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Abstract: - Let 𝐷𝑆𝐷𝑀(𝐺) = (𝑉 (𝐷𝑆𝐷𝑀) , 𝐸 (𝐷𝑆𝐷𝑀)) become an undirected, fundamental graph. Predominance in graphical representations 

is a specific area of theory pertaining to graphs the fact that has been thoroughly explored. A subset 𝐷𝑆𝐷𝑀(S) in the event every vertex 

within 𝐷𝑆𝐷𝑀(S) has become either contained within 𝐷𝑆𝐷𝑀(S) or closest to a separate the vertices in 𝐷𝑆𝐷𝑀(S), subsequently the overall 

quantity of points that compose the graph's structure has been identified as the dominant set. This article determines novel domination 

outcomes in graphs known as secure distance matrix domination. A dominating set of 𝐷𝑆𝐷𝑀(𝑆) regarding 𝐷𝑆𝐷𝑀(𝐺 ) can be considered to 

have the attributes of a stable, dominant group of 𝐷𝑆𝐷𝑀(𝐺 ) once it has just one available. vertex 𝐷𝑆𝐷𝑀(𝑢)  ∈ (𝐷𝑆𝐷𝑀( 𝑉) \ 𝐷𝑆𝐷𝑀( 𝑆)) with 

respect to 𝐷𝑆𝐷𝑀(𝑢𝑣)  ∈ (𝐷𝑆𝐷𝑀( 𝐸)as well as ( 𝐷𝑆𝐷𝑀(𝑆)) \( 𝐷𝑆𝐷𝑀{𝑣}  ∪  𝐷𝑆𝐷𝑀{𝑢})  has become a dominant set have been 𝐷𝑆𝐷𝑀 that includes 

each points 𝐷𝑆𝐷𝑀(𝑣)  ∈ 𝐷𝑆𝐷𝑀( 𝑆). The issue is minimally secure determining a set that dominates of 𝐷𝑆𝐷𝑀(𝐺)  using a minimum secure 

cardinality is the definition of dominance.  A few secure distance matrix dominant set theorems are outlined. 

Keywords: Domination, Dominating set, Secure distance matrix domination, Distance domination, complete graph. 

1. Introduction 

An essential subfield of graph theory is dominance. Investigating dominant initiates 

within graphs dates back to 1862, when Campbell [1] investigated the issue of figuring out 

how many queens are required to control a chessboard. The field of research of dominating 

sets in graphs came into being about 1960. The centre of graph theory study has been the 

theory of dominance. Within known as 𝐺 ∗= (𝑉 ∗, 𝐸 ∗) a graph, Assume that the point set 

is 𝑉* and the border set is 𝐸 ∗. The investigation of being dominant establishes takes up a 

large amount of room through the field of graph theory. The dominance was first 

introduced as a graph theoretic concept by C. Berge and O. Ore [2].  

The phrases "dominant set" and "domination number" were also created by O. Ore [2]. 

Place 𝐷 ∗ is an extremely powerful set, or within close proximity of dominance 

𝐷𝑆𝐷𝑀  𝑁𝑑[𝐷 ∗] = 𝐷𝑆𝐷𝑀𝑉 ∗ [3], As long as every vertex is present in 𝐷𝑆𝐷𝑀𝑉 ∗ −𝐷𝑆𝐷𝑀𝐷* 

has become located adjacent to any vertex within 𝐷𝑆𝐷𝑀 𝐷*. If and only if no edge connects 

any two of the vertices of a graph with the same number of vertices, V*(G*), it is referred 

to as the complement graph of a simple graph G* [4].  

If every point in 𝐷𝑆𝐷𝑀𝐺 ∗ the fact that does not exist in 𝐷𝑆𝐷𝑀𝐷* is close to at least one 

of the vertices in 𝐷𝑆𝐷𝑀𝐷*, and then 𝐷𝑆𝐷𝑀𝐺* represents the being dominant set. The lowest 

possible cardinality of a set that dominates in 𝐷𝑆𝐷𝑀𝐺 ∗ is equal to the dominance the 

number 𝐷𝑆𝐷𝑀(𝛾 ∗ (𝐺 ∗)). In the event there are no two vertices that are close together in 

set 𝐷𝑆𝐷𝑀𝑆 ∗⊂ 𝐷𝑆𝐷𝑀𝑉 ∗, then set 𝑆 is independent. A peak performance independent 

determined by 𝐷𝑆𝐷𝑀𝐺 ∗ has a pair of minimum and maximum cardinalities whose 
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respective values equivalent the degree of independence number 𝐷𝑆𝐷𝑀(𝛽0(𝐺 ∗)) as well 

as a dominant number ascertained independently 𝐷𝑆𝐷𝑀(𝑖(𝐺 ∗)). 

The cardinality's value of a dominated set of  𝐷𝑆𝐷𝑀𝐺 ∗ which has the minimum is 

its controlling number as well, denoted by  𝐷𝑆𝐷𝑀𝛾 ∗ (𝐺 ∗). The variable 𝐷𝑆𝐷𝑀𝐺 ∗ is the 

𝐷𝑆𝐷𝑀𝛾 ∗ (𝐺 ∗). This particular issue has an operational equivalent called the power source 

Control Decision Problems. It inquiries whether, considering a graph 𝐷𝑆𝐷𝑀𝐺 ∗ and an 

upside-down a number 𝐷𝑆𝐷𝑀𝑘 ∗ , there currently is a being dominant collection of cardiac 

values greater than 𝐷𝑆𝐷𝑀𝑘 ∗. 

Another may obtain an extensive overview of the available research on the a 

requirement dominance problem and a lot of its variations in length.  Secure Supremacy 

Problem. Another of the significant variants of the minimal dominance problem is that 

which follows explanation of the problem.  

The being dominant set   𝐷𝑆𝐷𝑀𝑆 ∗ ⊆  𝐷𝑆𝐷𝑀𝑉 ∗ of  𝐷𝑆𝐷𝑀𝐺 ∗ can be considered 

secure if there is a vertex  (𝐷𝑆𝐷𝑀𝑣 ∗)  ∈  (𝐷𝑆𝐷𝑀𝑆 ∗) nearby to u that ensures that (𝐷𝑆𝐷𝑀𝑆 ∗
\ 𝐷𝑆𝐷𝑀  {𝑣 ∗})  ∪  𝐷𝑆𝐷𝑀{𝑢 ∗} is a set that dominates that includes every (𝐷𝑆𝐷𝑀𝑢 ∗)  ∈
(𝐷𝑆𝐷𝑀 𝑉 ∗ \𝐷𝑆𝐷𝑀  𝑆 ∗). 𝐷𝑆𝐷𝑀𝑁𝑘(𝑣 ∗) ∪ 𝐷𝑆𝐷𝑀(𝑣 ∗), or {𝐷𝑆𝐷𝑀(𝑢 ∗)|𝐷𝑆𝐷𝑀 ⅆ(𝑢 ∗, 𝑣 ∗) ≤
𝐷𝑆𝐷𝑀𝑘 ∗} has become the description of the closed 𝐷𝑆𝐷𝑀𝑘 ∗- neighbourhood 

𝐷𝑆𝐷𝑀𝑁𝑘(𝑣 ∗) ⋅  

When 𝐷𝑆𝐷𝑀{𝑢 ∗}  and 𝐷𝑆𝐷𝑀 {𝑣 ∗} are 𝐷𝑆𝐷𝑀𝑘 ∗-adjacent vertices, we say that 

𝐷𝑆𝐷𝑀𝑢 ∗∈ 𝐷𝑆𝐷𝑀𝑁𝑘 ∗ (𝑣 ∗).|𝐷𝑆𝐷𝑀𝑁𝑘 ∗ (𝑣 ∗)| yields the 𝐷𝑆𝐷𝑀𝑘 ∗-degree, 

𝐷𝑆𝐷𝑀(ⅆⅇ𝑔𝑘(𝑣 ∗)), of 𝐷𝑆𝐷𝑀(𝑣 ∗) in  𝐷𝑆𝐷𝑀(𝐺 ∗).Hence 𝐷𝑆𝐷𝑀𝑁𝑘(𝑣) ∪ 𝐷𝑆𝐷𝑀(𝑣), or 
{𝐷𝑆𝐷𝑀𝑢|𝐷𝑆𝐷𝑀 ⅆ(𝑢, 𝑣) ≤ 𝐷𝑆𝐷𝑀𝑘}, is the definition of the closed 𝐷𝑆𝐷𝑀𝑘 −neighborhood 

𝐷𝑆𝐷𝑀𝑁𝑘(𝑣), of v*. When 𝐷𝑆𝐷𝑀𝑢 ∗ and 𝐷𝑆𝐷𝑀𝑣 ∗ are 𝑘-adjacent vertices, we say that if 

𝐷𝑆𝐷𝑀𝑢 ∗∈ 𝐷𝑆𝐷𝑀𝑁𝑘(𝑣). |𝑁𝑘(𝑣)| yields the k-degree, ⅆⅇ𝑔𝑘(𝑣), of 𝐷𝑆𝐷𝑀𝑣 𝑖𝑛 𝐷𝑆𝐷𝑀𝐺.  

Consequently, let  𝐷𝑆𝐷𝑀𝑘 ∗≥ 1 be an integer and let 𝐷𝑆𝐷𝑀(𝐺) =
(𝐷𝑆𝐷𝑀(𝑉) , 𝐷𝑆𝐷𝑀(𝐸)) be considered a diagram. The open 𝐷𝑆𝐷𝑀𝑘 ∗- neighbourhood 

𝐷𝑆𝐷𝑀𝑁𝑘(𝑣 ∗) become an vertex in 𝐷𝑆𝐷𝑀(𝐺) described as that collection of 𝐷𝑆𝐷𝑀(𝐺) 
vertices 𝐷𝑆𝐷𝑀(𝐺) disjoint of  𝐷𝑆𝐷𝑀(𝑣) and at degree at maximum 𝑘* from 𝑣* in 𝐷𝑆𝐷𝑀(𝐺). 
Take 𝐷𝑆𝐷𝑀(𝐺) = (𝐷𝑆𝐷𝑀(𝑉) , 𝐷𝑆𝐷𝑀(𝐸)) become Consequently, let  𝐷𝑆𝐷𝑀𝑘 ∗≥ 1 be an 

integer. A vertex 𝑣 in 𝐺 contains an open 𝑘-neighborhood 𝑁𝑘(𝑣) It represents a group of 

every one of points in 𝐷𝑆𝐷𝑀(𝐺) disjoint of  𝐷𝑆𝐷𝑀(𝑣) and at degree at maximum 𝑘* from 

𝑣* in 𝐷𝑆𝐷𝑀(𝐺).     

If  every single vertex of 𝐷𝑆𝐷𝑀𝑆 ⊆ 𝑉𝐷𝑆𝐷𝑀 encompasses a minimum of two 

neighbors in 𝐷𝑆𝐷𝑀𝑆, then a small portion 𝑉𝐷𝑆𝐷𝑀\𝐷𝑆𝐷𝑀𝑆  have become 2-dominant 

collection . When 𝐷𝑆𝐷𝑀𝑆 have become 2-dominant collect and that  subcollection induced 

by𝐷𝑆𝐷𝑀𝑆 has no separate vertex  then 𝐷𝑆𝐷𝑀𝑆 have double dominant set. 

 The cardinality of one minimal double dominant collection of 𝐷𝑆𝐷𝑀𝐺 and then minimal 

2-dominant set that 𝐷𝑆𝐷𝑀𝐺  are represented by then double dominant collection 𝛾2×2𝐷𝑆𝐷𝑀 

after the 2-dominant collection 𝛾2𝐷𝑆𝐷𝑀(𝐺). It is evident that for someone graph 𝐷𝑆𝐷𝑀𝐺 

not in separate points,  𝛾2×2𝐷𝑆𝐷𝑀𝐺 ≥ 𝛾2𝐷𝑆𝐷𝑀(𝐺) holds true. Any dominant set possessing 
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the quality that each vertex 𝑢 ∈ 𝑉𝐷𝑆𝐷𝑀\𝐷𝑆𝐷𝑀𝑆   is next to a vertex 𝑉𝐷𝑆𝐷𝑀\𝐷𝑆𝐷𝑀𝑆   such 

that (𝐷𝑆𝐷𝑀𝑆 ⊆ 𝑉𝐷𝑆𝐷𝑀  ∪  𝑈𝐷𝑆𝐷𝑀 being dominant set as called a secure dominant set  that 

graph 𝐷𝑆𝐷𝑀𝐺. 

When every single vertex in 𝑉𝐷𝑆𝐷𝑀  ∩  𝐷𝑆𝐷𝑀(𝐺) It's near through 𝑘* compared to a point 

of 𝐷𝑆𝐷𝑀(𝐺), then a 𝐷𝑆𝐷𝑀  ≤  𝐷𝑆𝐷𝑀 𝑉(𝐺) is referred to as a distance 𝑘*-dominant collection 

of 𝐷𝑆𝐷𝑀(𝐺). That classic dominant size of 𝐷𝑆𝐷𝑀(𝐺) is 𝛾k𝐷𝑆𝐷𝑀(𝐺) in that special case of 

𝑘*=1. Even if  𝐷𝑆𝐷𝑀(𝐺) is bipartite, determining is 𝛾k𝐷𝑆𝐷𝑀(𝐺)for any graph  𝐷𝑆𝐷𝑀(𝐺) is 

an NP-hard problem [5]. Numerous authors have thoroughly examined the idea of a 𝑘*-

dominating set in order to take into account the distance parameters in a variety of contexts 

and structures that result in graphs; see, for example, [18–22]. 

For non-cyclic abelian groups Al (𝑝𝑛) × Al (𝑞𝑚)  and Al (𝑝𝑛) × ℤ𝑚, where p and q are 

distinct primes, Arora et al. [23] computed the spectrum of the  secure distance matrix 

domination of the enhanced power graph of non-abelian groups of order pq, dihedral 

groups, dicyclic groups, and elementary abelian groups  El (𝑝𝑛). 

Many types of dominance criteria have been studied by placing different constraints on 

dominant sets [5]. Parameters characterise the most innovative dominance is the quantity 

of vertices over which a vertex is dominant. Additionally, a study of the dominance 

polynomial of a particular graph is presented in [6]. The degree of 𝑣 represented as ⅆⅇ𝑔(𝑣), 
represents the cardinality of 𝐺. Numerous studies have been conducted in several domains, 

including linear algebra, laplacian, and distance matrices [7–12]. This paper computes new 

domination results in graphs using a technique called secure distance matrix domination. 

A few dominating set theorems for secure distance matrices are described. 

The lowest cardinality associated with  secure overpowering  𝐷𝑆𝐷𝑀𝐺 equal to secure 

dominance number 𝛾𝑆𝐷𝑆𝐷𝑀(𝐺). Cockayne et al. [13] introduced secure domination, which 

is examined, for instance, in [14–17]. 

A table that displays the distance between two objects distance . Square that shows the 

separations between each element of a set in pairs. There are four types of topologies: ring, 

star, mesh, and hybrid. These networks have advantages and disadvantages. As a result, all 

of these networks are becoming topological graphs and using the distance domination 

theory on them.Although the chemical formulas for substances like ethanol and methane  

were known, it was unclear how the constituent elements mixed to create these 

compounds.Alexander Crum Brown developed the concepts of chemistry and presented 

his visual formulas for depicting molecules in 1850. Additionally, he displayed the typical 

drawing, the matching tree graph, and the representation of ethanol. 

2. Preliminaries 

Definition 2.1 

A subset 𝐷𝑆𝐷𝑀(𝑆)  ⊆  𝑉𝐷𝑆𝐷𝑀(𝐺)  that  is referred to as  Secure Distance matrix dominat 

set of G if each vertices 𝐷𝑆𝐷𝑀(𝑣) 𝜖 𝑉𝐷𝑆𝐷𝑀(𝐺) ∖ 𝐷𝑆𝐷𝑀(𝐺) there exists  

𝐷𝑆𝐷𝑀(𝑢) 𝜖 𝐷𝑆𝐷𝑀(𝑆) such that 𝐷𝑆𝐷𝑀(𝑢𝑣) 𝜖 𝐷𝑆𝐷𝑀(𝐸) and 𝐷𝑆𝐷𝑀(𝑆) = (𝐷𝑆𝐷𝑀(𝑆) −
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𝐷𝑆𝐷𝑀(𝑢) ∪ 𝐷𝑆𝐷𝑀(𝑣) is a dominating set and the minimum cardinality of secure  distance 

matrix dominating set is the secure Distance matrix dominating number which is denoted 

by 𝛾s𝐷𝑆𝐷𝑀(𝐺) 

Definition 2.2 

Consider 𝐷𝑆𝐷𝑀(𝐺) = (𝑉 (𝐷𝑆𝐷𝑀) , 𝐸 (𝐷𝑆𝐷𝑀))  be a normal graph. A secure distance   

matrix dominating set  𝐷𝑆𝐷𝑀(𝐺) is defined a secure distance matrix  dominating set if for 

every set   𝐷𝑆𝐷𝑀  𝑉1 ⊆  𝐷𝑆𝐷𝑀  𝑉 ∖ 𝐷𝑆𝐷𝑀(𝐷)  there is a set that is not empty 𝐷𝑆𝐷𝑀  𝐷1 ⊆
  𝐷𝑆𝐷𝑀  𝐷 in a way that generated a subgraph 𝐷𝑆𝐷𝑀  < 𝑉1 ∪  𝐷𝑆𝐷𝑀 𝐷1 > Resulting from 

𝐷𝑆𝐷𝑀  𝑉1 ∪  𝐷𝑆𝐷𝑀  𝐷1  has a connection. The cardinality minimum of secure Distance 

matrix dominating set is called the secure  Distance matrix domination number of 

𝐷𝑆𝐷𝑀(𝐺)and is denoted by 𝛾s𝐷𝑆𝐷𝑀(𝐺). 

Definition 2.3 

The upper secure  distance matrix  dominating number, represented by 𝛾s𝐷𝑆𝐷𝑀(𝐺), is the 

cardinality maximum of a minimal secure distance matrix dominating set of 𝐷𝑆𝐷𝑀(𝐺). It 
is obvious that a dominating set 𝐷𝑆𝐷𝑀(𝐷) is only a secure Distance matrix dominating set 

if and when the set 𝐷𝑆𝐷𝑀(𝐷) itself is a  secure  distance matrix  dominating set. 

Definition 2.4 

A line graph is formed by 𝐷𝑆𝐷𝑀(𝐺) = (𝑉 (𝐷𝑆𝐷𝑀) , 𝐸 (𝐷𝑆𝐷𝑀)), when the set of edges is 

represented by 𝐸 (𝐷𝑆𝐷𝑀) as well as the one that powers the set of points is implied from 

(𝑉 (𝐷𝑆𝐷𝑀) . Each of the edge, usually referred to as simply vivj, consists of an 

unorganized established of two unique vertices, {(𝑣𝑖 (𝐷𝑆𝐷𝑀), (𝑣𝑗  (𝐷𝑆𝐷𝑀)} for 1 ≤

𝐷𝑆𝐷𝑀( 𝑖)  ≠  𝐷𝑆𝐷𝑀(𝑗)  ≤  𝑛. If there is a path from u to v for every   𝑢, 𝑣 ∈ 𝑉 𝐷𝑆𝐷𝑀(𝐺), 
then graph 𝐷𝑆𝐷𝑀(𝐺) is connected. 

Definition 2.5 

Given an asymmetrical graph 𝐷𝑆𝐷𝑀(𝐺)  on its vertex set {v1, v2, … , vρ}, the p × p matrix 

is the Secure Distance matrix an  𝐷𝑆𝐷𝑀(𝐺). 

𝐷𝑆𝐷𝑀(𝐺) = {

d(x, y)  if vx ↔ vy,

     0      ,  otherwise. 
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EXAMPLE 2.5.1 

 

                                    Figure 1: Diamond necklace Graph 

Secure Distance Matrix Domination of a Diamond necklace Graph 

0 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 5, 6, 6 

1, 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 4, 5, 5, 5, 7, 6, 6, 7 

1, 1, 0, 1, 2, 1, 3, 3, 3, 2, 2, 2, 4, 5, 5, 5, 3, 4, 4, 4, 6, 6, 5, 6 

1, 2, 1, 0, 2, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 4, 5, 5, 5, 7, 6, 6, 7 

1, 2, 2, 2, 0, 3, 1, 1, 1, 4, 4, 4, 2, 3, 3, 3, 5, 6, 6, 6, 5, 4, 5, 5 

2, 2, 1, 2, 3, 0, 4, 4, 4, 1, 1, 1, 5, 6, 6, 6, 2, 3, 3, 3, 5, 5, 4, 5 

2, 3, 3, 3, 1, 4, 0, 2, 1, 5, 5, 5, 2, 3, 3, 3, 6, 7, 7, 6, 5, 4, 5, 5 

2, 3, 3, 3, 1, 4, 2, 0, 1, 5, 5, 5, 2, 3, 3, 3, 6, 7, 7, 6, 5, 4, 5, 5 

2, 3, 3, 3, 1, 4, 1, 1, 0, 5, 5, 5, 1, 2, 2, 2, 6, 6, 6, 5, 4, 3, 4, 4 

3, 3, 2, 3, 4, 1, 5, 5, 5, 0, 2, 1, 6, 7, 7, 6, 2, 3, 3, 3, 5, 5, 4, 5 

3, 3, 2, 3, 4, 1, 5, 5, 5, 2, 0, 1, 6, 7, 7, 6, 2, 3, 3, 3, 5, 5, 4, 5 

3, 3, 2, 3, 4, 1, 5, 5, 5, 1, 1, 0, 6, 6, 6, 5, 1, 2, 2, 2, 4, 4, 3, 4 

3, 4, 4, 4, 2, 5, 2, 2, 1, 6, 6, 6, 0, 1, 1, 1, 5, 5, 5, 4, 3, 2, 3, 3 

4, 5, 5, 5, 3, 6, 3, 3, 2, 7, 7, 6, 1, 0, 2, 1, 5, 5, 5, 4, 3, 2, 3, 3 

4, 5, 5, 5, 3, 6, 3, 3, 2, 7, 7, 6, 1, 2, 0, 1, 5, 5, 5, 4, 3, 2, 3, 3 
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4, 5, 5, 5, 3, 6, 3, 3, 2, 6, 6, 5, 1, 1, 1, 0, 4, 4, 4, 3, 2, 1, 2, 2 

4, 4, 3, 4, 5, 2, 6, 6, 6, 2, 2, 1, 5, 5, 5, 4, 0, 1, 1, 1, 3, 3, 2, 3 

5, 5, 4, 5, 6, 3, 7, 7, 6, 3, 3, 2, 5, 5, 5, 4, 1, 0, 2, 1, 3, 3, 2, 3 

5, 5, 4, 5, 6, 3, 7, 7, 6, 3, 3, 2, 5, 5, 5, 4, 1, 2, 0, 1, 3, 3, 2, 3 

5, 5, 4, 5, 6, 3, 6, 6, 5, 3, 3, 2, 4, 4, 4, 3, 1, 1, 1, 0, 2, 2, 1, 2 

6, 7, 6, 7, 5, 5, 5, 5, 4, 5, 5, 4, 3, 3, 3, 2, 3, 3, 3, 2, 0, 1, 1, 2 

5, 6, 6, 6, 4, 5, 4, 4, 3, 5, 5, 4, 2, 2, 2, 1, 3, 3, 3, 2, 1, 0, 1, 1 

6, 6, 5, 6, 5, 4, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 0, 1 

6, 7, 6, 7, 5, 5, 5, 5, 4, 5, 5, 4, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1, 1, 0 

Floyd-Warshall Algorithm of Secure Distance Matrix Domination of a Diamond 

necklace Graph 
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EXAMPLE 2.5.2  

Figure 2:  Diamond chain Graph 

Secure Distance Matrix Domination of a Diamond chain Graph 

𝐷𝑆𝐷𝑀(𝐺) =

|

|

|

0 1 1 2 2 3 3 3 3
1 0 2 1 3 2 3 3 3
1 2 0 3 1 2 2 2 2
2 1 3 0 2 1 2 2 2
2 3 1 2 0 1 1 1 1
3 2 2 1 1 0 1 1 1
3 3 2 2 1 1 0 1 1
3 3 2 2 1 1 1 0 1
3 3 2 2 1 1 1 1 0

|

|

|

 

Floyd-Warshall Algorithm of Secure Distance Matrix Domination of a Diamond 

chain Graph 
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3. Secure Distance Matrix Domination 

Example 3.1 :A Set 𝐷𝑆𝐷𝑀(𝑆) = {1,4} .The secure dominant set in graph G. For, 

𝑉(𝐷𝑆𝐷𝑀(𝐺)) = {1,2,3,4} .It is the dominant set. 𝑉(𝐷𝑆𝐷𝑀(𝐺) − 𝐷𝑆𝐷𝑀(𝑆) = {2,3}. 
Therefore, Figure 1(b) displays that the 𝐷𝑆𝐷𝑀 become a secure distance matrix dominating 

set of 𝐷𝑆𝐷𝑀  (𝐺). 

 

                                                                                            

                                                                                 𝑆𝐷𝑀 (𝐺) =
𝑣2
𝑣3
(
𝑣2 𝑣3
0 1
1 0

)                   

Figure 1(a). Secure dominating set         Figure 1(b). Secure distance matrix dominating 

set 

Theorem 3.3 

For the complete graph 𝐾6,
𝑑

𝑑𝑎
(
𝐷𝑆𝐷𝑀𝑚,𝑛(𝐾6,𝑎)

6
) = 𝐷𝑆𝐷𝑀𝑚,𝑛(𝐾6−1, 𝑎) + 1. 

Proof: 

A Set 𝐷𝑆𝐷𝑀(𝑆) = {6} is the firmly established dominant set. For, 𝑉𝐷𝑆𝐷𝑀 =
{1,2,3,4,5,6} become a dominating set. 𝑉𝐷𝑆𝐷𝑀 − 𝐷𝑆𝐷𝑀(𝑆) = {1,2,3,4,5}. 

 

Figure 2(a). Secure dominating set of complete graph 𝐾6 

 

4 3 

1 2 

3 

2 
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𝑆𝐷𝑀 (𝐺) =

 𝑣1
𝑣2
𝑣3
𝑣4
𝑣5 (

  
 

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0 )

  
 

 

 

Figure 2(b). Secure distance matrix dominating set of complete graph 𝐾5 

We have 𝐷𝑆𝐷𝑀𝑚,𝑛(𝐾6, 𝑎) = (1 + 𝑎)
6 − 1. 

Therefore, 
𝑑

𝑑𝑎
(𝐷𝑆𝐷𝑀𝑚,𝑛(𝐾6, 𝑎)) = 6(1 + 𝑎)

6−1 

                  
ⅆ

ⅆ𝑎
(
ⅆ(𝑣𝑚, 𝑣𝑛) (𝐾6, 𝑎)

6
) = (1 + 𝑎)5 

           
ⅆ

ⅆ𝑎
(
ⅆ(𝑣𝑚, 𝑣𝑛) (𝐾6, 𝑎)

6
) − 1 = (1 + 𝑎)5 − 1 

= ⅆ(𝑣𝑚, 𝑣𝑛) (𝐾5, 𝑎) 

Hence, 

𝑑

𝑑𝑎
(
𝐷𝑆𝐷𝑀𝑚,𝑛(𝐾6,𝑎)

6
) = 𝑆𝐷𝑀𝑚,𝑛(𝐾5, 𝑎) + 1. 

Theorem 3.4 

Let 𝐷𝑆𝐷𝑀 be the secure distance matrix such that𝐷𝑆𝐷𝑀 𝑆 ⊆ 𝑉(𝐺) and let 𝐾𝑛 become 

a complete graph having 𝐷𝑆𝐷𝑀𝑛 nodes. Following that, given an algebraic multiplicity of 

𝑛 − 1, the eigenvalues of 𝐷𝑆𝐷𝑀 are 𝑛 − 1 and -1. 

Proof.  
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Initially, we demonstrate that -1 is an 𝐷𝑆𝐷𝑀 eigenvalue by taking into account 𝐷𝑆𝐷𝑀𝑚,𝑛 = 

ⅆ(𝑣𝑚, 𝑣𝑛), clearly 

(𝐷𝑆𝐷𝑀 − (−1)𝐼𝑛) = (

1 1 1 … 1
1 1 1 … 1
⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 … 1

) 

The other eigenvalue of 𝐷𝑆𝐷𝑀 is found in the second part of the proof, which assumes that 

The total amount of each and every their eigenvalue in  𝐷𝑆𝐷𝑀 has become equivalent to the 

process of tracing.  

Given the standing of (𝐷𝑆𝐷𝑀 − (−1)𝐼𝑛) is 1, this implies that det (𝐷𝑆𝐷𝑀 − (−1)𝐼𝑛) = 0  

and that negative One of the eigenvalues of𝐷𝑆𝐷𝑀 with algebraic variance of 𝑛 − 1 indexed 

by “𝐷𝑆𝐷𝑀𝑆 ⊆ 𝑉𝐷𝑆𝐷𝑀(𝐺). 

ⅇ ∗ + ∑  

𝑛∗−1

𝑖=1

  (−1)  = 0

ⅇ ∗ −(𝑛 ∗ −1)  = 0
ⅇ ∗  = (𝑛 ∗ −1).

 

As result, 𝐷𝑆𝐷𝑀 's eigenvalues are 𝑛 ∗ −1 and -1,” with 𝑛 ∗ −1 algebraic multiplicity. 

Theorem 3.5 

Assume that 𝐷𝑆𝐷𝑀(𝐺)  is going on secure distance matrix for a line graph 𝐷𝑆𝐷𝑀𝐺 with 𝑛 ≥
2 vertices that is implies that 𝐷𝑆𝐷𝑀𝑆 ⊆ 𝐷𝑆𝐷𝑀𝑉(𝐺). With 𝑛 ∗ −1 negative eigenvalues and 

one positive eigenvalue, 𝐷𝑆𝐷𝑀(𝐺) is then described. 

Proof.  

Using the induction approach on the number of vertices (𝑛 ∗), we shall demonstrate this. 

Starting there is only one straightforward graph with two vertices when (𝑛 ∗)  =  2. 

 

𝑆𝐷𝑀(G) =
𝑣1
𝑣2
(
𝑣1 𝑣2
0 1
1 0

) 

 

Figure 3. Secure distance matrix dominating set 

Let Simple Graph be  and Secure distance matrix be 𝐷𝑆𝐷𝑀(𝐺). 

2 

1 
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We calculate the eigenvalues of 𝑆𝐷𝑀(𝐺), and we refer to 𝐷𝑆𝐷𝑀(𝐺) as 𝐷𝑆𝐷𝑀 to keep 

things simple.  

Next, we solve, 

det (𝐷𝑆𝐷𝑀 − 𝜓𝐼)  = 0,

|
−𝜓 1
1 −𝜓

|  = 0,

𝜓2 − 1  = 0,
(𝜓 + 1)(𝜓 − 1)  = 0.

 

As a result, we have one eigenvalue that is positive, 𝜓 = 1, and one that is negative, 𝜓 =
−1. 

We now suppose that the theory applies to graphs having 𝑛 − 1 vertices and examine 𝑛 >
2.  

By removing a vertex, which we refer to as 𝑣𝑎, or a vertex of degree one, from 𝐷𝑆𝐷𝑀, we 

create a subgraph (which is once more a graph) with 𝑛 − 1 vertices.  

𝐷𝑆𝐷𝑀𝑣𝑎 is the secure distance matrix for the generated subgraph. 

Keep in consideration that the separations between the remaining vertices don't change if 

𝑣𝑎 is removed since it is pendant. This indicates that the submatrix of 𝐷𝑆𝐷𝑀 called 𝐷𝑆𝐷𝑀𝑀𝑣𝑎 

is created by taking out the columns and rows and column that match the point of 

intersection 𝑣𝑎. 

We assume that the eigenvalues of 𝐷𝑆𝐷𝑀𝑣𝑎  are 𝜌1, 𝜌2, ⋯ , 𝜌𝑛−1 such that 𝜌1 is positive and 

the remaining eigenvalues are negative. 

Let us now assume that the 𝐷𝑆𝐷𝑀 eigenvalues are 𝜓1, 𝜓2, ⋯ , 𝜓𝑛. Cauchy's Interlacing 

Theorem may be applied to the Hermitian matrix's eigenvalues. 

The introduction informs us that 𝐷𝑆𝐷𝑀 is Hermitian. After that, we obtain 𝜓1 ≥ 𝜌1 ≥ 𝜓2 ≥
𝜌2 ≥ ⋯ ≥ 𝜓𝑛−1 ≥ 𝜌𝑛−1 ≥ 𝜓𝑛 by using the interlacing theorem. We note that 𝜓2 might 

have a positive or negative value. 𝐷𝑆𝐷𝑀 has two positive eigenvalues if it is positive; if it 

is negative, 𝐷𝑆𝐷𝑀 has only one positive eigenvalue. The sign is supported by the The reality 

that the matrices determinant's consider is proportional to the product of the eigenvalues of 

𝜓2.  

Hence, 

det 𝐷𝑆𝐷𝑀
det 𝐷𝑆𝐷𝑀𝑣𝑎

=
𝜓1 ⋅ 𝜓2⋯𝜓𝑛
𝜌1 ⋅ 𝜌2⋯⋅ 𝜌𝑛−1

. 
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The sign of 
det 𝐷𝑆𝐷𝑀

det 𝐷𝑆𝐷𝑀𝑣𝑎
 relies on the sign of 𝜓2, since 𝜓1, 𝜌1 are positive, 𝜌2 is negative, 

and 𝜌2 ≥ 𝜓3⋯ ≥ 𝜓𝑛−1 ≥ 𝜌𝑛−1 ≥ 𝜓𝑛. 

By using the determinant of a graph formula, we obtain 

 

det 𝐷𝑆𝐷𝑀
det 𝐷𝑆𝐷𝑀𝑣𝑎

 =
(−1)n∗−1(𝑛 ∗ −1)2𝑛∗−2

(−1)𝑛∗−1−1(𝑛 ∗ −1 − 1)2𝑛∗−1−2

 =
(𝑛 ∗ −1)

(−1)(𝑛 ∗ −2)2−1

 =
−2(𝑛 ∗ −1)

(𝑛 ∗ −2)
< 0.

 

This suggests that 𝑆𝐷𝑀 has a single positive eigenvalue since 𝜓2 is negative. 

 

Theorem 3.6 

If a graph 𝐺 consists of 𝑝 components 𝐺1, 𝐺2, … , 𝐺𝑝, then 𝐷𝑆𝐷𝑀(𝐺, 𝑥) =

𝐷𝑆𝐷𝑀(𝐺1, 𝑥)𝐷𝑆𝐷𝑀(𝐺2, 𝑥)…𝐷𝑆𝐷𝑀(𝐺𝑝, 𝑥), for any natural number 𝑝.  

Proof: 

When 𝑝 = 2, 𝐺 = 𝐺1 ∪ 𝐺2.  

Therefore 𝐷𝑆𝐷𝑀(𝐺, 𝑥) = 𝐷𝑆𝐷𝑀(𝐺1, 𝑥)𝐷𝑆𝐷𝑀(𝐺2, 𝑥).  

Hence, 𝐷𝑆𝐷𝑀(𝐺, 𝑥) = 𝐷𝑆𝐷𝑀(𝐺1, 𝑥)𝐷𝑆𝐷𝑀(𝐺2, 𝑥)…𝐷𝑆𝐷𝑀(𝐺𝑝, 𝑥), for any natural number 

𝑚.  

Corollary 3.7 

 Assume that the null graph, 𝐾‾𝑛, has 𝑛 ∗ vertices. 

Then 𝐷𝑆𝐷𝑀(𝐾‾𝑛∗, 𝑥) = 𝑥
𝑛∗. 

Proof: 

Since 𝐷𝑆𝐷𝑀(𝐾‾1, 𝑥) = 𝑥, by Theorem 3.6,  𝐷𝑆𝐷𝑀(𝐾‾𝑛∗, 𝑥) = 𝑥
𝑛∗. 

Perfect Distance Matrix Dominating Set  

         We examine how a set becomes a vertex cut  outstanding  commanding set, and  

distance matrix dominant set to a given graph in this section. In the event that there are 

more of dominating sets that are available, we then identify the best set among all the 
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dominating sets due to a certain requirement or legitimate goal. The goal is to increase the 

effectiveness of electrical circuit connectivity by reducing distance. 

An overwhelming group If each vertex in V has a single dominant vertex in 𝐷𝑚, then D 

become a  perfect dominating set  or else a dominant set A perfect dominant set (𝐷) is 

defined as follows: each  vi in 𝐷, 𝑁(𝑣1) ∩ 𝑁(𝑣2) ∩ …∩ 𝑁(𝑣𝑘) = ∅As well as an alternative 

presentation method a powerful group . If for every in 𝐷𝑚 there is exactly one vertex 

𝑁(𝑣𝑖)  ∩ 𝐷𝑚, or if for every vi in D there is exactly one vertex | 𝑁(𝑣𝑖)  ∩ 𝐷𝑚|  =  1, then 𝐷𝑚 

is considered perfect dominating  set. where 𝑁(𝑣)  is 𝑣′𝑠 neighboring vertex. 

Dominance of Distance Matrix in Biomolecule Structures 

Dehydration synthesis is the process of joining two monomers to create a covalent bond. 

Synthesis means "to join together," and dehydration means "removal of water." 

Consequently, two monomers in this process form a covalent bond through the removal of  

a molecular water. On one side of every organic monomer is a hydrogen (𝐻) atom, and on 

the other is a hydroxyl group (−𝑂𝐻). These two functional groups (𝐻 & 𝑂𝐻) will be 

facing each other when two monomers are lined up side by side. 

 A water molecule is formed when the 𝐻 and the 𝑂𝐻 separate from their corresponding 

monomers and form a bond. This completes the process's dehydration phase. Now that 

every monomer has a carbon atom that needs to form a covalent bond, they attach 

themselves to one another. 

 Now that every monomer has a carbon atom that needs to form a covalent bond with 

something, the monomers bind to one another to form polymers. That amounts to 115.the 

process's synthesis phase. The process of dehydration synthesis requires energy.Each time 

a cell needs to assemble a protein or a carbohydrate, it must invest energy in creating those 

chemical bonds. Building all organic polymers requires the universal process of 

dehydration synthesis. 

Dominance of Distance Matrix in Networks 

Networks of Computers Having Common Connectivity 
A telecommunications network that enables data exchange between computers is called a 

computer network, sometimes referred to as a data network. Networked computing devices 

in computer networks 

Using a data link, they can exchange data with one another. Either wireless or cable media 

are used to connect the nodes to one another. The Internet is the most widely used computer 

network. 

Network nodes are the computer systems on a network that start, route, and end data 

(vertices).Networking hardware and hosts like PCs, phones, servers, and other devices can 

be considered nodes, or vertices. These two gadgets can be. When two devices can 

exchange information, regardless of whether they are directly connected to one another, 

they are said to be joined forces through a network. 
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Computer networks differ in their size, topology, transmission medium, communications 

protocols used to control traffic, and organizational objectives. Networks of computers 

enable a wide range. 

Using the Internet, electronic audio and video transmission, sharing printer and fax 

machine use, application and storage servers, email and instant messaging are just a few 

examples of applications and services. Generally, application-specific protocols layer (or 

carry over) more general communications protocols as payloads. 

Properties 

Computer networking can be categorized as a subfield of information technology, 

computer science, electrical engineering, or telecommunications. Engineering, as it is 

dependent on the application of the theoretical and practical allied fields of study. 

Interpersonal communications are made easier and more efficient by computer networks, 

which enable users to communicate by phone, video conference, chat rooms, email, instant 

messaging, and other means. 

One essential element of many networks is the ability to access data on communal storage 

devices. Authorized users can access information stored on other computers connected to 

the network by sharing files, data, and other kinds of information over the network. Sharing 

network and computer resources is made possible by a network. Networked devices offer 

resources that users can access and utilize. Users can print documents, for instance, from a 

network printer that is shared.Distributed computing makes use of a network to accomplish 

tasks by utilizing computer resources. Computer crackers may use a computer network. 

Desktop computers crackers to infect connected devices with computer viruses or worms, 

or to use denial-of-service attacks to stop connected devices from connecting to the 

network 

Network Packet:  

Unlike traditional one point to another (the edge) data connections for communications is 

transmitted as a packet over computer systems network connections (edges) that do not 

support packets. stream of bits. However, the majority of data in computer networks is 

transported via packets. Formatted data is transferred over a packet-switched network as a 

list of bits or bytes, typically with sizes ranging from a few tens to several kilobytes. 

Data is formatted into packets in packet networks and sent to its destination via the network. 

The packets are assembled back into the original message once they arrive. When using 

packets of information, the communication medium's bandwidth can be more evenly 

dispersed across individuals as opposed to circuit switching the network. The link (edge) 

can fill with packets from other users if it isn't overused and one user isn't sending any, 

allowing the price to be split as evenly as possible.Packets contain two types of data: user 

data (payload) and control data. The control information provides the network with error 

detection codes, source and destination network addresses, and other information required 

to send user data informational ordering. Usually, payload data is situated between the 

control information-containing trailers and packet headers. The necessary path for a packet 
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through a network is often not known at all times. After that, the packet is queued and waits 

for a link (edge) to open. 

A community Nodes (Vertices):  

Modems, hubs, switches, routers, bridges, firewalls, and network interface controllers 

(NICs) are some of the additional essential system components that make up networks in 

addition to any physical transmission media that may be present. 

Conclusion 

Assume we have a basic line graph 𝐺 = (𝑉, 𝐸). Dominance in graphs is one aspect 

of graph theory that has been extensively researched. A subset 𝑆 of vertex contains a graphs 

can be said to become a dominant set if every one of vertex in the subset either resides in 

S or is adjacent to a separate vertex within S. The present work obtains new domination 

results in graphs employing an approach called secure distance matrix domination. A few 

dominating set theorems for secure distance matrices are described. 
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