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Abstract: - The present study aims to develop an advanced system for real-time identification and measurement of harmful gases using 

1.5% Pd-doped SnO2-based thick film gas sensors integrated with Artificial Neural Networks. These sensors, renowned for their 

exceptional sensitivity and selectivity, undergo testing in a meticulously controlled gas chamber environment. Here, gas 

concentrations, temperature, and humidity are meticulously controlled. The gas chamber setup allows for mixing gases like carbon 

monoxide, nitrogen dioxide, and sulfur dioxide with nitrogen gas to achieve desired concentrations ranging from 1 𝑝𝑝𝑚 to 100 𝑝𝑝𝑚. 

Temperature is kept at 350°𝐶  and relative humidity is maintained between 30% to 80%. The sensitivity analysis of the sensor 

demonstrates its adeptness in detecting low concentrations of target gases, with sensitivity increasing as gas concentrations rise, also 

the selectivity assessments highlight their ability to accurately differentiate between target gases and common interferents, ensuring 

precise detection even in complex gas mixtures. Response time testing indicates rapid detection capabilities, crucial and useful for 

emergencies. The Artificial Neural Network model, trained via the backpropagation algorithm, demonstrates remarkable accuracy, 

precision, recall, and F1 scores in predicting gas concentrations. The findings indicate that this integrated system offers a reliable and 

efficient solution for toxic gas detection, with potential applications in industrial safety and environmental monitoring. 
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I.  INTRODUCTION 

 There is increasing public unease regarding the environmental repercussions of industrial activities. 

Comprehensive environmental quality monitoring encompasses various aspects, such as global, local, indoor, and 

outdoor air quality assessments, tailored to the specific pollutants, their sources, and their environmental effects 

[[1], [2]]. Global surveillance typically focuses on tracing greenhouse gases like CO2, CH4, N2O, NO, and CO, 

while the scope of local, indoor, and outdoor assessments extends to the detection of toxic, explosive gases, and 

odors, predominantly volatile organic compounds (VOCs). These emissions originate from several sectors, 

including energy, manufacturing, transportation, small-scale burning, industrial operations, the use of solvents, 

agriculture, and waste disposal. The exposure of humans to these emissions can severely affect their health, 

comfort, and well-being [[3], [4]]. 

 Currently, a variety of environmental monitoring methods are in use, though many are expensive and require 

significant time and resources, with limitations in sampling and analysis. Consequently, there is a rising interest in 

deploying electronic noses (ENOSE) for environmental surveillance. ENOSE technologies offer a more affordable, 

efficient, and fast alternative for the precise detection of environmental contaminants. The threat level of the range 

of hazardous compounds to humans and animals is considerably high. Specifically, the development of ENOSE 

systems to monitor dangerous VOCs, such as propane-2-ol, methanol, acetone, ethyl methyl ketone, hexane, 

benzene, and xylene, is of particular interest [[5], [6]]. 

 The imperative for advanced methods in the real-time monitoring of toxic gases within industrial, urban, and 

residential environments has never been more critical, given the heightened awareness of environmental pollution 

and its adverse effects on human health and safety. When integrated with Artificial Neural Networks (ANNs) [[7]], 

the development of SnO2-based thick film gas sensors opens up a new way to detect and quantify hazardous gasses 

with precision and efficiency. Tin oxide (SnO2) has emerged as a highly favored material for gas sensing due to its 

excellent electrical and catalytic properties, offering high sensitivity and selectivity toward a large range of gases 
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at relatively low operating temperatures [[6], [8]]. Using ANNs with sensors can help them learn complicated 

patterns and make predictions. This improves how well instruments work in real time. [[9]]. 

 These innovations are highly relevant by nature of the fact that industrial emissions are increasing, and the 

atmosphere is burdened by a growing host of self-inflicted pollutants. This poses a very real health hazard. 

According to the World Health Organization, air pollution kills an estimated 4.2 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 people prematurely each 

year. A significant portion of this figure is attributable to the fact that the atmosphere is filled with poisons such as 

carbon monoxide, nitrogen dioxide, and sulfur dioxide [[10]].  

 The resistor's electrical resistance is changed when it comes into contact with the gases you want to measure. 

It is a process affected by the sensor's microstructure and operating temperature, as well as the presence or absence 

of catalysts [[11]]. The use of ANNs to interpret sensor signals provides a strong defense against confusion by 

environmental variations and compound interactions, which often affect sensor performance. ANNs can capture 

nonlinear relationships between sensor reactions and gas concentrations very well, which is convenient for 

specifically identifying gases present in mixtures with no need for physical separation methods. 

 A combined approach has great potential for developing gas-detecting systems. Wang et. al., for example, 

found that if they used SnO2-based sensors and ANNs to detect volatile organic compounds from industrial 

environments, accuracy and response time achieved a significant improvement over conventional technique [[12], 

[13], [14]]. Studies have further revealed the effectiveness of ANN-based analysis in dealing with sensor drift and 

environmental humidity. This has additional bearing on its practicality in real-world applications [[15], [16], [17]]. 

 Integrating ANNs with SnO2-based gas sensors not only solves the technical problems encountered in gas 

detection but also provides a scalable and flexible solution for all manner of monitoring needs, from workplace 

safety to environmental protection. As sensor technology becomes more sophisticated and as machine learning 

algorithms continue to develop in scope and power, the applications of such an approach continue to expand, 

promising ever more advanced and accurate devices that are also cost-effective in monitoring real-time gases [[6], 

[8]]. SnO2-based sensors together with the ANNs used in practical applications, however, still have their hurdles; 

the need for extensive training data to get the maximum performance out of ANNs, the potential loss of accuracy 

as sensors age, and the need for complex data processing hardware able to operate in real-time. Nevertheless, 

despite these difficulties, an embodied sensitivity increased for different gases, combined with good selectivity and 

adaptability to environmental conditions, make it a crucial technology for advancing the field of gas detection and 

research for the future [[8], [9]]. The present work aims to improve and deepen environmental monitoring and 

safety by developing an innovative system for the real-time detection and quantification of toxic gases using Pd-

doped tin dioxide (SnO2) thick film sensors integrated with ANNs. In regions with different environmental 

conditions, there is an urgent need for much more sensitive, selective, and fast-response gas detection technologies. 

The present approach will seek to overcome this important challenge. With the help of SnO2-based sensors and the 

powerful data processing and pattern recognition capabilities of ANNs, the study greatly improves the accuracy, 

efficiency, and reliability of toxic gas monitoring. 

 

II. METHODOLOGY 

 

The detailed methodology presented here is a comprehensive approach to examining the real-time monitoring 

efficacy of a 1.5% Pd-doped SnO2 thick film gas sensor coupled with ANNs as toxic gas detectors. By specifying 

which parameters and instruments should be employed as well, the sizable study takes a targeted approach to 

producing accurate, reliable results and contributing valuable insights to the field of gas sensor technology. 

A. Sensor Fabrication 

The SnO2-based thick film gas sensors are produced on alumina substrates using a standard screen-printing 

process [[18], [19]]. By using Ball Milling Process 1.5% Pd is doped into SnO2 power. The SnO2 paste is produced 

by mixing SnO2 powder with a suitable organic solvent to make its viscosity suitable for screen printing. The pastes 

are put on the substrates. After letting them dry at a temperature of 120°𝐶 for half an hour the solvent is evaporated 

out of these deposited films. Then they are sintered at 650°𝐶 in air for 2 ℎ𝑜𝑢𝑟𝑠 to achieve mechanical stability and 

optimal electrical properties. Silver (Ag) electrodes are screen-printed on the SnO2 films, serving as contact points 

for electrical measurements. The size of the active portion on the sensor is about 5 𝑚𝑚 ×  5 𝑚𝑚. Fig. 1 shows a 

schematic diagram of the sensor with a heating element integrated into the back side of the substrate to control the 

operating temperature, which is crucial for gas sensing performance. 
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Fig. 1 Schematic diagram of the fabricated sensor 𝟏. 𝟓% Pd-doped SnO2 sensor. 

B. ANN Design 

The ANN design in this study consists of a feed forward neural network with one input layer, two hidden layers, 

and one output layer. The input layer consists of neurons equal to the number of sensing parameters (e.g., sensor 

resistance, temperature, and humidity), which in this case are three. The hidden layers contain 10 and 8 neurons, 

respectively, utilizing the Rectified Linear Unit (ReLU) activation function for non-linear transformations. The 

output layer comprises the number of neurons corresponding to the gases being detected and generating the 

concentration levels of each gas. The network undergoes training utilizing the backpropagation algorithm alongside 

a mean squared error loss function. Training data is derived from controlled exposure of sensors to predetermined 

concentrations of target gases, where the sensor response and environmental conditions (temperature and humidity) 

act as inputs, and the gas concentrations serve as the target outputs. The ANN is implemented using TensorFlow, 

an open-source end-to-end platform machine learning framework [[20]]. 

C. Experimental Setup for Sensor Testing 

The sensor is tested in a gas chamber that can hold up to 10 𝑙𝑖𝑡𝑒𝑟𝑠 of volume. This chamber facilitates control 

over the precise amount of gas, temperature, and humidity. A system is employed to blend gases such as CO, NO2, 

and SO2 to achieve the desired concentrations. These gases are mixed with nitrogen, resulting in concentrations 

ranging from 1 part per million (ppm) to 100 𝑝𝑝𝑚 . Additionally, a temperature controller and humidifier are 

utilized to maintain the chamber at a temperature 350°𝐶 and relative humidity levels of 30% to 80%. Calibrated 

instruments, including a mass flow controller for measuring gas concentrations, a thermocouple for temperature 

measurement, and a hygrometer for humidity measurement, are employed to ensure proper functioning, as shown 

in Fig. 2. 

 

Fig. 2 Schematic diagram of the measurement setup showing D.U.T (device under test i.e. 1.5% Pd-doped SnO2 sensor). 
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D. Collection and Analysis 

Data collection is carried out by measuring the electrical resistance of the sensor at different sets of gas 

concentrations, temperatures, and humidity levels. The meter reads the resistance of the sensor with a resolution 

of 0.1 oℎ𝑚. In each test environment, sensors were checked every 30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 for 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 to get the dynamic 

response. Before processing the data into the ANN, the collected information undergoes a pre-processing stage to 

fine-tune input settings. The performance of the ANN model for gas concentration prediction is assessed using 

indicators like accuracy, precision. Furthermore, cross-validation methods have been employed to check the 

robustness and generalizability of the model across different sensor batches and environmental conditions. 

 

III. RESULTS   

A. Sensitivity measurements of 1.5% Pd-doped SnO2 sensor to target gases at various concentrations 

 The sensitivity analysis of a 1.5% Pd-doped SnO2 sensor to target gases at various concentrations reveals a 

direct correlation between gas concentration levels and the percentage change in sensor resistance, indicative of 

high sensitivity across the board. Specifically, as the concentration increases from 1 𝑝𝑝𝑚 to 100 𝑝𝑝𝑚, the sensors 

exhibit a progressive increase in resistance change, ranging from 10% to 200% for CO, 12% to 240% for NO2, 

and 15% to 260% for SO2 as shown in Fig. 3. This pattern demonstrates not only the ability of the sensor to detect 

low concentrations of toxic gases but also their capacity to respond more robustly as concentrations rise. 

 
Fig. 3 Sensitivity in terms of percentage change in the resistance of 1.5% Pd-doped SnO2 sensor to target gases at various Concentrations. 

 

B. Selectivity of 1.5% Pd-doped SnO2 sensor against interfering gases  

The selectivity of 1.5% Pd-doped SnO2 sensors against interfering gases demonstrates their remarkable ability 

to accurately detect and differentiate between target gases (CO, NO2, SO2) and common interfering gases (CH4, 

NH3) under consistent environmental conditions (350 °𝐶 operating temperature and 50% relative humidity). As 

can be noted from Table 1, with target and interfering gas concentrations set at 50 𝑝𝑝𝑚, the sensors exhibited a 

significant difference in resistance change percentages for target versus interfering gases, leading to high selectivity 

ratios ranging from 6.67 to 10. This indicates not only the high sensitivity of the sensor to the target gases but also 

their ability to maintain accuracy in the presence of potential interferents. For instance, CO detection was minimally 

affected by NH3 and CH4, with selectivity ratios of 7.5  and 10 , respectively, showcasing the excellent 

discrimination capabilities of the sensor. Similarly, for NO2 and SO2 the sensor is found to maintain high selectivity 

in mixed-gas environments, effectively distinguishing target gases from NH3 and CH4 with selectivity ratios equal 

to or exceeding 6.67. These results underscore the suitability of the sensor for applications requiring precise gas 

detection and monitoring in environments where multiple gases are present, affirming their potential for enhancing 

safety and environmental monitoring systems.  

 



J. Electrical Systems 20-3 (2024): 2193-2200 

2197 

Table 1 Selectivity of 𝟏. 𝟓% Pd-doped SnO2 sensor against various interfering gases at 𝟑𝟓𝟎°𝑪 and relative humidity of 𝟓𝟎%. 

Target Gas / 

Interfering 

Gas 

Target Gas 

Concentra

tion (ppm) 

Interfering 

Gas 

Concentration 

(ppm) 

% Change 

in 

Resistance 

for Target 

Gas 

% Change in 

Resistance for 

Interfering 

Gas 

Selectivity 

Ratio 

(Target / 

Interfering) 

Remarks 

CO vs. CH4 50 50 150 20 7.5 

High selectivity, CO detected 

effectively despite CH4 

presence. 

CO vs. NH3 50 50 150 15 10 

Excellent discrimination 

against NH3, suitable for 

mixed environments. 

NO2 vs. CH4 50 50 180 25 7.2 
The detection of NO2 gas is 

minimally influenced by CH4. 

NO2 vs. NH3 50 50 180 18 10 
Effective NO2 sensing with 

high selectivity over NH3. 

SO2 vs. CH4 50 50 200 30 6.67 
SO2 shows a strong response 

even with CH4 presence. 

SO2 vs. NH3 50 50 200 22 9.09 

SO2 sensitivity remains high, 

indicating good selectivity 

against NH3. 

 

C. Response Times of 1.5% Pd-doped SnO2 sensor to target gases  

The detailed examination of response and recovery times for 1.5%  Pd-doped SnO2 sensor to varying 

concentrations of CO, NO2, and SO2 gases reveals a clear pattern of enhanced performance with increased 

concentrations. At a consistent operating temperature of 350 °𝐶  and relative humidity of  50% , the sensor 

demonstrates improved responsiveness as the concentration of each target gas escalates. As can be seen from  

 Fig. 4, for CO gas, the sensor response time decreases significantly from 35 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  at 1 𝑝𝑝𝑚  to just 

10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 at  50 𝑝𝑝𝑚, with recovery time also improving from 70 to 40 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, indicating a robust capability 

for rapid detection, particularly crucial in emergencies. In the case of NO2 and SO2 gases, the sensor exhibits similar 

trends, for NO2 gas response time is found to reduce to 8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 at 50 𝑝𝑝𝑚 from 32 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 at 1 𝑝𝑝𝑚, and for 

SO2 gas the sensor outperforms with the rapid response of 7 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 at 50 𝑝𝑝𝑚. These observations are consistent 

with those shown in Fig. 3, where it is found that with the rise in concentration the sensitivity of the sensor increases.  

 

  Fig. 4 Response times of 1.5% Pd-doped SnO2 sensor to target gases. 

D. ANN model performance metrics for toxic gas detection  
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The performance of ANN model metrics for toxic gas detection reveals a highly effective system capable of 

accurately identifying and quantifying concentrations of CO, NO2, and SO2 gases. Across all gases, the model 

exhibits strong learning from training data, as indicated by high accuracy, precision, recall, and F1 scores, with 

particularly outstanding training performance for SO2 as can be seen in Fig. 5 and Table 2. The slight decrease in 

these metrics from training to validation and test phases is typical in machine learning applications, reflecting the 

ability of the model to generalize well to new, unseen data while maintaining robustness.  

 

Table 2 ANN Model Performance Metrics for Toxic Gas Detection. 

Gas Data Set 
Accuracy 

(%) 
Precision (%) Recall (%) 

F1 Score 

(%) 
Remarks 

CO Training 96 95 94 94.5 

High performance indicates 

effective learning from training 

data. 

CO Validation 94 93 92 92.5 
Slightly lower than training, but 

indicates good generalization. 

CO Test 93 92 91 91.5 

Consistent performance on unseen 

data demonstrates model 

robustness. 

NO2 Training 97 96 95 95.5 
Excellent learning performance, 

especially for NO2 detection. 

NO2 Validation 95 94 93 93.5 
Validates the model's ability to 

generalize to new data. 

NO2 Test 94 93 92 92.5 
Strong performance, highlighting 

the model's predictive capabilities. 

SO2 Training 98 97 96 96.5 
Outstanding training performance, 

best among the gases. 

SO2 Validation 96 95 94 94.5 
High validation scores indicate 

excellent model generalization. 

SO2 Test 95 94 93 93.5 

Demonstrates the model's 

effective learning and prediction 

for SO2. 

 
Fig. 5 Performance metrics of ANN model integrated with 1.5% Pd-doped SnO2 Sensor under different environmental conditions. 
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IV. DISCUSSION  

A comprehensive analysis has highlighted the remarkable abilities of a sensing system fabricated by SnO2-

based gas sensors with 1.5% Pd-doping integrated with ANN in detecting toxic gases. This includes their 

sensitivity, selectivity, response times, environmental influences, and ANN model performance, all together 

promise great potential as an instrument for real-time environmental monitoring. The sensitivity assessment found 

direct and significant correlations between target gas (CO, NO2, SO2) levels and the sensor resistance. This is 

observed even for relatively small amounts of gas, as demonstrated by the sharp responses of the sensing system 

showcasing an essential feature for early detection and safety. Moreover, the selectivity test against common 

interfering gases in different amounts revealed, how well the sensors could detect individual gases, under fixed 

conditions. This underscores their practicality in complex gas mixtures. In addition, the response and recovery time 

testing showed that the system is efficient and responds more quickly at higher gas concentrations. This can ensure 

timely detection as well as action in an emergency. The sensing system was tested to work best at moderate 

temperatures and humidity levels but is also adaptable and hardy in different circumstances. Finally, the parameters 

of the ANN model matrices are performance indicators validating that the interpretations of sensor data are quite 

correct. The potential of this research lies in paving the way for the development of next-generation gas sensors 

that are versatile, efficient, and capable of operating in diverse environmental conditions; while integrating 

advanced ANN algorithms with cutting-edge SnO2-based sensor technology provides a highly reliable and effective 

method for detecting toxic gases. The study, nevertheless, admits that the performance of the sensing system 

depends on environmental conditions such as temperature and humidity levels. In extreme situations, the model 

finds it impracticable. It urges the creation of ANN models which are more complex, and materials for sensors that 

are better able to withstand changes in temperature and humidity. 

V. CONCLUSION 

The present study using a 1.5% Pd-doped SnO2 sensor integrated with ANNs for detecting and monitoring 

toxic gases is an effective and advanced approach and finds its significance in environmental and industrial safety 

technologies. Consequently, the remarkable precision and selectivity of the sensor for target gases like CO, NO2, 

and SO2 notwithstanding interference by other substances establish its capability to take accurate measurements in 

response to variable conditions. Quick reaction times, the rapid return to normal levels after brief exposure, and 

outstanding performance in different environmental conditions under varying humidity make these "pillars" of 

state-of-the-art technology well-suited for real-time use. The model thus enhances the system further, showing high 

accuracy, precision, and recall when processing complex sensor data. The four parameters of the ANN model for 

different gases under variable conditions are a reality check for the effectiveness of the sensor in generating precise 

gas concentration predictions. Machine learning algorithms used in the present study combined with advanced 

sensor technology offer a timely solution to the urgent requirement for reliable toxic gas detection systems, capable 

of ensuring safety in industrial settings and protecting the public from environmental poisons. Future research could 

address environmental sensitivities and develop portable devices for broader applications. 
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