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Abstract: - An interconnected power system must employ multi-area economic load dispatch (MAELD) to keep generation dispatch 

efficient, satisfy load demands, and stay within technological limits. The goal of MAELD's operational constraints is to reduce fuel costs 

and emissions from multi-area power production facilities. Consequently, optimization solutions that successfully tackle MAELD 

problems are highly sought after. By merging an alternative model with the Deep Recurrent Neural Network (DRNN) one, this paper 

suggests a fresh approach to addressing MAELD problems. This paper provides a detailed account of the various optimization 

methodologies used to address the issue of load dispatch when non-conventional energy sources are present. Four domains utilizing 3-, 

13-, and 40-unit systems were used to test the suggested DRNN and LSTM approach. Comparing this method to various optimization 

algorithms as firefly, Salp Swarm, Squirrel search, Particle Swarm, and Gross Hopper, results produced from the MATLAB/Simulink 

environment show that it delivers superior trade-off solutions without breaching limitations. 

Keywords: Multi-area economic load dispatch, generation dispatch strategy, fuel cost, emissions, Long short term 

memory, renewable energy sources. 

 

1. INTRODUCTION 

As society and the economy continue to grow rapidly, there is a corresponding increase in the demand for 

electric energy. However, the electric power industry must comply with new laws that mandate it save energy 

and reduce emissions. In this case, optimizing power system operation is critical, notably by effectively 

planning generator outputs according to expected load demands. This optimization seeks to lower both fuel 

expenses and pollutant emissions [1]. As a result of its practicality and compatibility with short-term load 

demands in real-world circumstances, the topic of cost-effective emission dispatch has received substantial 

awareness. The purpose of economic emission dispatch (EED) is to minimise both fuel costs and emissions, 

making it a multi-objective optimisation problem.  Various practical restrictions, akin equally power balance 

constraints, ramp rate limits, output power constraints, and spinning reserve constraints, must be considered in 

order to achieve this. Electric car charging and discharging behaviours, as well as the inherent vagueness of 

wind power generation, are all included in EED model, making it not only effective for swiftly transmitting 

generator outputs based on shifting load demands within a specified interlude, but also more realistic. As a 

result, recent research investigations show an increasing interest in merging EED with renewable energy 

sources. Researchers want to maximize power system operation while embracing the fluctuating nature of 

renewable energy sources by merging EED with renewable energy, such as wind power. This integration allows 

for more effective utilization of renewable energy, reduces reliance on fossil fuels, and contributes to overall 

energy sustainability and environmental goals. The combination of EED and renewable energy represents an 

important research area, as it addresses the need for optimizing power system operations ensuing the fluctuation 

in undeletable energy sources. Every promise of a more sustainable and ecologically friendly power system can 

be realized through the combining of EED and renewable energy. Investigators in various fields have shown a 

marked surge in interest in bio-inspired optimization strategies over the past decade. This rise in popularity can 

be attributed to the growing complication and size of real-world optimization problems. 

Stochastic optimization methods, like those drawn from biology, use chance to find improvements. Given this 

ambiguity, gradient-free search techniques can be expanded, which is helpful when attempting to solve 

difficult optimization problems. These optimization techniques draw inspiration from biological phenomena, 

and they can be broadly categorized grounded on evolutionary principles, mutual behaviour (swarm-based), 

ecological singularities, or physical sciences. One of the key advantages of bio-inspired optimization approaches 

is their ability to handle real-world optimization problems effectively. Engineering, finance, healthcare, and 

logistics are just a few of the fields where these algorithms have shown their worth. These strategies provide 

resilient and adaptable optimisation methods that can adjust to changing and complex problem spaces by 

modelling them after natural processes. Furthermore, bio-inspired optimization approaches provide alternative 

solutions to traditional optimization methods, which often rely on mathematical formulations and assumptions. 

The stochastic nature of these algorithms allows for exploration of a broader search space and the potential 

discovery of novel and more optimal solutions. Overall, bio-inspired optimization techniques have proven their 
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efficacy and potential in addressing real-world optimization problems. Their ability to leverage randomness, 

emulate natural phenomena, and provide robust search mechanisms makes them valuable tools for researchers 

and practitioners in various fields. 

The Crowd intelligence-created optimization methods, aforesaid as Particle Swarm Optimization [2], Artificial 

Bee Colony optimization [3], Whale Optimization Algorithm [4], Grasshopper Optimization Algorithm [5], 

Spider Monkey Optimization [6], Grey Wolf Optimizer [7], and Teaching-Learning-Based Optimization [8], 

remain popular and efficient approaches. These algorithms mimic the self-organizing and task-driven behaviour 

observed in natural systems like fish schooling, bird flocking, honeybee foraging, humpback whale behaviour, 

spider monkey social structure, grey wolf hunting, and classroom learning. Another category of bio-inspired 

optimization methods draws inspiration from physical sciences. Simulated Annealing [9] emulates the annealing 

process in metals, Harmony Search [10] is based on jazz improvisation and the search for perfect harmony, 

Gravitation Search Algorithm [11] utilizes Newton's law of gravitation, Chemical Reaction Optimization [12] 

simulates molecular interactions, Stochastic Fractal Search Algorithm [13] employs random fractals for 

optimization, Water Cycle Algorithm [14] mimics the hydrologic cycle, Invasive Weed Optimization [15] 

replicates weed colonization, Biogeography-based Optimization [16] models species migration among habitats, 

and Flower Pollination Algorithm (FPA) [17] simulates the cross-fertilisation process of flowering plants. 

Various algorithms represent a diverse range of ecological and physical processes that have inspired efficient 

optimization methods. The Red deer algorithm (RDA) is being demonstrated to be a quick and efficient 

approach for performing real-time computations. [18] used RDA headed aimed at solving the Coordinated Quay 

Crane Scheduling & Assignment Difficulty and demonstrated its superior performance using numerical 

examples of varied sizes. The Modified RDA was proposed by the authors of another paper [19] to optimize 

thresholds in grayscale photographs. While examined on publicly available benchmark pictures, MRDA 

outperformed both RDA and standard Particle Swarm Optimization. [20] used real-world grayscale photos to 

evaluate MRDA, RDA, and the Classical Genetic Algorithm (CGA). Using statistical testing, MRDA 

outperformed the other algorithms and produced competitive results. [21] DHOA, a similar meta-heuristic 

algorithm that shares similarities with RDA, was introduced. [22] Presented a hybrid optimization model called 

Red Deer Adopted Wolf Algorithm (RDAWA) for assessing potential movement of stock values in financial 

exchanges. RDAWA combines RDA and Grey Wolf Optimization (GWO) to achieve improved optimization 

performance. Furthermore, an Improved RDA (IRDA) was employed by [23] for the engineering design of a 

Direct Current (DC) brushless motor.  

Wind energy has emerged as a critical renewable energy source in efforts to decrease reliance on conventional 

thermal power generation, reduce fossil fuel use, and reduce pollutant emissions [24-26]. Several studies have 

been conducted by researchers to address how to integrate of wind power into electricity dispatching systems. 

[27] created a load allocation simulation that considers compactor of wind power on pollution management. [28] 

suggested possibility distribution model, based on "universal distribution," to estimate wind power failures in 

economic dispatch situations. With the liberalisation of the energy market, [29] zeroed down on integration of 

wind power furthermore vigorous economic emission dispatch (DEED). To account representing the sporadic 

character of load demand, a stochastic programming framework built on scenarios stay proposed [30].  The grey 

wolf optimizer algorithm was developed by [31] to address the challenges provided by wind power's 

unpredictability and the related economic-emission restriction problem in integrated systems. In addition, to 

account for the ambiguity of wind power generation, [32] suggested a limited multi-objective population 

extreme value optimization technique. [33] Managed the interchange market algorithm to deal with the DEED 

issue with wind farms. [34,35] Considered circumstances in which available wind power is exaggerated or 

miscalculated, coupled with presented an EED model to meet these scenarios. An energy integrated system is 

suggested to use an LSTM-based LF technique that incorporates multi-features and dynamic similar-day 

meteorological data [36]. These studies highlight the versatility and effectiveness of various variants and hybrids 

of the proposed RNN and LSTM in solving different optimization problems across diverse domains. 

The goal of these research is to maximize power dispatching although taking into consideration of vagueness of 

wind power generation. This includes addressing challenges of excess wind power, which can result in wastage, 

as well as insufficient wind power, which requires additional spinning reserves and incurs extra costs [37]. By 

developing models and utilizing optimization algorithms, researchers aim to minimize the additional costs and 

enhance integration of wind power into power dispatching arrangements, leading to more efficient and 

sustainable energy utilization. since Feedforward neural network is deficient in processing the correlation 

information between loads, the prediction model developed by the author was studied as CNN [38, 39]. 

 This paper introduces the DRNN and LSTM as a potential solution for solving MAELD problems. 

The research aims to provide a comprehensive exploration of different optimization algorithms in addressing the 

economic load dispatch problem when renewable energy sources are incorporated. By employing the hybrid 

mode, the paper seeks to enhance the understanding of the algorithm's applicability and effectiveness in 

optimizing power dispatching with the integration appropriate to renewable energy sources. The following is the 

outline of the paper: Independent functions such as economic load dispatch, discharge dispatch, and mixed fiscal 
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and emission dispatch are presented in Section 2 lengthwise with the problem formulation. The limitations, 

existing methods, and application stay also covered. In Chapter 3, you'll find a case study. The results will be 

addressed in Section 4. Section 5 of the report discusses potential future research directions. 

2. METHODOLOGIES 

2.1 Delinquent interpretation 

     Identical to it comes to operational constraints such power balancing, producing or operating limits, and tie 

line capacity, the MAED approach aims for the absolute minimum achievable while yet meeting all of them. 

2.1.1. Objective Functions 

Economic Load dispatch 

Power system management and planning should include consideration of economic load dispatching. As part of 

this procedure, generating units' fuel costs and emission rates will be lowered while still meeting the 

requirements of numerous regulations. Common practise has fuel cost curves represented as quadratic functions 

of active power production commencing the producing units. Therefore, ELD issue can be formulated as the 

subsequent optimisation problem, 

Minimize 

 2 min( ) sin ( )
M N

li gi i i im i i i i

M i N i

C OP A B P D E OP OP
= =

 = + + −
     (1) 

Where 

• The coefficients Ai, Bi, Ci, Di, and Ei on the ith genset's price curve. 

• Pim is  power output at instant m from the ith unit. 

• The ith generation's minimum allowed production, denoted by min_iP. 

• The number of generators is denoted by N. 

• The temporal horizon has a length of M hours. 

Emission Dispatch 

By determining the ideal power generation levels of different units in a power system, the economic dispatch 

issue seeks to minimise the total fuel cost. However, this problem needs to consider the emissions released 

during power generation. These emissions have harmful effects on human health, other organisms, and the 

environment, including material damage and contributions to global warming. These impacts can be viewed as 

costs since they degrade the environment in various ways. The emission dispatch problem seeks to address this 

issue by minimising pollution released because of meeting electricity demand through the combustion of fuels. 

Emissions of various kinds, including nitrogen oxides, sulphur dioxide, particles, and heat, and the expenses 

associated with each are added up in the emission function. The goal of the emission dispatch problem is to 

determine the best schedule for generating electricity so as to limit emissions pollution and fuel costs. To find a 

middle ground between monetary efficiency and environmental sustainability in power system operation and 

planning, the emission dispatch factors in the cost of environmental deterioration into the optimisation problem. 

Emission dispatch problems be capable described as the optimization problem shown below. 

2

2 ( ) exp( )
M N

i gi i i im i im i i im

M i N i

C OP a b P c P d d P
= =

 = + + +      (2) 

The emission function incorporates the emission curve coefficients, represented by ai, bi, ci, di, associated with 

each generator. These coefficients capture relationship between the generator's power output and the emission 

level for specific pollutants. 

Mutual Economic and Emission Dispatch (CEED) 

The objectives and resources invested in fiscal dispatch and emission dispatch are different. Whereas fuel 

expenditures perchance reduced by economical dispatch, additional NOx emissions are generally the result. 

Emission dispatch, on the other hand, prioritises reducing system-wide emissions even if doing so increases 

operational expenses. A CEED strategy is used to establish a balance between cost & emission. The CEED issue 

is stated as follows: 

Minimize the objective function f(C1i(OPgi), C2i(OPgi)) subject to power balance, generating or operating 

limits, and tie line capacity constraints. Here, C1i(OPgi) represents fuel cost of the ith generator's operating 

point (OPgi), and C2i(OPgi) represents the corresponding emissions. 

It is argued that a price penalty factor (pf) be able to be managed to simplify multi equitable CEED issue into a 

single-objective optimisation problem. When we add up all the costs, we get: 

Minimize cost= f ( C1i(OPgi)+ pf(C2(OPgi))        (3) 

Price penalty factor in this formulation combines the pollution cost with the standard fuel expenses. By 

integrating the price penalty component, the system's overall operational cost include including cost of fuel as 

well as the implied cost of emissions. This method eliminates the requirement for separate economic and 

emission dispatch classes. The setting of the price penalty factor enables for fine-tuning the cost-emission 

balance. A larger penalty factor prioritizes emissions reduction at the expense of greater operating costs, 
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whereas a lower penalty factor prioritizes cost reduction at the expense of potentially higher emissions. In order 

to deal with both environmental and financial considerations hip power system operation and planning, CEED 

issue might determine an ideal functioning argument that strikes a balance between cost and emission targets 

through adjusting the price penalty factor. 

The following processes are required to determine the penalty element current economic and emission dispatch 

together: 

• Step 1: Define the impartial function: Determination of objective function that represents the trade-off 

between cost and emissions. In CEED, the objective function is typically defined as the sum of the fuel cost, the 

inferred cost of emissions, and the penalty factor. The importance of the goal function's emissions component is 

controlled by the penalty factor, denoted by h. 

• Step 2: Set the penalty factor range: Define a range of possible values for the penalty factor. The range 

should cover a wide spectrum of trade-offs between cost and emissions. It is common to choose values between 

0 and 1, where 0 represents a focus solely on cost minimization and 1 represents a focus solely on emissions 

reduction. 

• Step 3: Generate penalty factor candidates: Divide the penalty factor range into a finite set of candidate 

values. Under various trade-off scenarios, the system performance will be assessed using these potential values. 

• Step 4: Solve the optimization problem: For each penalty factor candidate, solve the CEED problem as 

a single actual optimization problem. Find the ideal dispatch plan that minimises the revised objective function 

(fuel cost plus implied cost of emissions) using an appropriate optimisation technique. This will give you the 

optimal operating point for each penalty factor candidate. 

• Step 5: Evaluate the trade-offs: Analyze the solutions obtained from Step 4 for each penalty factor 

candidate. Assess the trade-offs between cost and emissions for different values of the penalty factor. This can 

be done by comparing the objective function values, emissions levels, and operating costs associated with each 

solution. 

• Step 6: Choose the penalty factor: Based on the analysis of the trade-offs, choose the penalty factor 

that strikes a satisfactory balance between cost and emissions. The specific selection criteria may depend on the 

specific requirements and preferences of the system operator or decision-maker. 

2.1.2 Constraints 

Real Power Balance Constraints:  

At every single interval over the scheduling horizon, whole real power generation must equalize expected power 

consumption plus real power losses in transmission networks. 

1

0
N

g d l

i

P P P
=

− − =    m M       (4) 

Where: 

• Pg generation represents total real power generated by all generating groups. 

• Pd_demand represents predicted power demand at each time interval. 

• Pl losses represents the true power losses in the transmission lines. 

The formula guarantees that the sum of all power produced by the generators, less all power demand, minus all 

power losses, equals zero. This restriction guarantees that the total real power generated is sufficient to maintain 

system power balance after losses and anticipated demand. 

 

Real Power Operating Limits 

P_min ≤ P_unit ≤ P_max       (5) 

Where: 

• The true electrical output of the generator is denoted by P_unit. 

• P_min represents lower operating limit or the minimum allowable real power output for the unit. 

• P_max represents the upper operating limit or the maximum allowable real power output for the unit. 

This equation makes sure that generating unit's actual energy output stays within the set operational parameters. 

The generating unit's power output should not be less than the lower operating boundary (P_min) or exceed the 

better operating limit (P_max) to affirm safe and reliable operation of the unit. 

Tie Line capacity Constraints 

Tie line capacity constraints refer to the limitations on the maximum power flow between interconnected power 

systems or areas. These constraints ensure that the power flow on tie lines does not exceed their specified limits 

to maintain the reliability and stability of the interconnected systems.  

The equation representing the tie line capacity constraint can be written as: 

|P_tie_line| ≤ P_max_tie_line        (6) 

Where: 

• |P_tie_line| represents the absolute value of the power flow on the tie line. 
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• P_max_tie_line represents maximum allowable power flow limit for the tie line. 

This equation ensures that the absolute value of the power flow on the tie line remains within the specified 

maximum limit. The constraint is applied to both the import and export directions of the tie line, considering the 

power flow as a scalar quantity. By enforcing these constraints, power system operators prevent excessive 

power flow on tie lines, which could lead to voltage instability, system oscillations, or even blackout conditions. 

2.2 Hybrid model and its Implementation 

Due to the valve point effect (VPE), however, EED issues are not convex objectives. Finding the optimal 

solution becomes more challenging due to the introduction of several local minimums, which reflect nonconvex 

features, to the objective problem caused by the VPE. Members in the deep learning community have developed 

networks with long short-term memories (LSTMs). An evolution of Recurrent Neural Networks (RNN), Long 

Short-Term Memory (LSTM) networks were designed to capture long-term dependencies in sequential data and 

avoid the vanishing gradient problem. Because it can't keep data for a long time, RNN can't deal with long-term 

dependencies. 

 
Figure 1. LSTM Architecture for Complex problems  

Due to the elimination of the vanishing gradient problem, the design now incorporates the LSTM without 

modifying the training model. Here in Figure 1 we can observe the structure of an LSTM network, with Xt 

representing the input data, Ct representing the current cell state, and ht-1 representing the previous cell state.  

This model is very helpful in solving complex and continuous problems like economic load dispatch, emission 

problems etc. The elimination of the requirement to maintain a fixed set of states is one of the many advantages 

that LSTMs offer over hidden Markov models (HMMs). Learning rates, input biases, and output biases are only 

a few of the many customisable factors available to LSTMs, in contrast to HMMs that have a fixed number of 

states. The network can adapt and perform better since these parameters give control and flexibility while 

learning. Figure 2 shows the flow diagram for the emission dispatch with LSTM. Thus, in contrast to the 

limitations of HMMs, LSTMs provide a robust and versatile framework for describing sequential data. 
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Figure 2. Flow chart for the LSTM based Emission Dispatch  

The LSTM model has been applied to various fields and has shown promising results in solving optimization 

problems. Here are some applications of the Recurrent neural network. The LSTM based model has been 

successfully employed in solving complex engineering design problems. These include structural optimization, 

vehicle routing problems, scheduling problems, and facility layout optimization. By leveraging the algorithm's 

ability to balance exploration and exploitation, it can effectively find near-optimal solutions in these domains. 

Feature selection is critical in the fields of machine learning and data mining to recognize important & useful 

characteristics from a given dataset. The LSTM has been applied to feature selection tasks, where it helps 

identify the most discriminative features while minimizing redundancy. This application has been useful in 

various domains such as image recognition, bioinformatics, and text classification. The LSTM has been utilized 

in image processing and computer vision applications. It has been employed for image denoising, image 

segmentation, object detection, and image registration. The LSTM's ability to optimize complex objective 

functions makes it a suitable choice for solving challenging image-related problems. Clustering aims to group 

similar data points together. The LSTM has been used for clustering tasks, where it optimizes the clustering 

objective function to find optimal cluster centers and assignments. This application has been applied in various 

fields such as customer segmentation, pattern recognition, and anomaly detection. The LSTM has been 

employed for training and optimizing neural networks. It can be used to fine-tune the network's parameters, such 

as weights and biases, to improve its performance. By exploring the search space effectively, the LSTM helps in 

achieving better convergence and avoiding local optima. The LSTM has been utilized in energy-related 

optimization problems, such as power distribution and energy management systems. It helps in determining 

optimal energy allocation, load balancing, and resource utilization, leading to efficient energy usage and cost 

reduction. It's important to note that while the LSTM has shown promising results in these applications, the 

choice of optimization algorithm depends on the specific problem and its characteristics. Comparisons with 

other algorithms and careful parameter tuning may be necessary to determine the most suitable approach for a 

given problem. 

3 CASE STUDY 

The presented research focuses on evaluating the effectiveness of Long short-term memory (LSTM) based 

recurrent neural network for a real-world MAED problem. The MAED problem, which involves additional tie-

lines and area power balance restrictions, is known to be more complex and challenging compared to the 

conventional Economic Dispatch problem. The evaluation of hybrid model is conducted on test systems of 

various sizes and nonlinearities. Specifically, three test systems consisting of 3-unit, 13-unit, and 40-unit 

configurations are considered. The optimization objective is to determine the optimal settings for actuator 

loading points and target values. The load demand for the three test unit systems are as follows: 850 MW, 1800 

MW, and 10500 MW, respectively. The objective function for the optimization problem is the minimization of 

fuel costs and emission rate. This objective function, denoted as equation (3), is applied to each of the different 

unit systems.  To compare the performance of LSTM with other optimization techniques, five different methods 

are considered: 1. Firefly Optimization (FFO), 2. Salp Swarm Optimization (SSO), 3. Squirrel Search 

Optimization (SO), 4. Particle Swarm Optimization (PSO), 5. Grasshopper Optimization (GO). 

By conducting a comparative analysis of these techniques on the same MAED problem, the research aims to 

assess the effectiveness of LSTM in achieving optimal solutions. This evaluation will provide insights into the 

suitability and performance of LSTM in addressing real-world MAED challenges. In multi-area problems, key 

factors such as the number of system data units, corresponding load demands, and the highest and lowest area 
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values play a significant role. These factors are taken into account in the proposed LSTM to address the 

challenges in MAED problems.  The LSTM incorporates oil cost coefficients (a, b, and c) specific to each 

system size (3-unit, 13-unit, and 40-unit), considering valve-point loading effects and nitrous oxide emission 

rate coefficients (alpha, beta, and gamma). Additionally, ramp rate limits and B-coefficients are considered to 

manage the rate at which the power output can change.  Weightage factors are also taken into consideration to 

balance economic and emission objectives. The implementation of the proposed algorithm requires careful 

planning of the number of units. Each unit represents a harem within the algorithm. Furthermore, another set of 

best solutions is considered to promote the intensification phase.  Real power values, within the constraints of 

maximum and minimum limits, are incorporated into the optimization process. The system operates according 

to the optimization initialization, ensuring that the power generation aligns with the specified parameters and 

constraints. The proposed algorithm has been designed to accommodate non-convex constraints that often arise 

in MAED problems, allowing for efficient solutions. The specific data required for implementing the algorithm 

is provided in the table below. 

Table 1 Constraints and its values 

Constraints Value 

Total power demand (MW) 10500 

The Line Limit (MW) 200/100 

Area load demand (%) 3/13/40 

Population size 100 

itrmin / itrmax 1/1000 

 

By integrating solar and wind sources into the system, the proposed algorithm effectively addresses the 

generation cost and emission rate reduction and valve loading effect constraints across all unit systems. This 

integration enables the system to meet the load demands efficiently.  The algorithm is designed to detect the 

presence of renewable sources. In cases where the load demand exceeds a predefined limit, the algorithm 

activates the renewable systems to contribute power. This ensures that the renewable sources are utilized 

appropriately to support the overall energy generation and balance the load requirements. 

4 DISCUSSIONS 

Three test systems, each representing a multi-domain idea, are used in computational simulations to assess the 

efficiency of the proposed DRNN(LSTM) method. The first test system consists of 40 individual parts spread 

across four distinct regions. The second test setup is a three-area system with thirteen generators. Last but not 

least, we have a three-generator, two-zone test system. The functionality of the proposed LSTM method is 

evaluated using these systems as case studies. The evaluation is performed by using a MATLAB (2023a) 

machine with an i5 processor and 8 GB of RAM to implement the LSTM method. To guarantee the validity and 

consistency of the results, we run each test system 100 times independently. The performance of the LSTM 

technique is compared against existing optimization algorithms such as FFO, SSO, SO, PSO, and GO. These 

contemporary approaches are applied to the same constraints and test systems for a comprehensive comparison. 

Through the evaluation, the appropriateness and effectiveness of the proposed LSTM approach are thoroughly 

assessed. The objective is to determine how well the LSTM technique performs in solving the MAELD problem 

compared to the other optimization algorithms. By conducting these comparative analyses and examining the 

results across the three case studies, valuable insights can be gained regarding the performance and suitability of 

the LSTM technique for multi-area optimization problems. 

Table 2 showcases the cost-effective values achieved using the LSTM for different load demands and unit 

configurations.  For a load demand of 850 MW and a system consisting of 3 units, the LSTM achieved a cost of 

3075.8 Rs. Additionally, the valve loading effect for this configuration amounted to 3189.9 Rs. In the case of a 

load demand of 1800 MW and a system comprising 13 units, the LSTM yielded a cost of 10404.2 Rs. The 

corresponding valve loading effect for this configuration was 11390.5 Rs. Finally, for a load demand of 10500 

MW and a system comprising 40 units, the LSTM resulted in a cost of 89005.1 Rs. The valve loading effect for 

this configuration amounted to 94077.1 Rs. These values represent the cost-effective outcomes achieved by the 

LSTM for each load demand and unit configuration. The algorithm effectively balances the cost optimization 

objectives and takes into account the valve loading effects, providing practical and efficient solutions for the 

given MAED problem.  

Table 2 Cost effective value with LSTM 

Load Demand in MW No of Units  Cost (Rs) Valve loading effect (Rs) 

850 3 3075.8 3189.9 

1800 13 10404.2 11390.5 

10500 40 89005.1 94077.1 
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The table 3 compares the cost, emission rate, and loading effect values achieved by different algorithms for 

three different unit systems: a 3-unit system, a 13-unit system, and a 40-unit system. For the 3-unit system, the 

LSTM algorithm achieves a cost of 3075.8, an emission rate of 0.098841, and a loading effect of 3189.9. 

Among the compared algorithms, the LSTM algorithm has the lowest cost and emission rate, indicating its 

effectiveness in optimizing the system's economic and environmental objectives. For the 13-unit system, the 

LSTM algorithm achieves a cost of 10404.2, an emission rate of 68.05803, and a loading effect of 11390.5. It 

performs competitively compared to the other algorithms, with a reasonable cost and emission rate. In the case 

of the 40-unit system, the LSTM algorithm achieves a cost of 89005.1, an emission rate of 44854.68, and a 

loading effect of 94077.1. Again, the LSTM algorithm demonstrates its effectiveness by providing a competitive 

cost and emission rate compared to the other algorithms. Among the compared algorithms, it can be observed 

that the LSTM algorithm consistently provides favourable results in terms of cost, emission rate, and loading 

effect across the different unit systems. It outperforms or performs comparably to the other algorithms, 

showcasing its suitability and effectiveness for MAED problems. 

 

Table 3 Comparison of Optimization Algorithms for MAED : Cost, Emission Rate, and Loading Effect  

Unit 

system 

3 unit 13 unit 40 unit 

Algorithm Cost 

Emissio

n rate 

loadin

g 

effect 

Cost 

Emissio

n rate 
loadin

g effect 
Cost 

Emissio

n rate 
loading 

effect 

LSTM 

3075.

8 0.098841 3189.9 

10404.

2 68.05803 

11390.

5 89005.1 44854.68 94077.1 

FFO 

3938.

0 0.092171 4256.8 

11058.

8 305.3492 

12218.

9 91699.4 49641.88 96871.3 

SSO 

4586.

7 0.089759 5053.9 

11530.

7 308.3503 

12205.

6 95394.6 53561.84 

100649.

9 

SO 

5111.

7 0.088515 5596.4 

10712.

8 80.62963 

11811.

6 96249.0 54626.74 

101290.

4 

PSO 

4658.

1 0.090472 5261.8 

12710.

1 1177.057 

13856.

6 

106449.

5 87699.01 

111437.

6 

GO 

3966.

3 0.092091 4386.3 

11135.

9 450.74 

12422.

9 93186.1 47698.67 98264.6 

  Figure 3 to 5 illustrates the convergence graph of the proposed system using 3,13 and 40 units system with the 

LSTM compared to other techniques. The results indicate that the LSTM technique consistently achieves lower 

costs, even in single area systems, while meeting all requirements. By dividing the system into distinct areas, the 

LSTM technique can effectively balance the load and generation within each area, resulting in lower costs. It 

highlights the steady improvement and convergence towards optimal solutions achieved by the LSTM approach. 

Overall, the findings indicate that the LSTM technique is highly effective in reducing costs, emission rate even 

in single area systems. The algorithm successfully meets all requirements, ensuring the optimization of 

economic dispatch while satisfying the constraints of the multi-area system. The use of the LSTM technique 

provides reliable and efficient solutions for the given MAED problem. 
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Figure 3 Convergence graph with 3-unit system (a) cost (b) Valve point loading effect (c) Emission rate 
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Figure 4 Convergence graph with 13-unit system (a) cost (b) Valve point loading effect (c) Emission rate 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5 Convergence graph with 40 unit system (a) cost (b) Valve point loading effect (c) Emission rate 

5  CONCLUSION AND FUTURE SCOPE 

The recurrent LSTM model was employed as an optimization tool in this work to solve MAELD problems. The 

goal of linked power systems was to minimize fuel costs and emissions while satisfying load needs and adhering 

to technological limits. The results revealed that the suggested LSTM technique outperformed existing 

optimization strategies such as firefly, Salp Swarm, Squirrel search, Particle Swarm, and Gross Hopper in terms 

of achieving improved trade-off solutions. The LSTM approach successfully addressed MAELD problems in 

four areas with 3, 13, and 40-unit systems, and it outperformed other techniques without violating constraints. 
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By incorporating the concepts of evolutionary algorithms and heuristic search approaches, the LSTM method 

provided efficient and reliable solutions for MAELD problems. The proposed methodology allowed for the 

optimization of both Economic Load Dispatch (ELD) and non-convex ELD problems with excellent 

convergence properties. The simulation results, obtained using the MATLAB platform, demonstrated the ability 

of the LSTM approach to deliver high-quality cost solutions while adhering to all constraints. The findings 

confirmed the effectiveness of the LSTM optimization method in allocating power generation units optimally. 

Overall, this research contributes to the understanding and application of various optimization algorithms for 

solving MAELD problems, particularly in the presence of renewable energy sources. The LSTM method offers 

a viable and efficient approach to address the complex challenges of while achieving cost-effectiveness, 

Emission rate and satisfying technical constraints. Further investigation can be conducted to refine and enhance 

the performance of the LSTM algorithm by incorporating additional heuristics or hybridizing it with other 

optimization techniques. This can potentially improve the convergence speed and solution quality of the 

algorithm. 

References 

[1] Yan, L.; Qu, B.; Zhu, Y.; Qiao, B.; Suganthan, P.N. Dynamic economic emission dispatch based on multi-

objective pigeon-inspired optimization with double disturbance. Sci. China Inf. Sci. 2019, 62, 70210–

70211  

[2] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the sixth 

international symposium on micro machine and human science (MHS 95); 1995. p. 39–43. 

[3] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial 

bee colony (ABC) algorithm. J Global Optim 2007;39:459–71. 

[4] Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Software 2016;95: 51–67. 

[5] Shahrzad S, Seyedali M, Andrew L. Grasshopper optimisation algorithm: theory and application. Adv Eng 

Software 2017;105:30–47 

[6] Bansal JC, Sharma H, Jadon SS, Clerc M. Spider Monkey Optimization algorithm for numerical 

optimization. Memetic Comp 2014;6:31–47. 

[7] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Software 2014;69: 46–61. 

[8] Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method for constrained 

mechanical design optimization problems. Comput Aided Des 2011;43(3):303–15. 

[9] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671–80. 

[10] Geem ZW, Kim JH, Loganathan G. A new heuristic optimization algorithm: harmony search. Simulation 

2001;76:60–8. 

[11] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci 

2009;179:2232–48. 

[12] Lam AYS, Li VOK. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evol Comput 

2010;14(3):381–99. 

[13] Salimi H. Stochastic Fractal Search: a powerful metaheuristic algorithm. Knowl Base Syst 2015;75:1–18. 

[14] Hadi E, Ali S, Ardeshir B, Mohd H. Water cycle algorithm – a novel metaheuristic optimization method 

for solving constrained engineering optimization problems. Comput Struct 2012;110–111:151–66. 

[15] Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecol 

Inf 2006;1(4):355–66. 

[16] Simon D. Biogeography-based optimization. IEEE Trans Evol Comput 2008;12(6): 702–13. 

[17] Yang XS. Flower pollination algorithm for global optimization. In: Unconventional computation and 

natural computation 2012, lecture notes in computer science;2012. p. 240–9. 7445 

[18] Fazli M, Fathollahi-Fard AM, Tian G (2019) Addressing a coordinated quay crane scheduling and 

assignment problem by red deer algorithm. Int J Eng 32(8):1186–1191  

[19] Dey S, De S, Deb A, Debnath S (2021) Multilevel image segmentation using modified red deer algorithm. 

In: 2021 11th international conference on cloud computing, data science and engineering (confluence), 

IEEE, pp 362–368. 

[20] De S, Dey S, Debnath S, Deb A (2020) A new modified red deer algorithm for multi-level image 

thresholding. In: 2020 fifth international conference on research in computational intelligence and 

communication networks (ICRCICN), IEEE, pp 105-111. 

[21]  Brammya G, Praveena S, Ninu Preetha N, Ramya R, Rajakumar B, Binu D (2019) Deer hunting 

optimization algorithm: a new nature-inspired meta-heuristic paradigm. Comput J 20:20  

[22] Alotaibi SS (2021) Ensemble technique with optimal feature selection for Saudi stock market prediction: a 

novel hybrid red deer-grey algorithm. IEEE Access 20:20 

[23] Fathollahi-Fard AM, Niaz Azari M, Hajiaghaei-Keshteli M (2019) An improved red deer algorithm to 

address a direct current brushless motor design problem. Sci Iran 20:20. 

[24] Zhang, Y.; Liu, K.; Liao, X.; Qin, L.; An, X. Stochastic dynamic economic emission dispatch with unit 

commitment problem considering wind power integration. Int. Trans. Electr. Energy 2018, 28, e2472.  



J. Electrical Systems 20-3 (2024): 2271-2282 

 

2282 

 

[25] Chen, J.J.; Qi, B.X.; Peng, K.; Li, Y.; Zhao, Y.L. Conditional value-at-credibility for random fuzzy wind 

power in demand response integrated multi-period economic emission dispatch. Appl. Energy 2020, 261, 

114337.  

[26] Liu, Z.; Li, L.; Liu, Y.; Liu, J.; Li, H.; Shen, Q. Dynamic economic emission dispatch considering 

renewable energy generation: A novel multi-objective optimization approach. Energy 2021, 235, 121407.  

[27] Liu, X.; Xu, W. Minimum Emission Dispatch Constrained by Stochastic Wind Power Availability and 

Cost. IEEE Trans. Power Syst.2010, 25, 1705–1713. 

[28] Zhang, Z.; Sun, Y.; Gao, D.W.; Lin, J.; Cheng, L. A Versatile Probability Distribution Model for Wind 

Power Forecast Errors and Its Application in Economic Dispatch. IEEE Trans. Power Syst. 2013, 28, 

3114–3125.  

[29] Hu, F.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Dynamic economic and emission dispatch 

model considering wind power under Energy Market Reform: A case study. Int. J. Electr. Power 2019, 

110, 184–196.  

[30] Aghaei, J.; Niknam, T.; Azizipanah-Abarghooee, R.; Arroyo, J.M. Scenario-based dynamic economic 

emission dispatch considering load and wind power uncertainties. Int. J. Electr. Power 2013, 47, 351–367.  

[31] Jangir, P.; Jangir, N. A new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: 

Development and application to solve engineering designs and economic constrained emission dispatch 

problem with integration of wind power. Eng. Appl. Artif. Intel. 2018, 72, 449–467.  

[32] Chen, M.; Zeng, G.; Lu, K. Constrained multi-objective population extremal optimization based economic-

emission dispatch incorporating renewable energy resources. Renew Energy 2019, 143, 277–294.  

[33] Hagh, M.T.; Kalajahi, S.M.S.; Ghorbani, N. Solution to economic emission dispatch problem including 

wind farms using Exchange Market Algorithm Method. Appl. Soft Comput. 2020, 88, 106044.  

[34] Jin, J.; Zhou, D.; Zhou, P.; Miao, Z. Environmental/economic power dispatch with wind power. Renew 

Energy 2014, 71, 234–242. 

[35] Fathollahi Fard, A.M. and Hajighaei-Keshteli, M. \Red deer algorithm (RDA); a new optimization 

algorithm inspired by red deer's mating", International Conference on Industrial Engineering, IEEE, 12, pp. 

331{342 (2016). 

[36] Ademiloye I.B1, Olofinjana A.2, Yusuf, B.M3, and Adeoye, O.S. Renewable Energy Resources in Nigeria 

as Panacea to Electricity Inadequacy: A Review. International Journal for Research in Electronics & 

Electrical Engineering; 6(6): 1-12. 

[37] Sun,F.,Huo,Y.,Fu,L.,Liu,H.,Wang,X.,Ma,Y.:Load-forecasting method for IES based on LSTM and 

dynamic similar days with multi-features. Global Energy Interconnect. 6(3), 285–296 (2023) 

[38] Alhussein, M.,Aurangzeb,K.,IrtazaHaider, S.: Hybrid CNN-LSTMmodel for short-term individual 

household load forecasting. IEEE Access 8, 180544–180557 (2020) 

[39] Siyu Xianga, Cao zhenb, Jian Pengc, Linghao Zhanga*, Zhengguo Pud, Power load prediction of smart 

grid based on deep learning , Procedia Computer Science 228 (2023) 762–773 

https://gnpublication.org/index.php/eee/article/view/1342
https://gnpublication.org/index.php/eee/article/view/1342

