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Abstract: - Federated Learning (FL) presents a novel approach within the domain of Machine Learning (ML)—enabling the training of ML 

models in a distributed manner. This paradigmatic shift ensures the preservation of user privacy by conducting the training process at the 

edge, where data remains localized on individual devices. This stands in contrast to the conventional centralized paradigm—where users 

transmit data to a central server for processing. The FL framework operates within a more heterogeneous environment characterized by 

diverse data distributions across clients, a departure from the engineer-analyzed datasets typical of centralized paradigms. Whereas, 

evaluation of FL models typically relies on statistical techniques such as accuracy, recall, precision, log loss, and the confusion matrix, 

alongside visualization methods. While these techniques provide an overview of the model's performance and data utilization—they may 

lack granularity when comparing models with disparate characteristics. However, the SQUARES technique, offers a more nuanced 

evaluation of model performance at the instance level. This approach facilitates the examination of data biases, outlier detection, and model 

behavior during training on individual samples. Therefore, this study presents the development and evaluation of an FL image classification 

model across various scenarios—utilizing the SQUARES prototype. In addressing these more intricate scenarios, we aim to augment 

traditional visualizations and metrics, thereby uncovering insights and nuances that may elude standard evaluation methods prevalent in 

ML benchmarks. 
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1. Introduction 

Understanding how Machine Learning (ML) algorithms operate and interpret information is an extensive area of 

study and development [1]–[3]. The field of Data Visualization (DV) plays a crucial role in providing insights 

into the processing of these algorithms—particularly when they are perceived as black boxes. In recent years, 

advancements in Deep Learning (DL) algorithms have significantly enhanced performance across various tasks 

such as image classification and object detection, often achieving or surpassing human-level accuracy. While 

many data visualization techniques offer insights into the performance of trained models—they often focus on 

global aspects of accuracy and training—presenting statistical measures at a broader level, such as through chart 

lines or confusion matrices commonly found in ML libraries. However, these evaluations lack the capability to 

analyze individual data samples and their interaction with the model in a comprehensive manner. However, the 

SQUARES visualization technique, as proposed by [4], addresses this limitation by facilitating the rapid discovery 

of patterns, biases, and issues within training and test datasets. This approach evaluates a standard centralized ML 

paradigm, where a single machine processes all data for training and testing purposes. Therefore, in this study, 

we extend the evaluation of SQUARES to a Federated Learning (FL) scenario—a novel ML paradigm designed 

to uphold user data privacy by training models at the edge with local data. In our study, we implement a SQUARES 

prototype to analyze an FL environment generated using the LEAF benchmark [5], utilizing a ten-class filtered 

dataset derived from the Extended Modified National Institute of Standards and Technology (EMNIST) dataset 

[6]. Through this analysis, we engage in discussions and conduct quick evaluations facilitated by the SQUARES 

tool. We focus on enhancing the assessment of models developed through the training process and evaluate the 

diverse elements' influence within a varied environment during model testing. It enables improved monitoring of 

both client and server test accuracies, along with providing detailed insights into the performance across different 

classes and individual samples. This comprehensive approach facilitates the identification of irregular sample 

patterns, anomalies within test datasets, and enhances the scrutiny of trained models [7]–[12]. 

The structure of the study unfolds as follows: Section 2 discusses pertinent literature related to our solution, 

emphasizing data visualization. Section 3 provides background information on crucial areas and technologies 

essential for comprehending our proposed solution. Section 4 introduces our proposed solution, FED-SQUARES, 

and outlines the LEAF benchmark utilized for generating FL simulations and models. Section 5 delineates the 

conducted experiments—the experimental environment, the chosen dataset—FEMNIST, and the evaluation tasks 

undertaken. Section 6 presents the obtained results and initiates discussions based on these findings. In Section 7, 
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the conclusions drawn from this study are summarized, accompanied by future directions aimed at addressing 

existing limitations. 

2. Related Works 

The sharp rise in interest of ML techniques and recent advancements in the field have sparked numerous endeavors 

in data visualization research. These initiatives aim to comprehend the inner workings of these models and 

ascertain the optimal approach for specific tasks through fair measures and effective data visualization techniques 

such as [13], [14]. Noteworthy contributions include [15]—a versatile solution facilitating comparison among 

diverse ML models by analyzing various subsets of a shared training and test dataset. This platform provides an 

extensive array of data visualization options, such as line charts, parallel coordinates, and data histograms, 

allowing users to select visualizations tailored to their specific analyses. Another significant tool is the [16]—

designed to present a deeper view of model performance while facilitating direct inspection of data. [17] organizes 

examples based on user labels, with color coding indicating the assigned label. [18] arranges test examples above 

and training examples below, with horizontal placement determined by the model's prediction scores. [19] 

discusses that users can interact with ModelTracker to gain deeper insights and scrutinize individual examples. 

Furthermore, [4] offers an unique approach to visualizing and comparing model performance, providing instance-

level information and presenting data and model statistics. [20]—developed by the same team as ModelTracker—

offers a more straightforward interface with a similar objective. Notably, these prior studies assess their solutions 

using centralized ML models. However, in our study, we propose to adapt the SQUARES methodology, to 

evaluate the performance of FL models. This adaptation aims to extend the applicability of visualization 

techniques to the domain of FL, thus contributing to the advancement of distributed ML paradigms. 

3. Background 

3.1 Federated Learning 

This new approach to ML focuses on preserving data privacy and conducting computations at the edge. Unlike 

traditional centralized methods, where data is transferred from local devices to a central server for training—in 

FL—the model is sent to the local devices for training with their respective local data, which remains on the 

device. After training, the locally trained models are sent back to the server, where they are aggregated using 

specific functions such as FEDAVG [21]—which combines the model weights to create a new global model. This 

global model is then distributed to new selected clients. The training process involves iterative rounds or cycles 

until a stopping criterion is met. In contrast to centralized training, FL deals with heterogeneous data distributions 

among clients, meaning that each device may not have a balanced amount of data across classes. Additionally, 

the features in the data may be unrelated to the problem domain, biased, or exhibit stylistic variations based on 

factors such as origin, user, or region. Consequently, advanced data visualization techniques are crucial for 

interpreting, debugging, and evaluating FL models. 

3.2 LEAF—Federated Learning Benchmark 

To conduct our FL simulation, we employed the LEAF benchmark [5], a tool designed specifically for simulating 

FL model training and evaluation. This benchmark enables the extraction of training information and facilitates 

testing of ML models in a federated manner. The benchmark comprises various federated datasets organized into 

client formats, where each client possesses a portion of the overall dataset. During the simulation, all operations 

are centralized on a single machine. The virtual server dispatches models to virtual clients, each holding a segment 

of the dataset, and training occurs locally on each client. Furthermore, the LEAF benchmark offers a range of ML 

models for evaluation purposes. It provides flexibility for structural modifications, allowing researchers to explore 

new scenarios and techniques. Additionally, the benchmark generates comprehensive data on test/train accuracy 

and loss metrics between rounds for individual clients and the entire framework. Moreover, it offers insights into 

processing consumption across clients and datasets. While the benchmark includes visualizations, it lacks detailed 

instance-level and score-level data, limiting the depth of data inspection during testing and training. 

3.3 SQUARES 

The SQUARES [4] tool is structured into three primary visualization sections, as depicted in Fig. 1. Positioned at 

the top, there is a series of horizontal histograms corresponding to each class within the model. Within these 

histograms, the bars to the left of each class's vertical axis represent the proportion of false negatives, while the 

slashed bars to the right denote false positives, and the solid-colored bars signify true positives. Vertically, each 

bar's placement indicates the proportion of samples classified within specific score ranges, aligned with the left 

axis, portraying the model's prediction scores. Above each class axis, a miniature chart line displays all score 

curves derived from positive cases, using parallel coordinates. The central segment of the interface incorporates 

a bar containing information about the evaluated model, encompassing accuracy, precision, recall, false 

positives/negatives, true positive rates, and the number of classes, alongside dataset statistics such as the number 

of presented samples. Moreover, the tool facilitates grouping samples within the parallel coordinate chart using 

stacks/bars (for general grouping), strips (for samples with a certain level of similarity), or squares (offering a 

more detailed granularity, where each square denotes a sample). At the interface's lower section, a table presents 

detailed information regarding each tested sample, including image/feature visualization, prediction, ground truth, 

correctness result, and score prediction for each sample class. Users can select examples within the table, 
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prompting the system to plot corresponding score lines on the parallel coordinate chart for each class inferred by 

the model. Additionally, the tool allows users to choose between stack/bar, strip, or square modes at the top chart 

and highlights corresponding examples in the table accordingly, while plotting the corresponding score lines on 

the chart. In the cited research, a distinct environment was utilized to assess two different ML techniques. The 

evaluation involved a comparative analysis between the proposed visualization method and the consolidated 

confusion matrix across various tasks conducted with multiple subjects. The tasks were designed to measure both 

the speed of analysis and the ease of interpretation regarding the model's responses and comparisons. The findings 

reveal that the proposed SQUARES method outperforms the conventional approach in experiments involving user 

interactions. 

 
Fig. 1. Original SQUARES interface, showing the results of an FL model analysis for a test sample example 

4. Materials and Methods 

The FED-SQUARES prototype—as previously indicated—is grounded in the SQUARES visualization, which is 

a proprietary solution. Our development process for this prototype involved the utilization of various tools. 

Specifically, we employed D3 for generating charts, Tabulator for constructing tables, and a combination of 

Javascript, CSS, and HTML. The primary objective of this prototype was to facilitate the comprehension of the 

model at an individual level. To achieve this, we focused on adapting certain aspects and features of the original 

tool to suit a FL scenario. These adapted visualizations offer straightforward insights while enabling interactive 

comparisons between trained models at an instance level. Through these visualizations, users can examine 

prediction scores for each class, identify mislabelled or corrupted samples, assess model bias, and ascertain the 

certainty/accuracy levels of the model for each class. Furthermore, users can compare models based on overall 

statistics and class score inference. In replicating the SQUARES solution for our purposes, we retained key 

elements such as the top parallel coordinate and horizontal stacked histogram chart. These charts utilize a 

bar/stacks pattern to depict the proportions of samples within each score bin and their respective class axes. 

Additionally, essential model information, including the number of classes, accuracy, dataset details, and sample 

visualizations, is prominently displayed at the top of the interface. The interface design strategically situates the 

parallel coordinate chart and stacked histogram bars in the middle section, where they illustrate the proportions 

and scores of false positives/negatives and true positives across all tested samples. At the bottom of the interface, 

a table presents classification and data details for each sample, retrieved by individual clients and used during 

testing. Each field within the table is detailed as follows: 

1. Client: Denotes the source client of the sample data. 

2. Round: Optionally indicates the number of training rounds completed before sample testing. 

3. Hierarchy: Represents a parameter concerning client hierarchy, utilized in the simulation tool LEAF 

(optional). 

4. Num samples: Refers to the quantity of samples obtained from the client and used for testing. 

5. Set: Specifies the set name utilized for client evaluation, typically categorized as test, train, or eval. 

6. Features: Points to the pathway of raw features employed for testing within the simulation, such as an 

image path. 

7. Accuracy: Reflects the overall accuracy achieved for the evaluated samples originating from the 

respective client. 

8. Loss: Illustrates the overall test loss incurred for the evaluated samples from the specific client. 

9. Ground truth: Indicates the correct classification label for the particular sample. 

10. Prediction: Represents the class predicted by the federated model for the specific sample. 

11. Cn: Signifies the prediction score assigned by the federated model to class 'n' for the specific sample, 

where 'n' ranges from 0 to the maximum number of supported classes by the model. 
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The table enables sorting of rows based on each column header. Additionally, a parallel coordinate chart is 

provided, showcasing a line with a color corresponding to the predicted class. This visualization aids in evaluating 

any model confusion in specific examples. Moreover, the image or feature under examination is displayed for 

inspection in the top left corner of the screen, facilitating visual inspection of the sample and enhancing analysis 

capabilities. 

5. Experimental Analysis 

To assess our proposed approach—we conducted experiments utilizing the LEAF benchmark tool—employing a 

Convolution Neural Network (CNN) integrated into the framework [22]–[28]. The benchmark, while 

comprehensive, lacked the functionality to retain output layer information alongside test scores. Hence, we 

modified the benchmark to include this crucial data, ensuring it is saved in a CSV format along with other pertinent 

information outlined in the previous sections. Additionally, for enhanced compatibility, we converted the CSV 

file to JSON format, facilitating seamless integration with the table component. The LEAF benchmark tool 

provides predefined scenarios for experimentation, encompassing factors such as the total number of clients and 

dataset formats. However, it lacked flexibility in defining the number of classes, prompting us to develop a filter 

mechanism to adjust class selection and adapt the output layer size accordingly. For our experiments, we selected 

the FEMNIST dataset, derived from EMNIST [6], tailored for FL evaluations. This dataset comprises 805263 

samples distributed among 3,550 users, encompassing 62 classes representing numeric digits and alphabetical 

characters. To expedite evaluation, we filtered the dataset to include only 10% of clients, each representing 10 

classes solely comprising numeric digits. Thus, our filtered dataset comprised 350 clients, and the test set 

comprised 4056 images, representing 10% of each local dataset from the selected clients. It's noteworthy that 

dataset distribution among clients was imbalanced, with some clients lacking examples of certain classes. The 

experiments were conducted on an HP Z840 workstation equipped with an Intel Xeon E5-2609 processor, 32 GB 

of RAM, and an NVIDIA RTX 2080 GPU. We executed four training runs using the standard LEAF CNN 

architecture, with modifications to the output layer to accommodate ten classes. The training parameters included 

a learning rate of 0.001, batch size of 10, and one local epoch for all executions. In the initial three executions, 

the model underwent training for 500, 1000, and 3000 rounds, respectively. Each round involved selecting two 

clients with consistent random seeds to ensure reproducibility. This enabled us to monitor the model's evolution, 

observing class confusion and prediction scores certainty across rounds. Notably, the fourth execution mirrored 

the second one in terms of the number of rounds (1000), albeit with a different random seed, resulting in varied 

client selection sequences due to dataset imbalances. We anticipate observing an increase in model accuracy with 

additional training rounds, facilitating the identification of outliers and mislabeled examples. Furthermore, the 

fourth execution will enable a comparative analysis of models with similar accuracies, providing insights not 

attainable through conventional methods such as confusion matrices in centralized environments. 

6. Result Analysis 

The expected scenario is shown on Fig. 2, where the interface of FED-SQUARES is displayed. The training with 

500 rounds achieves 48% of accuracy, presenting in the chart a low level of certainty in the prediction with a 

maximum score of 0.3 for some samples with a high rate of false positives, represented by the grey bars at the 

right side of the axis and false negatives, and small colored bars that represent true positives at the right. The 

results of the three first executions increasing the number of rounds can be seen there. In certain tasks, the model's 

41% accuracy can be justified without a direct score visualization; nonetheless, it is much simpler to recognize 

the poor quality of the model while examining the score prediction. When 1000 rounds are executed, the overall 

accuracy rises to 79%, the score prediction distribution widens, and responses are almost 100% certain. Similar 

to the previously mentioned model, this one may satisfy an engineer or customer by merely searching for the 

confusion matrix or overall accuracy at this level of accuracy.  Looking at the ratings, we do observe a significant 

amount of false positives in class five and false negatives in class eight. Using this model will be risky if these 

classes are essential to the goal. One could claim that this situation can be examined using a confusion matrix. 

The FED-SQUARE visualization may point to an issue with the model's score calculation or a high intra-class 

similarity in this scenario, where the model may produce low scores for each prediction and a high accuracy that 

is not visible with the confusion matrix. These cases go unnoticed unless the output scores are analyzed. When 

3000 rounds are used in the third execution, the model's accuracy rises to 91%. It is evident that there is a low rate 

of false positives and negatives at this level. The certainty level of every response is also extremely high, with the 

majority being close to 100%. Since these are common circumstances observed in large datasets labeled by 

humans, the model can be beneficial, and the incorrect cases can be evaluated to determine if faulty predictions 

or outliers and miss identified examples are real. 
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Fig. 2. Visualizations with FED-SQUARES. Top: model trained with 500 rounds. Middle: model trained with 

1000 rounds. Bottom: model trained with 3000 rounds 

The FED-SQUARES display enables sorting of the data in order to analyze the outliers or mislabeled examples 

in the prior situation by every table column. Sorting based on the ground truth makes it simple to find incorrect 

predictions and confirm if an image is distorted, incorrectly labeled, or, in fact, a faulty prediction using the image 

visualization. As seen in Fig. 3, the left-column example, the line at the chart indicates a high degree of certainty, 

the digit is readable and displayed at the left corner, and a correct forecast is produced. The right-column example 

displays an incorrect forecast. The sample with the label 0 was categorized as 1, and upon closer inspection, it is 
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evident that the model is confused by the character's distortion. The digit's thin side raises class 1's score, making 

it more difficult to determine which class to use. This interface makes it easy to explore and locate examples like 

this. 

 
Fig. 3. Inspection of samples predictions with FED-SQUARES 

In Fig. 4, two models that were trained with identical parameters but chosen clients in different orders are 

compared to illustrate the various scenarios of score prediction distribution to each class. Both of them rank in the 

top two with identical total accuracy (79% and 78%, respectively). It is simple to distinguish between the two 

models that the stacked parallel chart supports by using FED-SQUARES. It's also simple to see that the second 

model, with the exception of class 7, shows an overall decrease in score across the board and has less false 

negatives in class 8 than the first model. The first model has a notable rate of false negatives in class 9. The 

accuracy models might be somewhat comparable. When compared to a confusion matrix, the models' score 

prediction distribution is much different. This analysis is also much more visual and understandable, and it is not 

strictly necessary to investigate every number bin because it is easy to see patterns thanks to the visualization. 

 
Fig. 4. Models with similar accuracy but very different according to FEDSQUARES 

7. Conclusion and Future Works 

The foundations of SQUARES, as demonstrated in the original paper, offer a suitable framework for analyzing 

centered learning scenarios. However, our assessment involves scrutinizing the fundamental concepts and 

principles of this technique through practical experimentation. We have developed a prototype and conducted 

simulations within a federated model framework. Our findings align closely with the interpretability of the 

resultant model, as anticipated. These findings hold promise for enhancing comprehension within FL settings, 

shedding light on both overall model performance and individual instance-level predictions. Notably, our 

analyses enable improved monitoring of server and client test accuracy, as well as prediction scores. 

Interestingly, our observations reveal instances where models with similar accuracies exhibit stark differences in 

prediction scores and instance-level characteristics. While our evaluation lacks subjectivity, we provide 

illustrative examples to elucidate our findings. For future endeavors, it would be valuable to incorporate client 

training dataset insights into our analysis, facilitating a deeper understanding of each client's contribution to the 
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overall model. To improve federated learning frameworks, multi-algorithm strategies and optimization 

techniques should be the subject of future research. Further advancements [29] – [44] in federated learning 

models can also be sparked by incorporating sophisticated data segmentation, interactive learning, and 

reinforcement learning methodologies. Additionally, conducting a subjective evaluation, akin to the approach 

outlined in the SQUARES, holds significance in definitively validating our proposed solution. 
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