
J. Electrical Systems 20-3 (2024): 2317-2335 

   2317 

1Zegar Chouki 

2Dahimene Abdelhakim 

 

 

Comparative Study on Noisy Speech 

Preprocessing Algorithms 

 

 

Received:05/02/2024        Published:28/05/2024 

Abstract: - Speech Enhancement and noise reduction have wide applications in speech processing. They are often employed as pre-

processing stage in various applications. The work to be presented in this paper is denoising a single-channel speech signal at the presence of 

a highly non-stationary background noise in order to improve the perceptible quality and intelligibility of the speech. Real world noise is 

mostly highly non-stationary and does not affect the speech signal uniformly over the spectrum. This paper investigates various Discrete 

Fourier Transform-based algorithms as single-channel pre-processing techniques consisting of: Spectral Subtraction using over-subtraction 

and spectral floor, Multi-Band Spectral Subtraction (MBSS), Wiener Filter, MMSE of Short-Time Spectral Amplitude (MMSE-STSA) 

estimator with, and without using SPU modifier, MMSE Log-Spectral Amplitude Estimator with, and without using SPU modifier, 

Optimally-Modified Log-Spectral Amplitude estimator (OM-LSA). The processed speeches from these algorithms are compared at the same 

set of conditions using visual examinations of signals in the time domain and the spectrograms, and also the objective and subjective tests for 

quality and perceptual evaluation. All the implemented algorithms provide considerable, different degrees of flexibility and control on noise 

elimination levels that reduces artifacts in the enhanced speech, resulting in the improved quality, and intelligibility. 

Keywords: Speech denoising, non-stationary noise, single channel. 

I.  INTRODUCTION 

Development and widespread deployment of digital communication systems during the last twenty years have 

brought increased attention to the role of speech enhancement in speech processing problems. The degradation of 

the quality and intelligibility of speech signals, due to the presence of background noise severely affects the 

ability of speech related systems to perform well. Speech enhancement algorithms are used to improve the 

performance of communication systems when their input or output signals are corrupted by noise. The main 

objective of speech enhancement or noise reduction is to improve the perceptual aspects of speech, such as the 

speech quality and intelligibility. However, the problem of cleaning noisy speech still poses a challenge to the 

area of signal processing. Noise reduction techniques have some problems and questions. One of these problems 

is to reach a compromise between noise reduction, signal distortion, and the residual musical noise. Complexity 

and ease of implementation of the speech enhancement algorithms is also of concern in applications especially 

those related to portable devices such as mobile communications and digital hearing aids. The DFT-based speech 

enhancement methods have been one of the most well-known techniques for noise reduction. The spectral 

subtraction estimates the power spectrum of clean speech by explicitly subtracting the noise power spectrum from 

the noisy speech power spectrum. Due to its minimal complexity and relative ease in implementation, it has 

enjoyed a great deal of attention over the past years. This approach generally produces a residual noise commonly 

called musical noise.  In this paper, we investigate DFT-based single-channel speech enhancement algorithms as 

speech signal pre-processing approaches at highly non-stationary noise.  

II. DFT-BASED TECHNIQUES FOR SINGLE CHANNEL SPEECH ENHANCEMENT 

This part describes short time DFT-based single channel techniques for additive noise removal. These methods 

are based on the analysis-modify-synthesis approach. They use fixed analysis window length (usually 20-32ms) 

and frame by frame based processing. They are based on the fact that human speech perception is not sensitive to 

spectral phase but the clean spectral amplitude must be properly extracted from the noisy speech to have 

acceptable quality of speech at output and hence they are called short time spectral amplitude (STSA) based 

methods. Figure 1 shows the basic overview of a single-channel speech enhancement system. 
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                   Noisy Speech                                                       Clean Speech 

Figure 1: Basic overview of single channel speech enhancement system 

Most real world noise such as street noise, train station noise, restaurant noise, babble noise…etc. are non-

stationary in nature. In the additive noise model the noisy speech is assumed to be the sum of the clean speech 

and the noise as defined in the following equation: 

𝑌(𝑡) = 𝑥(𝑡) + 𝑛(𝑡)                                                                                                               (1) 

Where 𝑦(𝑡) is the noisy speech signal, 𝑥(𝑡) is the clean speech signal, and 𝑛(𝑡) is the background noise signal. 

Let 𝑦[𝑛] = 𝑥[𝑛] + 𝑑[𝑛] be the sampled observed noisy speech signal consisting of the clean signal 𝑥[𝑛]and the 

noise signal 𝑑[𝑛] where, 0 ≤ 𝑛 ≤ 𝑁 − 1, and 𝑁 is the frame length.   

A. General Structure of DFT-Based Speech Enhancement 

The overall structure of the DFT-based speech enhancement techniques is shown in Figure 2. 
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Figure 2: Block diagram of the DFT-based speech enhancement [1]. 
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B. Noise power spectrum estimation 

    Noise spectrum estimation is a challenging task for single-channel speech enhancement, where we have only 

the noisy speech available at the input. Non-stationary noise spectrum varies rapidly over time, hence it needs to 

be estimated and updated continuously. 

In this paper, we use the algorithm proposed in [2] for estimating highly non-stationary noise environments. 

C. Spectral subtraction 

    Spectral subtraction is a method for restoration of the power spectrum or the magnitude spectrum of a signal 

observed in additive noise, through subtraction of an estimate of the noise spectrum from the noisy signal 

spectrum [3].  

The first detailed treatment of spectral subtraction was performed by Boll [4], [5]. After that, papers [6], [7] 

expanded and generalized Boll’s method to power subtraction, Wiener filtering. 

Spectral subtraction algorithm is derived under Gaussian assumption for each spectral component. 

1. Power spectral subtraction and its generalized form 

   The basic power spectral subtraction (PSS) principle involves the subtraction of the estimated noise variance, 

from the power spectrum of the observed noisy signal, to obtain an estimate of the modulus of speech power 

spectrum (taking into account that |�̂�𝑘|
2
ℎ𝑎𝑠 𝑡𝑜 𝑏𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). Mathematically, this is represented as: 

|�̂�𝑘|
2
= max (|𝑌𝑘|

2 − |�̂�𝑘|
2
, 0)                                                                                     (2) 

However, there are limitations to this subtraction rule. The basic problem has been tackled by deriving several 

fundamentally and theoretically justified noise suppression rules. 

Since the power spectrum of two uncorrelated signals is additive. By generalizing the exponent from 2 to a, Eq. 

(2) becomes 

|�̂�𝑘|
𝑎
= max(|𝑌𝑘|

𝑎 − |�̂�𝑘|
𝑎
, 0)                                                                                      (3) 

The speech phase is estimated directly from the noisy signal phase. Thus a general form of the estimated speech 

in frequency domain can be written as: 

�̂�𝑘 = (max(|𝑌𝑘|
𝑎 −  𝛼|�̂�𝑘|

𝑎
, 0))

 
1

𝑎. exp(𝑗𝜃𝑘)                                                                                        (4)                                                                    

Where 𝛼 > 1 is used to overestimate the noise to account for the variance in the noise estimate. The inner term 

|𝑌𝑘|
𝑎 − 𝛼|�̂�𝑘|

𝑎
 is limitied to positive values, since it is possible for the overestimated noise to be greater than 

the current signal [8]. 

                              2. Spectral subtraction using over-subtraction and spectral floor 

      For more residual musical noise reduction, a modification of the spectral subtraction was proposed by 

Berouti et al [9]. The technique could be expressed as: 

|�̂�𝑘|
2
= max (|𝑌𝑘|

2 − 𝛼. |�̂�𝑘|
2
, 𝛽. |�̂�𝑘|

2
)                                                                     (5) 

Where: 𝛼 is the over-subtraction factor, and it is given in terms of the frame noisy signal to noise ratio as 

follows: 

𝛼 = 𝛼0 −
3

20
. 𝑆𝑁𝑅    − 5𝑑𝐵 ≤ 𝑆𝑁𝑅 ≤ +20𝑑𝐵                                                        (6) 

𝛼0 is the desired value of 𝛼 at 0 dB SNR. 

𝛼 plays the role of a time-varying factor, which provides a degree of control over the noise removal process 

between periods of noise update. 
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The parameter 𝛽 is the spectral floor which prevents the spectral components of the enhanced spectrum from 

being below the smallest value 𝛽. |�̂�𝑘|
2
. In this case 𝛽 plays the role of controller (the  amount of  remaining  

residual noise  and  the  amount of perceived musical noise). 

        3. Multi-Band Spectral Subtraction (MBSS) 

    The idea of MBSS method proposed by [10] starts from the fact that the colored noise has different effects at 

the various frequencies of the speech spectrum. The MBSS technique performs spectral subtraction with 

different over subtraction factor in different non-overlapped frequency bands. The spectral subtraction rule in 

𝑖𝑡ℎ frequency band is given by: 

|�̂�𝑘,𝑖|
2
= {

|𝑌𝑘 ,𝑖
̅̅ ̅̅ |

2
− 𝛿𝑖𝛼𝑖 . |�̂�𝑘 ,𝑖|

2

,   𝑖𝑓 |𝑌𝑘 ,𝑖
̅̅ ̅̅ |

2
> 𝛿𝑖𝛼𝑖. |�̂�𝑘, 𝑖|

2
 

𝛽. |𝑌𝑘,𝑖
̅̅ ̅̅ |

2
 𝑒𝑙𝑠𝑒                                                           

 

𝑓𝑜𝑟 𝑏𝑖 ≤ 𝑘 ≤ 𝑒𝑖                                                                                                                  (7) 

Where the spectral floor parameter was set to 𝛽 = 0.002, and 𝑏𝑖 and 𝑒𝑖  are the beginning and ending frequency 

bins of the 𝑖𝑡ℎ frequency band. 

𝑌𝑘 𝑖
̅̅ ̅̅   is the 𝑖𝑡ℎ frequency band of smoothed and averaged version of the noisy speech spectrum. A weighted 

spectral average is taken over preceding and succeeding frames of speech as follows: 

𝑌𝑘,𝑗
̅̅ ̅̅ = ∑ 𝑊𝑙

𝑀

𝑙=−𝑀

𝑌𝑘,𝑗−𝑙                                                                                                        (8) 

Where 𝑗 is the frame index, and 0 < 𝑊𝑙 < 1. The averaging is done over M preceding and succeeding frames of 

speech. 

The number of frames 𝑀 is limited to 2 to prevent smearing of the speech spectral content. The weights 𝑊𝑙  were 

empirically determined and set to 𝑊𝑙 = [0.09,0.25,0.32,0.25,0.09] for −2 ≤ 𝑙 ≤ +2 [10]. 

The band-specific over-subtraction factor 𝛼𝑖  is a function of the segmental 𝑆𝑁𝑅𝑖 of the 𝑖𝑡ℎ frequency band, 

which is calculated as: 

𝑆𝑁𝑅𝑖(𝑑𝐵) = [
∑ |𝑌𝑘,𝑖|

2𝑒𝑖
𝑘=𝑏𝑖

∑ |�̂�𝑘,𝑖|
2𝑒𝑖

𝑘=𝑏𝑖

]                                                                                      (9) 

𝛼𝑖 can be expressed in terms of  𝑆𝑁𝑅𝑖 (defined previously) as follows: 

𝛼𝑖 = {

4.75                                𝑆𝑁𝑅𝑖 < −5 

4 −
3

20
𝑆𝑁𝑅𝑖     − 5 ≤ 𝑆𝑁𝑅𝑖 ≤ 20

1                                       𝑆𝑁𝑅𝑖 > 20

                                                                                              (10)   

The additional over subtraction factor 𝛿𝑖 called tweaking factor provides additional degree of control in each 

frequency band. The values of this factor are empirically determined and set according to following equation 

(Usually 4-8 linearly spaced frequency bands are used). 

𝛿𝑖 =

{
 
 

 
 
1                                   𝑓𝑖 < 1 𝐾𝐻𝑧

2.5      1 𝐾𝐻𝑧 ≤ 𝑓𝑖 ≤
𝐹𝑠
2
− 2 𝐾𝐻𝑧

1.5                       𝑓𝑖 >
𝐹𝑠
2
− 2 𝐾𝐻𝑧

                                                                        (11) 

Where 𝑓𝑖  is the upper frequency of the the 𝑖𝑡ℎ band, and 𝐹𝑠 is the sampling frequency [10]. 
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D. Wiener filter 

In terms of our speech enhancement problem the Wiener filter proposed in [11] is given by: 

|�̂�𝑘| =
𝜉𝑘

𝜉𝑘 + 1
|𝑌𝑘|                                                                                                 (12) 

                        Where 𝜉𝑘  𝑖𝑠  defined as the a priori 𝑆𝑁𝑅 found by Decision Directed Method. 

E. MMSE of short time spectral amplitude 

    Ephraim and Malah [12] formulated an optimal spectral amplitude estimator, which, specifically, estimates 

the modulus (magnitude) of each complex Fourier coefficient of the speech signal in a given analysis frame 

from the noisy speech in that frame. 

In order to derive the MMSE STSA estimator, the a priori probability distribution of the speech and noise 

Fourier expansion coefficients should be assumed since these are unknown in reality. Ephraim and Malah [12] 

assumed that the Fourier expansion coefficients of each process can be modeled as statistically independent 

Gaussian random variables, real and imaginary parts of each component is independent to each other, and the 

mean of each coefficient is assumed to be zero and the variance time-varying. 

1. Gaussian based MMSE-STSA estimator 

     The desired gain function for the MMSE-STSA estimator, [12]: 

𝐺𝑀𝑀𝑆𝐸(𝜈𝑘) = Г(1.5)
√𝜈𝑘

𝛾 𝑘
exp (−

𝜈𝑘
2
) . [(1 + 𝜈𝑘)𝐼0 (

𝜈𝑘
2
) + 𝜈𝑘𝐼1 (

𝜈𝑘
2
)]            (13) 

Where Г(·) is the Gamma function (with Γ(1.5) = √𝜋 2⁄  ) and 𝐼0(. ) and 𝐼1(. ) are the zeroth and first order 

modified Bessel functions, respectively, defined as:   

𝐼𝑛(𝑧) =
1

2𝜋
∫ cos(𝛽𝑛)
2𝜋

0

exp(𝑧 cos 𝛽) 𝑑𝛽                                                             (14) 

In Eq. (2.30),  𝜈𝑘 is defined as: 

𝜈𝑘 =
𝜉𝑘

𝜉𝑘 + 1
𝛾 𝑘                                                                                                          (15) 

Where 𝜉𝑘 and 𝛾 𝑘 are defined by: 

𝜉𝑘 =
𝜆 𝑥(𝑘)

𝜆 𝑑(𝑘)
                                                                                                                  (16) 

𝛾 𝑘 =
𝑅 𝑘

2
 

𝜆 𝑑(𝑘)
                                                                                                                 (17) 

𝜉𝑘 and 𝛾 𝑘 are interpreted as the a priori and a posteriori signal-to-noise ratios (SNR), respectively. 𝑅 𝑘 denotes 

the spectral magnitude of the noisy signal. 

Essentially, a priori SNR is the Signal-to-Noise Ratio of the 𝑘𝑡ℎ spectral component of the “clean” speech 

signal, x[n], while a posteriori SNR is the 𝑘𝑡ℎ spectral component of the corrupted signal, y[n]. Computation of 

𝛾 𝑘 is straightforward ratio of the variance of the noisy speech signal to the estimated noise variance. However, 

computation of a priori SNR is more involved, especially since the knowledge of “clean” signal is seldom 

available in real systems. In this paper “Decision-Directed” estimation [12] has been exploited to compute a 

priori SNR. 
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2. Amplitude estimator under Speech Presence Uncertainty SPU 

     Signal absence in noisy observations {y[n], 0 ≤ n ≤ N} is frequent, as speech signals generally contain large 

portions of silence, [12]. Nevertheless, it does not mean that speech is never present in noisy sections.   

The idea of utilizing the uncertainty of signal presence in the noisy spectral components for improving speech 

enhancement results was first proposed by McAulay and Malpass [6], [12]. 

The MMSE estimator which accounts for uncertainty of speech presence in noisy observation was first 

developed by Middleton and Esposito, [12], [13] and it is based on the model of statistically independent 

random appearance of signal in noisy spectral components. 

In order to derive the new amplitude estimator, we need to calculate the generalized likelihood ratio Ʌ(𝑌𝑘 , 𝑞𝑘) 

while 𝑞𝑘  denotes the a priori probability of speech absence in the 𝑘𝑡ℎ spectral component. 

Ʌ(𝑌𝑘 , 𝑞𝑘 , 𝜉′𝑘) =
1 − 𝑞𝑘
𝑞𝑘

exp (
𝜉′
𝑘

1 + 𝜉′
𝛾 𝑘 
 )

1 + 𝜉′𝑘
                                                                           (18) 

Where 𝜉′𝑘 is the conditional a priori 𝑆𝑁𝑅: 

 𝜉′𝑘 ≜ 𝐸{ 𝐴𝑘\𝐻  1
𝑘 }                                                                                                                                          (19) 

𝜉′𝑘 =
1 

1 − 𝑞𝑘
𝜉𝑘                                                                                                                              (20)      

 

F. Speech enhancement using MMSE Log Spectral Amplitude estimator 

    Based on [14] Malah and Ephraim proposed a new short time spectral amplitude (STSA) estimator for speech 

signals which minimizes the mean squared error of the log spectra. 

This section will briefly discuss the derivation of the minimum mean squared error log spectral amplitude 

(MMSE- LSA). 

In order to derive MMSE- LSA, Malah and Ephraim used the same formulation of the estimation problem and 

the same statistical model as in [12] (modeling speech and noise spectral components as statistically 

independent Gaussian random variables). 

With the same definitions for a priori and a posteriori SNR (discussed during the MMSE- STSA derivation), the 

desired MMSE- LSA gain function is given as follows [14]: 

𝐺𝑀𝑀𝑆𝐸−𝐿𝑆𝐴(𝜉𝑘 , 𝛾 𝑘) =
𝜉𝑘

1 + 𝜉𝑘
{
1

2
∫
𝑒−𝑡

𝑡

∞

𝜈𝑘

𝑑𝑡},                                                                  (21) 

Where 𝜈𝑘 =
𝜉𝑘

𝜉𝑘+1
𝛾 𝑘 as shown previously during MMSE- STSA estimator derivation. 

The MMSE-LSA estimator may be also modified using the multiplicative gain 𝐺𝑆𝑃𝑈(𝑘)  defined previously for 

the MMSE-STSA estimator. 

G. Speech enhancement using the Optimally Modified Log Spectral Amplitude estimator (OM-LSA) 

     The purpose of this section is to study the Optimally-Modified Log-Spectral Amplitude estimator (OM-LSA) 

proposed by I. Cohn [15]. As the name suggests, it estimates �̂�𝑘  by minimizing mean-squared error of the log-

spectra for speech signals under signal presence uncertainty where the spectral gain function is obtained as a 

weighted geometric mean of the hypothetical gains associated with signal presence and absence. 

In this algorithm, Cohen [15] proposed two important estimators: 

• An estimator for the a priori signal-to-noise ratio. 

• An efficient estimator for the a priori speech absence probability (SAP) which is based on the time-

frequency distribution of the a priori SNR. 
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1. Optimal gain modification 

Let 𝐻  0
𝑘 and 𝐻  1

𝑘 designate respectively hypothetical speech absence and presence in the 𝑘𝑡ℎ frequency bin, and 

assuming a complex Gaussian distribution of the STFT coefficients for both speech and noise [12]: 

▪ Null Hypothesis 𝐻  0
𝑘 : 𝑠𝑝𝑒𝑒𝑐ℎ 𝑎𝑏𝑠𝑒𝑛𝑡: 𝑌𝑘 = 𝐷𝑘  

▪ Alternate Hypothesis, 𝐻  1
𝑘 : 𝑠𝑝𝑒𝑒𝑐ℎ 𝑝𝑟𝑒𝑠𝑒𝑛𝑡: 

𝑌𝑘 = 𝑋𝑘 + 𝐷𝑘 

The LSA estimator for the clean speech spectral amplitude (Assuming statistically independent spectral 

components [14]), which minimizes the mean-squared error of the log spectra, is given by: 

𝐴�̂� = 𝑒𝑥𝑝{𝐸[𝑙𝑛𝐴𝑘\𝑌𝑘 , 0 ≤  𝑘 ≤  N − 1]} ≜

𝐺𝑘  𝑂𝑀−𝐿𝑆𝐴 . |𝑌𝑘|                                                                                                                                               (22)    

The Optimally Modified LSA estimator gain is given by: 

𝐺𝑘  𝑂𝑀−𝐿𝑆𝐴 = {𝐺𝐻1( 𝜉
′
𝑘
 , 𝛾 𝑘)}

𝑝𝑘
. 𝐺𝑚𝑖𝑛

1−𝑝𝑘, 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑘 ≤  N − 1             (23) 

Where:𝐺𝐻1( 𝜉
′
𝑘
 , 𝛾 𝑘) =

 𝜉′𝑘

1+ 𝜉′𝑘
{
1

2
∫

𝑒−𝑡

𝑡

∞

𝜈𝑘
𝑑𝑡}   𝜉′

𝑘
: 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑆𝑁𝑅 , 𝛾 𝑘: 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑆𝑁𝑅,   

𝑎𝑛𝑑 𝜈𝑘 =
 𝜉′𝑘

 𝜉′𝑘+1
𝛾 𝑘. 

𝑝𝑘 = 𝑃(𝐻  1
𝑘 \𝑌𝑘), 0 ≤  𝑘 ≤  N − 1. 

When speech is absent, the spectral gain is constrained to be larger than a threshold 𝐺𝑚𝑖𝑛, which is determined 

by subjective criteria for the noise naturalness [15]. Hence, 

𝑒𝑥𝑝{𝐸[𝑙𝑛𝐴𝑘\𝑌𝑘 , 𝐻  ]0
𝑘 } = 𝐺𝑚𝑖𝑛 . |𝑌𝑘|                                                                                  (24) 

When speech is present, we use Ephraim and Malah’s MMSE-LSA estimator [14]: 

𝑒𝑥𝑝{𝐸[𝑙𝑛𝐴𝑘\𝑌𝑘 , 𝐻  ]1
𝑘 } = 𝐺 𝑘 𝐻1 . |𝑌𝑘|                                                                                (25) 

Where, 𝐺 𝑘 𝐻1  is defined (as defined previously in eq (21) by: 

𝐺𝐻1( 𝜉
′
𝑘
 , 𝛾 𝑘) =

 𝜉′
𝑘

1 +  𝜉′
𝑘

{
1

2
∫
𝑒−𝑡

𝑡

∞

𝜈𝑘

𝑑𝑡},                                                                     (26) 

 𝑤ℎ𝑒𝑟𝑒  𝜉′
𝑘
: 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 𝑆𝑁𝑅 , 𝛾 𝑘: 𝑎 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑆𝑁𝑅, 𝑎𝑛𝑑 𝜈𝑘 =

 𝜉′𝑘

 𝜉′𝑘+1
𝛾 𝑘 . 

By substituting (24) and (25) into (22), The Optimally Modified LSA estimator gain is given by: 

𝐺𝑘  𝑂𝑀−𝐿𝑆𝐴 = {𝐺𝐻1( 𝜉
′
𝑘
 , 𝛾 𝑘)}

𝑝𝑘
. 𝐺𝑚𝑖𝑛

1−𝑝𝑘 , 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑘 ≤  N − 1           (27) 

2. Priori SNR estimation 

    According to the decision-directed approach, proposed by Ephraim and Malah [12], it provides a useful 

estimation method for the non-conditional a priori SNR 𝜉𝑘 which is given by:  

 𝜉�̂�(𝑙) = 𝛼
𝐴 �̂�

2
(𝑙 − 1)

𝜆 𝑑(𝑘, 𝑙 − 1)
+ (1 − 𝛼)𝑚𝑎𝑥{ 𝛾 𝑘(𝑙) − 1, 0}                                              (28) 

𝑤ℎ𝑒𝑟𝑒  0 < 𝛼 < 1, and 𝑙 is the frame number. 
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Therefore the estimate for the a priori SNR should be given by: 𝜉′𝑘 =
1 

1−𝑞𝑘
𝜉𝑘. According to this expression, 

there is an interaction between the estimated 𝑞𝑘 and the a priori SNR which may deteriorate the performance of 

the speech enhancement system [16], [17], [18]. 

Hence, Cohen in [15] proposed a new estimator of the Priori SNR which is given as follows: 

 𝜉′
𝑘

̂ (𝑙) = 𝛼𝐺𝐻1(𝑙 − 1) 
2 + (1 − 𝛼)𝑚𝑎𝑥{ 𝛾 𝑘(𝑙) − 1, 0}                                                                       (29)                                  

To explain more this equation, if 𝐻  1
𝑘 is true then the spectral gain should degenerate to 𝐺𝐻1, and the a priori 

SNR  𝜉′
𝑘
 estimate should coincide with 𝜉𝑘. In opposite, if 𝐻  0

𝑘  is true, then the spectral gain should decrease to 

𝐺𝑚𝑖𝑛, or equivalently the a priori SNR estimate should be as small as possible[15]. 

3. Priori speech Absence probability (SAP) estimation 

In [15], Cohen proposed a new estimator for the speech absence probability 𝑞�̂�. The estimator utilizes a soft-

decision approach in order to find three parameters (𝑃 𝑘 𝑙𝑜𝑐𝑎𝑙(𝑙), 𝑃 𝑘 𝑔𝑙𝑜𝑏𝑎𝑙(𝑙), 𝑃𝑓𝑟𝑎𝑚𝑒(𝑙))  based on the time-

frequency distribution of the estimated a priori SNR, 𝜉′
𝑘

̂ (𝑙). These parameters exploit the strong correlation of 

speech presence in neighboring frequency bins of consecutive frames [15]. 

Let  𝜉′
𝑘
(𝑙) be a recursive average of the a priori SNR: 

 𝜉′
𝑘
(𝑙) =  𝛽𝜉′

𝑘
(𝑙 − 1) + (1 − 𝛽) 𝜉′

𝑘
̂ (𝑙 − 1)                                                                  (30) 

where 𝛽 is a time constant. 

Local and global averaging windows are applied in the frequency domain to obtain local and global averages of 

the a priori SNR: 

 𝜉′
𝑘 𝜆
(𝑙) = ∑ ℎ𝜆(𝑖) 𝜉

′
𝑘−𝑖
(𝑙)

𝑤𝜆

𝑖=−𝑤𝜆

                                                                                          (31) 

Where the subscript 𝜆 designates either “local” or “global”, and ℎ𝜆 is a normalized window of size 2𝑤𝜆+1. 

We define two parameters, 𝑃 𝑘 𝑙𝑜𝑐𝑎𝑙(𝑙) and 𝑃 𝑘 𝑔𝑙𝑜𝑏𝑎𝑙(𝑙), which represent the relation between the above averages 

and the likelihood of speech in the 𝑘𝑡ℎ frequency bin of the 𝑙𝑡ℎ frame[15]. The local and global parameters are 

given by the following expression: 

𝑃 𝑘 𝜆(𝑙) =

{
 
 

 
 
0,                            𝑖𝑓  𝜉′

𝑘 𝜆
(𝑙) ≤  𝜉′

𝑚𝑖𝑛  

1,                            𝑖𝑓  𝜉′
𝑘 𝜆
(𝑙) ≥  𝜉′

𝑚𝑎𝑥  

ln ( 𝜉′
𝑘 𝜆
(𝑙)/ 𝜉′

𝑚𝑖𝑛  
)

ln ( 𝜉′
𝑚𝑎𝑥  

/ 𝜉′
𝑚𝑖𝑛  

)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                      (32) 

Where  𝜉′
𝑚𝑖𝑛  

 and  𝜉′
𝑚𝑎𝑥  

 are empirical constants. 

For more noise attenuation in noise-only frames, a third parameter named,  𝑃𝑓𝑟𝑎𝑚𝑒(𝑙) is defined. This parameter 

is based on the speech energy in neighboring frames. If we average  𝜉′
𝑘 
(𝑙) in the frequency domain we obtain: 

 𝜉′
𝑓𝑟𝑎𝑚𝑒

(𝑙) = mean
1≤𝑘≤

𝑁
2
+1

 {𝜉′
𝑘 
(𝑙)}                                                                                   (33) 

Figure 3 shows the block diagram for  𝑃𝑓𝑟𝑎𝑚𝑒(𝑙) computation. 

Where 𝛪(𝑙) is given by: 

𝛪(𝑙) ≜

{
 
 

 
 
0,                              𝑖𝑓  𝜉′

𝑓𝑟𝑎𝑚𝑒
(𝑙) ≤  𝜉′

𝑝𝑒𝑎𝑘
(𝑙). 𝜉′

𝑚𝑖𝑛  

1,                             𝑖𝑓  𝜉′
𝑓𝑟𝑎𝑚𝑒

(𝑙) ≥  𝜉′
𝑝𝑒𝑎𝑘

(𝑙).  𝜉′
𝑚𝑎𝑥  

ln ( 𝜉′
𝑓𝑟𝑎𝑚𝑒

(𝑙)/ 𝜉′
𝑝𝑒𝑎𝑘

(𝑙)/ 𝜉′
𝑚𝑖𝑛  

)

ln ( 𝜉′
𝑚𝑎𝑥  

/ 𝜉′
𝑚𝑖𝑛  

)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (34) 

And it represents a soft transition from “speech” to “noise”,  𝜉′
𝑝𝑒𝑎𝑘

 is a confined peak value of   𝜉′
𝑓𝑟𝑎𝑚𝑒

, 

and 𝜉′
𝑝 𝑚𝑖𝑛

,   𝜉′
𝑝 𝑚𝑎𝑥

 are empirical constants that determine the delay of the transition [15]. 

Hence, the proposed estimate for the a priori probability for speech absence is obtained by: 
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�̂�𝑘 (𝑙) = 1 − 𝑃 𝑘 𝑙𝑜𝑐𝑎𝑙(𝑙). 𝑃 𝑘 𝑔𝑙𝑜𝑏𝑎𝑙(𝑙).  𝑃𝑓𝑟𝑎𝑚𝑒(𝑙)                                                         (35) 

�̂�𝑘 (𝑙) is larger if either previous frames, or recent neighboring frequency bins, do not contain speech. In order to 

reduce the possibility of speech distortion we restrict �̂�𝑘 (𝑙) to be smaller than a threshold 𝑞𝑚𝑎𝑥  (<1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Block diagram for Pframe(l) computation 

III. IMPLEMENTATION AND PERFORMANCE EVALUATION 

      This section describes the implementation details and performance evaluation of the proposed pre-

processing algorithms to understand their functionality and behavior. Evaluation of speech enhancement 

algorithms is not simple. While objective quality assessment methods can indicate an improvement or 

degradation in speech quality based on mathematical measures, the human listener does not believe in a simple 

mathematical error criterion. Therefore, subjective measurements of intelligibility and quality are also required. 

The IEEE standard database NOIZEUS (noisy corpus) [19] is used to test algorithms. The database contains 

clean speech sample files as well as real world noisy speech files at different SNRs and noise conditions like 

street, car, restaurant, train, station, babble…etc. 

A. Implementation details 

     The factors contributing in the efficient implementation of some of the functional blocks are discussed 

below. 

• Frame size: 20 ms was chosen as the optimum frame size for our implementations. 

• Window Type and Overlap: the most commonly used Hamming window [7], [3]. After a few informal 

listening tests and comparing spectrograms, the Hamming window was chosen. The amount of overlap between 

consecutive frames is also associated with the frame-size, and is required to prevent discontinuities at frame 
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boundaries. For this study we chose the overlap to be 50%, which is also usually the percentage overlap found 

commonly in the literature. 

• The enhanced signal is obtained by taking the IFFT of the enhanced spectrum using the phase of the 

original noisy spectrum. 

• The standard overlap-and-add method is used to obtain the enhanced signal. 

For the Spectral Subtraction using over-subtraction and spectral floor, the spectral floor parameter is set to  𝛽 =

0.002, and 𝛼 = {

4.75                                𝑆𝑁𝑅 < −5 

4 −
3

20
𝑆𝑁𝑅       − 5 ≤ 𝑆𝑁𝑅 ≤ 20

1                                       𝑆𝑁𝑅 > 20

 

For the Multi-Band Spectral Subtraction (MBSS) implementation, the spectral floor parameter is also set to 𝛽 =

0.002, and all other parameters are taken as given in chapter two. 

For the Wiener filter, MMSE-STSA, and MMSE-LSA algorithms implementations, the a priori 𝑆𝑁𝑅 𝜉𝑘  𝑖𝑠 

calculated using the Decision-Directed estimation approach with 𝛼 = 0.98 𝑖𝑛 𝐸𝑞. (29). 

For Speech Presence Uncertainty (SPU) multiplicative modifier implementation, the a priori probability of 

speech absence 𝑞𝑘, is set to 𝑞𝑘 = 0.3. 

For the OM-LSA estimator implementation, the value 𝛼 = 0.92 , and the values of parameters used for the 

estimation of the a priori SAP are given as follows: 

𝛽 = 0.7         𝜉′
𝑚𝑖𝑛  

= −10𝑑𝐵          𝜉′
𝑚𝑎𝑥  

= −5𝑑𝐵  

  𝜉′
𝑝 𝑚𝑖𝑛

= 0𝑑𝐵                                𝜉′
𝑝 𝑚𝑎𝑥

= 10𝑑𝐵  

𝑤𝑙𝑜𝑐𝑎𝑙 = 1                                   𝑤𝑔𝑙𝑜𝑏𝑎𝑙 = 15        

𝑞𝑚𝑎𝑥 = 0.95                      ℎ𝜆: 𝐻𝑎𝑛𝑛𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 

For the implementation of noise estimation algorithm discussed in section 2.2, the following parameters are 

used: 

𝜂 = 0.7 ,                               𝑡ℎ𝑒 threshold 𝜎 = 1.3,        

 𝜆 = 0.8,            𝛾 = 0.998,           𝛽 = 0.8            𝛼1 = 0.8,       𝛼2 = 1 . 

 

B. Visual examinations for the implemented algorithms 

Applying the implemented algorithms to the noisy speech signal sentence in “sp10.wav” corrupted with train 

noise at 0 dB SNR, and car noise at 5 dB SNR yields to the results presented along with the original noisy signal 

in following figures:  

From Figure 4 to Figure 13 show the signals in the time domain of the original sentence in “sp10.wav” along 

with the same corrupted with speech-shaped train noise at 0 dB SNR, and the enhanced speech obtained by the 

implemented algorithms.  

From Figure 14 to Figure 23 show the spectrograms of the original sentence in “sp10.wav” along with the same 

corrupted with speech-shaped car noise at 5 dB SNR, and the enhanced speech obtained from implemented 

algorithms. 
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Figure 4: Clean speech signal in the time domain. Figure 5: Noisy speech signal (sentence in 

“sp10.wav” corrupted with train noise at 0 dB 

SNR). 

 
 

Figure 6:  Enhanced speech signal using Wiener 

Filter (Decision-Directed estimated a priori SNR). 

Figure 7: Enhanced speech signal using Spectral 

subtraction using over-subtraction and spectral 

floor algorithm 

  

 Figure 8: Enhanced speech signal using Multi-

band spectral subtraction (MBSS) algorithm. 

 Figure 9: Enhanced speech signal using MMSE-

STSA (without SPU modifier) algorithm. 

  

Figure 10: Enhanced speech signal using MMSE-

STSA (with SPU modifier) algorithm. 

 Figure 11: Enhanced speech signal MMSE-LSA 

(without SPU modifier) Algorithm. 
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Enhanced speech signal using (Wiener Filter "Decision-Directed estimated a Priori SNR")
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Enhanced speech signal using (Spectral Subtraction using over-subtraction and spectral floor)Algorithm

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

Time, s

N
o

rm
a
li

z
e
d

 a
m

p
li

tu
d

e

Enhanced speech signal using (Multi-Band Spectral Subtraction "MBSS") Algorithm
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Figure 12: Enhanced speech signal using MMSE-

LSA (with SPU modifier) algorithm. 

Figure 13: Enhanced speech signal using the 

optimally modified log-spectral Amplitude (OM-

LSA) algorithm. 

From visual examinations of figures presented above, we can notice that: 

• A significant amount of noise has been reduced from the noisy speech signal after applying each of the 

DFT-based speech enhancement algorithms. 

• The enhanced speech panels using Weiner filter, Spectral Subtraction (using over-subtraction and 

spectral floor) method, and MBSS method show more distortions in the shape of the signals when compared to 

the original clean speech signal. 

• The enhanced speech panels using MMSE-STSA, MMSE-LSA (without SPU modifier) algorithms 

show small distortions in the shape of the signals when compared to the original clean speech signal. 

• The enhanced speech panels using MMSE-STSA, MMSE-LSA (with SPU modifier), and the OM-LSA 

algorithms show that the obtained processed signal shapes are more nearer to the original clean speech signal. 

  
Figure 14: Spectrogram of the clean speech signal 

in “SP.10”. 

Figure 15: Spectrogram of the noisy signal in 

“SP.10” corrupted with car noise at 5 dB SNR. 

  

Figure 16: Spectrogram of the enhanced speech 

using Weiner Filter, Decision-Directed a priori 

SNR. 

Figure 17: Spectrogram of the enhanced speech 

using Over-Subtraction and spectral floor 

algorithm. 

  

Figure 18: Spectrogram of the enhanced speech Figure 19: Spectrogram of the enhanced speech 
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using Multi-band spectral subtraction (MBSS) 

algorithm. 

using the MMSE-STSA (without SPU modifier) 

algorithm. 

  

Figure 20: Spectrogram of the enhanced speech 

using the MMSE-STSA (with SPU modifier) 

algorithm. 

Figure 21: Spectrogram of the enhanced speech 

using the MMSE-LSA (without SPU modifier) 

algorithm. 

  
Figure 22: Spectrogram of the enhanced speech 

using the MMSE-LSA (with SPU modifier) 

algorithm. 

Figure 23: Spectrogram of the enhanced speech 

using optimally modified log-spectral (OM-LSA) 

algorithm. 

From the visual examinations of the spectrograms in figures presented above, we can remark that:  

• In all the enhanced speech spectrograms, the formants are much clearer and visible than in the noisy 

speech spectrogram, which indicates that there is a considerable amount of noise has been reduced from the 

noisy speech.  

• The enhanced speech spectrograms using Weiner filter, Spectral Subtraction (using over-subtraction 

and spectral floor) method, and MBSS method contain some random isolated dots which cause audible artifact 

known as musical noise.   

• The enhanced speech spectrograms using MMSE-STSA, and MMSE-LSA algorithms show better 

results, and less amount of isolated dots compared with the spectrograms of Weiner filter, MBSS method, and 

Spectral Subtraction (using over-subtraction and spectral floor) method. 

• Applying the multiplicative SPU modifier to the MMSE-STSA, and MMSE-LSA algorithms provides 

more noise reduction in spectrograms.   

• The enhanced speech spectrogram using OM-LSA algorithm is the nearest to the to the original clean 

speech spectrogram. 

C. Objective measures for implemented algorithms performance evaluation 

    Objective measures are based on a mathematical comparison of the original and enhanced speech signals. 

Signal-to-Noise Ratio (SNR) 

As the name suggests, SNR is the ratio of the signal energy to the noise energy: 

𝑆𝑁𝑅𝑑𝐵 = 10. 𝑙𝑜𝑔10(
∑ 𝑠2[𝑛]𝑛

∑ (𝑠[𝑛]−�̂�[𝑛])2𝑛
)                                                                                                (36) 

Where 𝑠(𝑛) is the clean signal and �̂�(𝑛) is the processed signal. If the summation is performed over the whole 

signal length, the operation is called global SNR. 

Segmental Signal-to-Noise Ratio ( 𝐒𝐍𝐑𝑺𝒆𝒈): 
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The SNRseg in dB is the average SNR computed over short frames of the speech signal. The SNRseg over M 

frames of length N is computed as: 

SNR𝑆𝑒𝑔 =
1

𝑀
∑ 10𝑙𝑜𝑔10

𝑀−1

𝑖=0

[
∑ 𝑠2[𝑛]𝑖𝑁+𝑁−1
𝑛=𝑖𝑁

∑ (𝑠[𝑛] − �̂�[𝑛])2𝑖𝑁+𝑁−1
𝑛=𝑖𝑁

]  𝑑𝐵,                                            (37) 

In order to perform our objective tests, each algorithm is evaluated using all the sentences from NOIZEUS data 

base corrupted by 4 different SNR values (0, 5,10 and 15dB) in 6 colored noise environments which are as 

follows: 

• Train 

• Car 

• Street 

• Restaurant 

• Train station 

• Babble 

In addition to that, a synthesized white noise added to clean speech sentences of NOIZEUS database at SNR 

range 0-15dB is also used to test the algorithms. 

The results (all the obtained SNR and SNR𝑆𝑒𝑔 values are averages of 30 measures, the number of sentences in 

the database and are given in dB) are shown in tables from 1 to 7. 

Table 1: Objective quality evaluation of the implemented 

algorithms for train noise. 

Table 2: Objective quality evaluation of the implemented algorithms 

for car noise 

 
 

 

Table 3: Objective quality evaluation of the 

implemented algorithms for street noise 

Table 4: Objective quality evaluation of the implemented 

algorithms for restaurant noise 
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Table 5: Objective quality evaluation of the implemented 

algorithms for train station noise. 

Table 6: Objective quality evaluation of the 

implemented algorithms for babble noise. 
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Table 7: Objective quality evaluation with a white noise. 

 

According to the objective test results presented above, we can observe the following: 

• There are remarkable improvements in both global and segmental SNRs of noisy speech signals after 

being processed by the implemented DFT-based speech enhancement algorithms and the noise reduction is 

more when it is white. 

• The speech enhancement using Weiner filter, Spectral Subtraction (using over-subtraction and spectral 

floor) method, and MBSS method provides less segmental SNR values when compared to the other 

implemented algorithms in most cases. 

• The speech enhancement using MMSE-STSA, and MMSE-LSA algorithms provides better segmental 

SNR values, and using the SPU modifier gives a remarkable improvement in segmental SNRs.  

• The speech enhancement using Optimally Modified Log-Spectral Amplitude estimator (OM-LSA) 

provides the best results (global SNR, and Segmental SNR) in most cases. 

D. Subjective measures for implemented algorithms performance evaluation 
Subjective tests rely heavily on the opinion of a group of listeners to judge the quality or intelligibility of 

processed speech. These tests are often time consuming as they require proper training of listeners. In addition 

to this, a constant listening environment (e.g., playback volume), identically tuned output device (e.g., 

headphones and/or speakers) are necessary. Nevertheless, subjective test results present the most accurate 

system of performance, insofar as intelligibility and speech quality are concerned, as they are determined 

perceptually by the human auditory system. These tests can be structured under two types of evaluation 

procedures: speech quality evaluation and also intelligibility testing. Quality refers to the clarity, freedom of 

distortion and ease for listening whereas Intelligibility refers to the number of words that can be identified 

correctly by a listener or to the likelihood of being correctly understood. 

1. Subjective test for speech quality evaluation 

In this test, we asked five normal-hearing students who speak, and understand English very well to listen twice 

to the different samples of speech for each input SNR used in the previous objective tests. In the first time, we 

presented to them the signals in their noisy form, whereas in the second time we presented to them the processed 

ones. After that, we asked our listeners to grade each speech heard on a scale from 1 to 5, based on how pleasant 

their listening experience was, the highest grade corresponding to the most pleasant one. Then we averaged the 

respective grades and results are given in table 8. 
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Table 8: Subjective test for speech quality evaluation 

 

According to this quality subjective test, we can say that: 

• The quality of the noisy speech samples has been considerably improved after the enhancement by the 

implemented algorithms. 

• The speech enhancement using Weiner filter, Spectral Subtraction (using over-subtraction and spectral 

floor) method, and MBSS method obtained the smallest grades for speech quality evaluation which confirm the 

annoying musical noise shown during the spectrograms visual examinations (random isolated dots). 

• The speech enhancement using the OM-LSA algorithms provides the best speech quality. 

2. Subjective test for speech intelligibility evaluation 

 In this test, we asked our listeners to give the percentage of intelligibility (according to the number of words 

that can be identified correctly by a listener) in the same speech signals. The results are shown below in table 9. 

Table 9: Subjective test for intelligibility evaluation. 

 

According to table 9, we can say that:  

• The implemented algorithms have considerably improved the intelligibility of the noisy speech signals.   

• Weiner filter, Spectral Subtraction (using over-subtraction and spectral floor) method, and MBSS 

method provide the smallest percentages of intelligibility in comparison to the other implemented algorithms 

and that’s due to the amount of distortions caused them. 

• The optimally modified Log-Spectral Amplitude estimator (OM-LSA) algorithm shows the highest 

percentages of intelligibility. 
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E. Comments 

The implemented algorithms performance evaluation based on visual examinations, objective and subjective 

tests show that the optimally modified Log-Spectral Amplitude estimator (OM-LSA) algorithm outperforms all 

the implemented algorithms (low signal distortion and the best amount of noise reduction). However, we would 

like to note the following: 

• The global SNR is a poor estimator of subjective quality. A high SNR value, is thus, not necessarily 

indicative of good perceptual quality of the speech. 

• The segmental SNR objective test is more related to the subjective tests. 

• Weiner filter, Spectral Subtraction (using over-subtraction and spectral floor) method, and MBSS method 

show acceptable amounts of non-stationary noise reduction but produce some distortions in the shape of the 

enhanced speech signals. 

• MMSE-STSA, and MMSE-LSA algorithms provide more non-stationary noise reduction and less 

distortions. 

• Applying the SPU multiplicative modifier with MMSE-STSA, and MMSE-LSA algorithms increases the 

quality and the intelligibility of the enhanced speech signals. 

IV. CONCLUSION 

The work presented in this paper addressed the problem of single-channel speech enhancement at the presence 

of highly non-stationary background noise, as pre-processing stage for various speech applications.  

A set of DFT-based single-channel speech enhancement algorithms have been implemented using highly non-

stationary noise estimator, and each implemented algorithm has been evaluated using the NOIZEUS data base 

corrupted by 4 different SNR values (0, 5,10 and 15dB) in six colored noise environments (train, car, street, 

restaurant, train station, and babble) and a synthesized white noise. 

The performance evaluation results establish the superiority of the Optimally-Modified Log-Spectral Amplitude 

estimator (OM-LSA) algorithm over all the implemented DFT-based single-channel speech enhancement 

algorithms with respect to perceptible quality and intelligibility improvements of the enhanced speech signals. 

Therefore, OM-LSA can be considered as good pre-processing technique for single-channel speech applications. 

MMSE-STSA, MMSE-LSA (using SPU multiplicative modifier) algorithms provide acceptable levels of speech 

intelligibility and quality in most cases and the second one behaves a little bit better than MMSE-STSA 

especially in reducing the musical noise. Weiner filter, Spectral Subtraction (using over-subtraction and spectral 

floor) method, and MBSS method show more distortions in the shape of the enhanced signals at low SNRs (0-

5dB) range in most cases. 

In addition to all the obtained results, we may say that, the most suitable technique for speech enhancement is 

the one which provides robustness to environmental noise contributing factors and robustness to acoustical 

inputs. 

The works on implementing the DFT-based techniques for single-channel speech enhancement as pre-

processing stages for various speech applications should definitely continue considering the good results we 

managed to achieve. Here is a short list of items that we think could be subjected to further studies: 

• Investigating the speech enhancement using Laplacian-based MMSE estimator of the magnitude 

spectrum rather than MMSE estimator, which is based on a Gaussian model. 

• The error between the processed signal and the clean speech signal can be strongly minimized if the 

estimate of the noise spectrum is more accurate. Hence, it is desirable to estimate the noise signal at every 

available instant to get a more accurate estimate of the noise spectrum. 

• Single channel blind source separation is a challenging task. Hence working on this provides a good 

contribution to speech signals pre-processing techniques. 
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