A 

[14] 

811 812 This dataset comprises 810 non- 

spam images and 812 handcrafted 

‘challenge   spam 

                     dataset images’.    

5 Challenge B 

[14] 

812 811 This dataset contains 811 non-spam 

images and 812 handcrafted ‘challenge

 spam 

                     dataset images’.  

3.2 Performance Measure 

To gauge the efficacy of the proposed approach, we employed various evaluation metrics, including Accuracy, 

Recall, Precision, and F1-score. False Positive (FP) signifies the number of legitimate images misclassified, False 

Negative (FN) represents the misclassified spam count, True Positive (TP) denotes the correctly classified spam 

instances, and True Negative (TN) indicates the correct classification of legitimate emails [22]. The confusion 

matrix, which defines the ‘performance of the classification algorithm’, is provided below in Table 2. 

TABLE 2. CONFUSION MATRIX [22] 

PREDICATED ACUTAL  

 SPAM HAM 

SPAM TP FN 

HAM FP TN 

4. Proposed Model 

The architecture of the proposed system is illustrated in Fig. 1. Our method is grounded in a fusion of deep learning 

features and transfer learning feature extraction algorithms. We utilized four datasets, and following augmentation 

techniques, we employed a custom CNN with GNU. However, due to excessive processing time, we found CNN 

alone insufficient. Hence, we applied transfer learning on a different dataset. After employing a pre-trained model, 

we optimized our approach by adjusting various parameters such as learning rate and batch size, and subsequently, 

we froze the top layers. Adam optimizer was employed in constructing our model. The proposed model works in 

two phases: feature extraction and image classification. The first phase CNN and pre-trained model task is 

performed. During the second phase, we evaluate the performance of the model by applying various machine 

learning classification algorithms, namely ‘LR’ (Logistic Regression), ‘RF’ (Random Forest), ‘DT’ (Decision 

Tree), KNN (K-Nearest Neighbors), ‘GNB’ (Gaussian Naive Bayes), ‘AB’ (AdaBoost), ‘LSVM’ (Linear Support 

Vector Machine), and ‘RSVM’ (Radial Support Vector Machine). In this process, we utilize a standard data 

partitioning strategy, allocating ‘70%’ of the images from each class for training purposes and reserving the 

remaining ‘30%’ for testing the model's recognition capabilities. Subsequently, we predict the performance of the 

model on the test dataset. 
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FIGURE 1ARCHITECTURE OF THE PROPOSED SYSTEM 

4.1 . Custom CNN Architecture 

In this section, we present the methodology employed for the design and evaluation of a ‘custom Convolutional 

Neural Network (CNN) architecture along with GRU’ for image classification, specifically tailored for spam 

detection. The entire process involves data preparation, model architecture design, training, evaluation, and 

subsequent transfer learning for additional analysis. 

4.2  Model Architecture 

The “Convolutional Neural Network (CNN)” architectures employed in this research follow a sequential design, 

incorporating convolutional and max-pooling layers for feature extraction and spatial down sampling [25]. The 

first CNN model consists of four convolutional layers with increasing filter sizes (32, 64, 128, and 256), each 

followed by ReLU activation and max-pooling operations [23]. Flattening is performed to convert the output into 

a one- dimensional array, followed by two dense layers (256 and 128 neurons) with ReLU activation and dropout 

regularization to prevent overfitting. The final layer uses a sigmoid activation function for binary classification. 

The second model shares a similar architecture but integrates class weights during training to address potential 

imbalances in the dataset. The models are characterized by a hierarchical arrangement of convolutional operations, 

enabling them to automatically learn relevant features from input images. This architecture demonstrates the power 

of deep learning in automatically extracting hierarchical representations, contributing to the models' effectiveness 

in discriminating between spam and non-spam images. Fig 2 shows the CNN architecture. 



J. Electrical Systems 20-7s (2024): 2586-2603 

2591 

 

                                      FIGURE 2 CUSTOM CNN WITH GRU ARCHITECTURE 

        4.3 Model Training 

The models are trained on a labeled dataset using the Adam optimizer with a binary cross-entropy loss function. 

The training process spans 50 epochs, and during this period, callbacks such as ModelCheckpoint and 

ReduceLROnPlateau are implemented to save the best-performing model and dynamically adjust the learning rates 

based on validation performance. 

        4.4 Model Evaluation 

After training the models, we perform a thorough evaluation on a test dataset. We calculate various performance 

metrics such as accuracy, precision, recall, and F1-score to assess the models' efficacy in distinguishing between 

spam and non-spam images. Furthermore, we generate confusion matrices and classification reports to offer a 

comprehensive breakdown of true positive, true negative, false positive, and false negative predictions, thereby 

providing detailed insights into the models' classification performance.. 

       4.5Classifiers and Ensemble Models. 

In the paper, we examined the outcomes of image classification  employing various renowned 

classification techniques, including Logistic Regression (LR), Random Forest (RF), Decision Trees (DT), k-

Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), AdaBoost (AB), Linear Support Vector Machine 

(LSVM), and Radial Support Vector Machine (RSVM) [24]. Each of these methods has its own strengths

  and weaknesses, with some emphasizing speed while others prioritize accuracy. This section 

outlines the diverse set of classifiers and ensemble models employed in the spam detection research. Each model 

is discussed with its underlying theory, application, and relevant formulas, followed by a comprehensive 

presentation of the obtained results. Fig 3-18 shows the confusion matrix of these classifiers and table 3 show the 

performance of these classifiers. 

4.5.1 Logistic Regression (LR) 

Logistic Regression, a linear model primarily utilized for binary classification tasks, estimates the probability that 

an instance belongs to a specific class. It achieves this by employing the logistic function, which maps the output 

to a value between 0 and 1, representing the probability of belonging to the positive class. 

4.5.2 Random Forest(RF) 
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The Random Forest classifier was trained using features extracted from the CNN models, demonstrating accuracy 

rates of 86.44% and 86.50% in cost-sensitive and cost-insensitive scenarios, respectively. The model's ability to 

capture complex relationships in the feature space contributed to its competitive performance. 

          4.5.3Decision Tree (DT) 

Employing Decision Tree classification, this model exhibited accuracies of 86.26% and 86.24% in cost- sensitive 

and cost-insensitive scenarios, respectively. Decision Trees provided insights into feature importance, contributing 

to the overall interpretability of the classification process. 

          4.5.4 K-Nearest Neighbors (KNN) 

KNN classification, leveraging the extracted features, yielded accuracy rates of 86.46% and 86.40% in cost- 

sensitive and cost-insensitive contexts. The model's reliance on proximity in feature space enabled it to discern 

patterns and achieve competitive results. 

           4.5.5Gaussian Naive Bayes (GNB) 

The Gaussian Naive Bayes classifier, applied to the extracted features, achieved accuracies of 86.26% and 86.46% 

in cost-sensitive and cost-insensitive scenarios, respectively. Its probabilistic approach proved effective in 

handling the inherent uncertainty in spam detection. 

           4.5.6AdaBoost (AB) 

The AdaBoost classifier, incorporating features from both CNN models, demonstrated robust performance with 

accuracies of 86.46% and 86.50% in cost- sensitive and cost-insensitive scenarios. AdaBoost's ensemble learning 

strategy effectively combined weak learners to enhance overall classification accuracy. 

         4.5.7Linear Support Vector Machine (LSVM) 

A Linear Support Vector Machine classifier, trained on features from CNNs, achieved accuracies of 86.80% and 

86.44% in cost-sensitive and cost- insensitive scenarios. Its ability to create optimal hyperplanes contributed to its 

discriminative power in spam detection. 

          4.5.8Radial Support Vector Machine (RSVM) Model 

The Radial Support Vector Machine, deployed with features from CNNs, showcased accuracies of 86.50% and 

86.44% in cost-sensitive and cost-insensitive contexts. Its non-linear decision boundaries proved beneficial in 

capturing complex relationships within the feature space. 

 

                       FIG 3 -4 CONFUSION MATRIX OF LOGISTIC REGRESSION (LR) 
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FIGURE 5-6 CONFUSION MATRIX OF RANDOM FOREST 

 

 

FIG 7-8 CONFUSION MATRIX OF DT  

 

FIGURE 9-10 CONFUSION MATRIX OF KNN 

 

                                                                            FIGURE 11-12 CONFUSION MATRIX OF GNB 
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FIGURE 13-14 CONFUSION MATRIX OF AB 

 

FIG 15-16 CONFUSION MATRIX OF LSVM 

 

   FIGURE 17-18 CONFUSION MATRIX OF RSVM 

TABLE 3: PERFORMANCE OF CLASSIFIERS 

Model Scenario Accuracy Precision Recall F1- 

Score 

CNN Cost- 

Insensitive 

0.9639 0.9459 0.9483 0.9502 

CNN Cost- 

Sensitive 

0.9616 0.9482 0.9451 0.9646 

LR Cost- 

Insensitive 

0.9639 0.9639 0.9639 0.9639 

LR Cost- 

Sensitive 

0.9605 0.9604 0.9605 0.9604 

RF Cost- 

Insensitive 

0.9442 0.9441 0.9442 0.9441 

RF Cost- 

Sensitive 

0.9535 0.9534 0.9535 0.9535 

DT Cost- 

Insensitive 

0.9442 0.9441 0.9442 0.9441 
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DT Cost- 

Sensitive 

0.9535 0.9534 0.9535 0.9535 

KNN Cost- 

Insensitive 

0.9605 0.9605 0.9605 0.9603 

KNN Cost- 

Sensitive 

0.9581 0.9581 0.9581 0.9581 

GNB Cost- 

Insensitive 

0.9639 0.964 0.9639 0.964 

GNB Cost- 

Sensitive 

0.9616 0.9616 0.9616 0.9616 

AB Cost- 

Insensitive 

0.9628 0.9626 0.9628 0.9626 

AB Cost- 

Sensitive 

0.9628 0.9628 0.9628 0.9628 

LSVM Cost- 

Insensitive 

0.9651 0.9651 0.9651 0.9651 

LSVM Cost- 

Sensitive 

0.9628 0.9628 0.9628 0.9628 

RSVM Cost- 

Insensitive 

0.9639 0.9639 0.9639 0.9639 

RSVM Cost- 

      Sensitive

  

0.9628 0.9628 0.9628 0.9628 

4.6 Fine Tuning Pretrained Models 

Transfer learning has proven to be a valuable method in machine learning, wherein a pretrained CNN model is 

repurposed to leverage its learned weights as initialization for a novel ‘CNN model’ tailored to a different task. 

There are two main approaches to employing ‘transfer learning’ [25]:Utilizing the pretrained model as a ‘feature 

extractor’ and incorporating a new classifier for the task at hand [26].Employing the pretrained model for fine-

tuning (FT), which involves adjusting the parameters of both the new fully connected (FC) layers of the classifier 

and specific convolutional layers of the CNN through selective unfreezing. 

         4.6.1 VGG16 Fine-Tuning for Spam Classification 

Network Configuration and Pre-training: Employing the VGG16 architecture, a convolutional neural network pre-

trained on ImageNet, this methodology initiates with configuring the model to accept input images of size 

(224,224,3). The initial layers are retained with frozen weights to preserve generic image features, while 

subsequent layers undergo fine-tuning to adapt to the specific task. This approach capitalizes on the hierarchical 

feature learning capabilities encoded in ImageNet pre-trained weights. 

Fine-Tuning Layers: The layers of VGG16 are partitioned into two sets, with the first 15 layers frozen and the rest 

set as trainable. This selective fine-tuning strategy enables the model to specialize in spam and ham image 

discrimination while retaining previously learned lower-level features. 

Model Augmentation: The architecture extends beyond the pre-trained layers, integrating a Flattening layer, a 

Dense layer with rectified linear unit (ReLU) activation, a Dropout layer for regularization, and a final Dense layer 

with sigmoid activation for binary classification. 

Compilation and Optimization: The model is compiled using binary cross-entropy loss and Stochastic Gradient 

Descent (SGD) optimizer with a learning rate of 1e-4 and momentum of 0.9. This configuration facilitates effective 

backpropagation for training the fine-tuned layers. 

Evaluation Metrics: The performance of the fine-tuned VGG16 model is comprehensively assessed using various 

metrics such as accuracy, precision, recall, F1 score, confusion matrix, and a detailed classification report. The 
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achieved results demonstrate the efficacy of the proposed methodology, with an accuracy of 96.98%, precision of 

97.33%, recall of 94.19%, and an F1 score of 95.74% on a dataset comprising 860 images. Fig 19 show the VGG16 

Fine-Tuning for Spam Classification. 

 

FIGURE 19: VGG16 FINE-TUNING FOR SPAM CLASSIFICATION 

       4.6.2 VGG19 Fine-Tuning for Image Classification 

Network Configuration and Pre-training: Leveraging the VGG19 architecture pre-trained on the ImageNet dataset, 

this methodology focuses on image classification. The model is initialized to accept input images of size 

(224,224,3), and the initial layers are kept frozen to retain general image features learned from ImageNet. This 

approach harnesses the hierarchical feature representations captured in the pre-trained weights. 

Fine-Tuning Strategy: The VGG19 model is modified by introducing additional layers for specialized 

classification. The initial layers of VGG19 are set as non-trainable, and a custom classifier is appended, comprising 

a Flattening layer, two Dense layers with rectified linear unit (ReLU) activation, Batch Normalization for 

regularization, Dropout layers for preventing overfitting, and a final Dense layer with softmax activation for binary 

classification. 

Compilation and Optimization: The model is compiled using sparse categorical cross-entropy loss and Stochastic 

Gradient Descent (SGD) optimizer with a learning rate of 1e-4 and momentum of 0.9. This facilitates efficient 

optimization during the fine-tuning process. 

Evaluation Metrics: A comprehensive evaluation is conducted using metrics such as accuracy, precision, recall, 

F1 score, confusion matrix, and a detailed classification report. The achieved results demonstrate the efficacy of 

the proposed methodology, with an accuracy of 97.44%, precision of 97.06%, recall of 95.81%, and an F1 score 

of 96.43% on a dataset comprising 860 images. The confusion matrix further highlights the model's ability to 

discriminate between the two classes, yielding promising outcomes for image classification tasks. Figure 20 show 

the VGG19 Fine-Tuning for Image Classification. 

        4.6.3 MobileNetV2 Fine-Tuning with Enhanced Convolutional Layers 

Network Architecture and Pre-training: This methodology leverages the MobileNetV2 architecture pre-trained on 

ImageNet, emphasizing image classification tasks. The initial layers of the model are frozen to retain generic 

features learned from ImageNet. The base model is loaded with weights from 'imagenet' and configured to accept 

input images of size (224,224,3). 

Selective Fine-Tuning: Fine-tuning is strategically applied to the MobileNetV2 model by freezing layers until the 

'block_16_expand' layer, enabling the retention of learned features while allowing further adaptation to the target 

task[28]. 

Enhanced Convolutional Layers: Additional convolutional layers are introduced to the model, including a layer 
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with 256 filters and a (3,3) kernel, followed by max-pooling. Optionally, if the output shape permits, another 

convolutional layer with 512 filters and max-pooling is appended. These enhancements aim to capture and amplify 

discriminative features relevant to the specific image classification requirements. 

Global Average Pooling and Regularization: The model incorporates global average pooling for effective feature 

summarization. Dropout regularization with a rate of 0.5 is applied to mitigate overfitting during training. 

Binary Classification Head: A dense layer with a sigmoid activation function serves as the final layer for binary 

classification. The model is compiled using binary cross-entropy loss and an Adam optimizer with a reduced 

learning rate of 0.00001, optimizing for efficient adaptation to the target task. 

Comprehensive Evaluation: The methodology is rigorously evaluated using key metrics such as accuracy, 

precision, recall, F1 score, confusion matrix, and a detailed classification report. The achieved results demonstrate 

the effectiveness of the proposed approach, with an accuracy of 97.67%, precision of 97.70%, recall of 95.81%, 

and an F1 score of 96.74% on a dataset comprising 860 images. The robustness and discriminatory power of the 

model are evident in the detailed classification report and confusion matrix, affirming its suitability for image 

classification tasks. Figure 21 show the MobileNetV2 Fine-Tuning with Enhanced Convolutional Layers. 

4.6.4 Xception Fine-Tuning with Global Average Pooling 

Architectural Foundation and Pre-training: Employing the Xception model, initially pre-trained on the ImageNet 

dataset, this methodology focuses on feature extraction and classification for image-based tasks. The Xception 

architecture, known for its depth and efficiency, is loaded with 'imagenet' weights, and the first layers are frozen 

to retain foundational features. 

Strategic Fine-Tuning: The fine-tuning strategy involves selectively freezing the majority of the initial layers, 

leaving the last few layers trainable for adaptation to the specific classification task. This selective fine-tuning 

ensures the preservation of high- level features while allowing model specialization. 

Model Construction for Classification: A new sequential model is constructed by adding the pre- trained Xception 

base model, followed by global average pooling for effective feature summarization. Additional layers, including 

a dense layer with 512 units and ReLU activation, a dropout layer with a rate of 0.5 for regularization, and a final 

dense layer with a sigmoid activation for binary classification, are appended. 

Optimization and Training Configuration: The model is compiled using stochastic gradient descent (SGD) as the 

optimizer with a learning rate of 1e-4 and momentum of 0.9. The binary cross-entropy loss function is employed, 

and accuracy is chosen as the evaluation metric. This configuration aims to strike a balance between efficient 

convergence and fine- grained learning[30]. 

Comprehensive Evaluation: Evaluation metrics such as accuracy, precision, recall, F1 score, confusion matrix, 

and a detailed classification report are employed to assess the model's performance. The results demonstrate the 

efficacy of the approach, achieving an accuracy of 98.37%, precision of 99.33%, recall of 96.13%, and an F1 score 

of 97.70% on a dataset comprising 860 images. The model's proficiency in distinguishing between classes is further 

elucidated through the detailed classification report and confusion matrix, reinforcing its suitability for image 

classification tasks. Figure 22 show the Xception Fine-Tuning with Global Average Pooling. 

 4.6.5 ResNet50 with Fine-Tuning and Custom Classification Layers 

Architectural Foundation and Pre-training: Leveraging the powerful ResNet50 model pre-trained on ImageNet, 

this methodology employs a hierarchical feature extraction approach. The ResNet50 architecture, known for its 

residual connections, is initially loaded with 'imagenet' weights, allowing the model to capture intricate 

hierarchical features[27].Strategic Fine-Tuning: To adapt the pre-trained ResNet50 to the specific classification 

task, a strategic fine-tuning approach is employed. The first layers, except for the last five, are frozen to preserve 

low-level features, while the remaining layers are unfrozen for specialized learning. This dual-phase fine-tuning 

strikes a balance between feature retention and task- specific adaptation.Custom Classification Layers: Custom 

layers are added atop the pre-trained ResNet50 architecture to tailor it for binary classification. These include a 

flattening layer, a densely connected layer with 512 units and ReLU activation for feature transformation, a dropout 



J. Electrical Systems 20-7s (2024): 2586-2603 

2598 

 

layer with a rate of 0.5 for regularization, and a final dense layer with a sigmoid activation for binary 

classification[29]. 

Optimization and Training Configuration: The model is compiled using the Adam optimizer with a reduced 

learning rate of 1e-5 to facilitate nuanced learning during fine-tuning. The binary cross-entropy loss function is 

utilized, and accuracy is chosen as the evaluation metric. 

Comprehensive Evaluation: The model's performance is thoroughly assessed using key metrics such as accuracy, 

precision, recall, F1 score, confusion matrix, and a detailed classification report. Achieving an accuracy of 96.05%, 

precision of 94.52%, recall of 94.52%, and an F1 score of 94.52% on an 860-image dataset, this methodology 

demonstrates its effectiveness in binary image classification tasks. The detailed evaluation metrics provide insights 

into the model's ability to discern between classes, reinforcing its suitability for diverse image classification 

applications. Figure 23 show the ResNet50 with Fine- Tuning and Custom Classification Layers. 

         4.6.6 InceptionV3 with Feature Extraction and Custom Classification Layers 

Architectural Foundation and Pre-training: Employing the InceptionV3 architecture, this methodology taps into 

the richness of hierarchical feature extraction. The InceptionV3 model, pre-trained on ImageNet, serves as a potent 

feature extractor, capturing intricate patterns in the input images.Comprehensive Evaluation: A thorough 

evaluation of the model is conducted, revealing its prowess with an accuracy of 97.67%, precision of 98.33%, 

recall of 95.16%, and an F1 score of 96.72% on an 860-image dataset. The confusion matrix and detailed 

classification report provide insights into the model's ability to discriminate between classes, showcasing its 

efficacy in binary image classification tasks. The high precision and recall values underscore the model's suitability 

for applications demanding discerning classification capabilities. Figure 24 show the InceptionV3 with Feature 

Extraction and Custom Classification Layers. 

5. EXPERIMENT AND RESULTS 

In this part, we elaborate on the shown experiments, detailing the implementation specifics across different 

datasets. This encompasses explaining the experimental framework utilized, along with presenting the validation 

and test results obtained. Image preprocessing techniques were executed in ‘Python 3.6’ using ‘OpenCV’ as the 

primary image processing library. The experimentation was carried out on an Intel(R) Core(TM) i3-7020U CPU 

@ 2.30GHz with 32 GB of RAM. Keras facilitated the implementation of the transfer learning model. ‘Our 

proposed CNN model’ achieved an accuracy close to 98% on the enhanced dataset. The performance of PRE-

TRAINED CNN ARCHITECTURES is shown in tables 5-9. The accuracy attained by our proposed model 

significantly exceeds that achieved by the respective authors using the ‘LSVM classifier’, as depicted in Table 3. 

 

 FIGURE 20-21 VGG16 FINE-TUNING FOR SPAM CLASSIFICATION 

                                              TABLE 4. NETWORK HYPER-PARAMETERS 

‘Batch-Size’ ‘Learning 

Rate’ 

‘No.Epoc ’ ‘Optimizer’ ‘Loss- 

Function’ 

32 1* 

×10-3 

50 Adam, SGD binary_crosse 

ntropy 
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TABLE 5 : PERFORMANCE OF PRE-TRAINED “CNN ARCHITECTURES” WITH ISH DATASET 

“Model” ‘Accuracy 

%’ 

‘Precision 

%’ 

‘Recall 

%’ 

F1- 

Score’ 

%’ 

VGG16 96.98 97.33 94.19 95.74 

VGG19 97.44 97.06 95.81 96.43 

MobileNet 

V2 

96.98 97.33 94.19 95.74 

Resnet50 98.37 99.33 96.13 97.70 

Xception 96.05 94.52 94.52 94.52 

TABLE 6 : PERFORMANCE OF PRE-TRAINED “CNN ARCHITECTURES WITH IMPROVED DATASET. 

“Model” ‘Accuracy 

%’ 

‘Precision 

%’ 

‘Recall 

%’ 

F1- 

Score’ 

%’ 

VGG16 94.98 96.33 95.19 95.74 

VGG19 93.44 97.06 94.81 94.43 

MobileNet 

V2 

94.98 97.33 94.19 96.74 

Resnet50 97.37 98.33 97.17 97.77 

Xception 96.05 94.52 97.10 93.52 

InceptionV 3 93.67 96.33 93.16 97.72 

TABLE 7 : PERFORMANCE OF PRE-TRAINED “CNN ARCHITECTURES WITH CHALLENGE-A 

DATASET 

“Model” ‘Accuracy 

%’ 

‘Precision 

%’ 

‘Recall 

%’ 

F1- 

Score’ 

%’ 

VGG16 97.98 97.10 93.19 95.74 

VGG19 97.44 93.16 95.81 96.43 

MobileNet 

V2 

94.98 97.33 94.19 95.74 

Resnet50 97.38 99.33 97.17 97.70 

Xception 96.05 94.52 97.10 94.52 

InceptionV 3 97.20 98.33 93.16 96.72 

TABLE 8 : PERFORMANCE OF PRE-TRAINED “CNN ARCHITECTURES WITH DREDZE DATASET. 

“Model” ‘Accuracy 

%’ 

‘Precision 

%’ 

‘Recall 

%’ 

F1- 

Score’ 

%’ 

VGG16 97.98 97.33 94.19 94.74 

VGG19 92.44 97.06 95.81 96.43 

MobileNet 

V2 

96.98 97.33 94.19 96.74 

Resnet50 94.37 99.33 96.13 97.70 

Xception 96.05 94.52 94.52 93.52 

InceptionV 3 97.67 98.33 95.16 94.72 
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TABLE 9 : PERFORMANCE OF PRE-TRAINED “CNN ARCHITECTURES WITH CHALLENGE-B 

DATASET 

“Model” ‘Accuracy 

%’ 

‘Precision 

%’ 

‘Recall 

%’ 

F1- 

Score’ 

%’ 

VGG16 96.98 97.33 94.19 95.74 

VGG19 94.44 93.06 95.81 96.43 

MobileNet 

V2 

97.98 94.33 94.19 98.69 

Resnet50 98.37 94.78 95.13 98.70 

Xception 97.05 94.52 94.52 94.52 

InceptionV 3 90.67 98.33 95.17 96.72 

CONCLUSIONS 

In this paper, we present a novel framework leveraging multiple “deep learning models”called as combination of 

convolutional neural networks,gated recurrent units(GRU) (including InceptionV3, DenseNet121, ResNet50, 

VGG16, VGG19, and MobileNetV2) for the categorization of spam/ham images. Our objective is to enhance 

accuracy while minimizing computational time. We explore various classification methods, including LR, RF, 

DT, KNN, GNB, AB, LSVM, and RSVM. Our investigation demonstrates that the performance of the classifiers 

is enhanced with the use of data augmentation, as evidenced by the obtained results.Among the models tested, the 

obtained results reveal that the ResNet50 model yields the best performance, achieving an accuracy of 98.99%, 

precision of 94.78%, recall of 95%, and 98% F1Score in Challenge B Dataset as show in figure 22-26. Our 

experiments confirm the superiority of our proposed method over those of other researchers as shown in table 10 

Additionally, the paper addresses various challenges encountered in the image classification task.In future research 

endeavors, our intention is to extend the application of our algorithm to additional image datasets, facilitating a 

comprehensive statistical analysis of its performance. 

 

FIGURE 22 PERFORMANCE OF PRE-TRAINED                        FIGURE 23 PERFORMANCE OF PRE-

TRAINED  

WITH IMPROVED DATASET                                                               WITH ISH DATASET    

 

 . 

https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
https://www.sciencedirect.com/topics/engineering/recurrent
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FIGURE 24 PERFORMANCE OF PRE- TRAINED       FIGURE 25 PERFORMANCE OF PRE-TRAINED  

WITH CHALLENGE-A DATASET.                                  WITH DREDZE DATASET 

. 

 

FIGURE 26 PERFORMANCE OF PRE-TRAINED WITH   CHALLENGE-B DATASET 

           TABLE 10 EVALUATION OF THE EFFECTIVENESS OF STATE-OF-THE-ART METHODS. 

 Improv ed 

Datase 

t 

Challen ge-A 

Dataset 

Challen ge-B 

Dataset 

Dred ze 

Datas 

et 

ISH 

Datas et 

Proposed 0.9737 0.9738 0.9837 0.943 0.983 

Model    7 7 

A.Annadatha 

et al[8] 

70%    97.00 

% 

Aneri. et 

al[14] 

 69.32% 69.32% 98.%  

Sriram. S et 

al [15] 

97.0%  97.30 

% 

99.80 

% 

Aaisha et    96.00 

al[16] % 

Dredze et al., 

2007[17] 

  97%  

Mehta et al.,    80% 
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