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Abstract: In traditional methods, it is critical for an effective continuous pulse monitor for humans prone to heart rate abnormalities. This 

paper proposes a secured heartrate abnormality detector which continuously monitors human pulse rate and SpO2 level. The current studies 

proposes that machine learning (ML) models performs well in classification; also, TinyML model shows better performance for data from 

resource constrained IoT devices. Hence, the research first analyses abnormal heart rate detection and spam data identification using 

standard ML algorithms such as SVM, Random Forest, Decision Tree, and TinyML. Though ML models are superior in classification, 

deep learning approaches outperforms them in feature learning. Hence, our proposed framework combines the merits of both ML and DL 

models. In our approach, the generated healthcare dataset is fed to DL models such as ANN, and autoencoder and also to SHAP XAI 

(eXplainable Artificial Intelligence) for feature extraction and learning. These learnt features are fed to ML models for classification. In 

this experiment, the proposed ETL-FEXIC (Enhanced Tiny Machine Learning with Automated Feature Extraction) outperforms the other 

ML models where the extracted features from XAI is fed to optimized TinyML classification model. 
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I.  INTRODUCTION 

In the field of healthcare, continuous monitoring of vital signs plays a crucial role in the detection and prevention 

of health problems, particularly in the case of people who are more likely to have abnormal heart rates. The 

capacity to screen heart rate and oxygen saturation levels (SpO2) [1] consistently and successfully is significant 

for early mediation and opportune clinical help. This has always been a problem, especially in environments with 

limited resources and limited access to cutting-edge medical equipment. However, recent technological 

advancements, particularly in the areas of machine learning (ML) and deep learning (DL) [2][3], have opened up 

new opportunities for the creation of sophisticated monitoring systems that are able to function effectively even 

on devices with limited resources. 

 

TinyML transforms classification processes on IoT devices with limited resources by installing lightweight 

machine learning models directly on these devices, doing away with the requirement for continuous data transfer 

to centralised servers. TinyML[4][10] focuses on being efficient and using little power. It allows for real-time 

decision-making and inference at the edge, which cuts down on delay and improves privacy. TinyML makes sure 

that even devices with limited memory and processing power can handle complex machine learning tasks by using 

optimised algorithms and model compression methods. This makes a huge range of uses possible, including 

predictive maintenance, finding strange behaviour, and keeping an eye on the environment in IoT settings. 

TinyML also lets edge devices change and learn from data locally, without needing to be connected to cloud 

servers all the time. This makes it perfect for situations where internet access is spotty or not available at all. To 

put it simply, TinyML brings the power of machine learning to the edge, letting smart decisions be made in places 

with few resources. Though TinyML is better for classification it requires manual feature selection from the 

generated dataset. Hence, there is a need for algorithms to automatically extract and learn features from the dataset. 

 

XAI [11]extracts and learns features from datasets in a disruptive manner. XAI uses powerful algorithms to 

automatically extract and analyse meaningful features from raw data, unlike laborious feature engineering. XAI 

improves model accuracy and interpretability by revealing dataset patterns and correlations. XAI can find 

intricate, nonlinear correlations that manual inspection may miss. XAI approaches like SHAP (SHapley Additive 

exPlanations) [12] reveal how each feature affects model performance by analysing their contributions to model 

predictions. By providing human-readable model decision explanations, XAI makes machine learning models 

more understandable. This builds model trust and lets domain experts assess and improve learned features. 
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By utilising the  merits of machine learning (ML) and deep learning (DL) models, we improve the efficacy of 

healthcare data analysis within the proposed framework. By integrating the generated healthcare dataset into DL 

models such as Artificial Neural Networks (ANN) [15] and autoencoders, and employing SHAP XAI (eXplainable 

Artificial Intelligence) for feature extraction and learning, we achieve the desired results. Then, machine learning 

models employ the acquired features to perform classification. Our proposed framework, ETL-FEXIC (Enhanced 

Tiny Machine Learning with Automated Feature Extraction), exhibits superior performance compared to 

standard machine learning models . This is  apparent when the SHAP XAI-extracted features are incorporated 

into optimized TinyML [16] model which attains improved precision and effectiveness in the classification of 

healthcare data. 

 

II. PAPER ORGANIZATION 

The paper is organized as follows: 

Section II provides a literature review of the proposed system with the current systems. Section III provides the 

proposed methodology and the components required for the research. Section IV provides the results obtained 

from the proposed work and a discussion about the performance of the proposed work. Section V provides the 

conclusion and future works of the research. 

III. RELATED WORKS 

The author in [5] proposes conventional transformation techniques, methods that make use of Wigner-Ville 

Transform (WVT) and Two-Dimensional Fast Fourier Transform (2-D FFT) for time-frequency representations. 

These approaches use Convolutional Neural Networks (CNNs) to accomplish impressive results in challenges 

related to Human healthcare monitor. But there has been a big change since deep learning (DL) became popular. 

For example, a CNN-LSTM model with an adaptive batch size has been developed to effectively handle non-

normalized data and imbalanced classes. The CapsLSTM model is another noteworthy development. It makes use 

of spatiotemporal information to identify numerous human activities and demonstrates resilience in situations 

where data is poor.  

 

Furthermore, in [6], a semi-supervised deep learning (DL) framework has been shown that effectively leverages 

weakly labelled sensor data using an intelligent auto-labeling strategy based on deep Q-network (DQN) and a 

multi-sensor data fusion mechanism in a reinforcement learning (RL) approach. To further improve the 

interoperability of health monitor tasks without adding extra computing loads, a temporal-aware and modality-

aware (TAMA) attention mechanism has been devised, highlighting the significance of various temporal steps or 

modalities.  

 

The author in [7] depicts the use of wireless fidelity (WiFi) channel state information (CSI) using orthogonal 

frequency division multiple access (OFDMA) sub-carriers CSI which is another significant development. Using 

CSI measures, a DL based model known as attention-based bidirectional LSTM (ABLSTM) has demonstrated 

better performance. This model significantly improves recognition performance by giving different weights to 

learned features.  

 

Moreover, in [8] generative adversarial networks (GANs) combined with multi-modal generators have been 

applied to tackle the problem of non-uniformly distributed unlabeled data. This novel method increases the variety 

of data that is produced, which improves the identification of certain activities in a range of environmental 

contexts. These developments indicate a positive trajectory and hint at possible future improvements.  

 

As we move towards TinyML technologies, in [9] [14] a number of creative methods have been developed to 

strike a balance between the demand for data and the utilisation of available resources. These include lightweight 

ANN designs created especially for heart rate monitor, binarized neural networks, and adaptive neural networks. 

Furthermore, efforts have been made to use frameworks like BandX to save network traffic and optimise DL 

models for wearable devices.  

 

Subsequent research endeavours are examining the effective implementation of deep learning models on devices 

with limited resources. Research is being done on methods like TensorFlow Lite compression and TinyML 

integration with edge computing [13][20] through different sensing solutions. Notwithstanding these 

developments, issues like data shortages and privacy concerns continue to exist. Transfer Learning (TL), which 

efficiently uses knowledge from related jobs to enhance human monitor applications, has become an important 

solution. TL provides an effective way to deal with issues with data privacy, data collecting and annotation, and 

precise cross-domain knowledge transfer.  

 

Our objective in this work is to leverage TL to expedite TinyML development by tackling issues like model 

adaption, inference rate, and fast deployment. By utilising TL approaches, we want to expedite model deployment 
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and improve IoT application performance by making resource-intensive ML models easier to implement on edge 

devices. We also explore the possibilities of TinyML, highlighting TFLite-µ's contribution [17][18][19] to this 

paradigm change. Additionally, building on previous efforts, our analysis examines the effectiveness of TL in 

improving the accuracy of proposed models trained on sparsely labelled data, as well as its impact on edge 

inference performance. 

IV. PROPOSED METHODOLOGY 

From data collection to model evaluation, Figure 1 and Figure 2 explains the  methodology for identifying 

abnormal heart rates, with a focus on combining machine learning and explainable AI techniques for enhanced 

interpretability and accuracy.  

 

Dataset collection and Preparation: The procedure begins with collecting heart rate data, through the MAX30102 

sensor [13][14] connected with Arduino microcontroller. The ThingSpeak cloud platform is then used to store this 

data, allowing for centralised access and storage. After that, the data is cleaned and made ready for analysis, 

making sure it is well-organized and structured.  

 

Feature Extraction and Model Training: The proposed ETL-FEXIC model is used to extract features from heart 

rate data. In order to extract features from the raw data and identify patterns of abnormal heart rate, this model 

probably uses hybrid approaches.  

 
Figure 1: Proposed ETL-FEXIC framework 

 

Evaluation of TinyML Models: The data is supplied into TinyML models for assessment after feature extraction. 

TinyML describes machine learning models that are optimised for resource-constrained devices, such as 

wearables or medical monitoring. This makes them appropriate for deployment in edge computing contexts. A 

number of ML models are evaluated, including an Optimised TinyML model, RandomForest, Decision Tree, 

Support Vector Machine (SVM), and TensorFlowLite.  

 

Evaluation Metrics and Explainable AI: Each TinyML model's performance is measured using metrics including 

sensitivity, specificity, and F1 Score. The rate at which true positives are accurately identified is measured by 

sensitivity, and the rate at which true negatives are correctly identified is measured by specificity. The F1 Score 

provides a fair evaluation that takes precision and memory into account. Furthermore, the procedure integrates 

interpretable AI methods for feature dependency analysis, ranking, and interpretability, including SHAP (SHapley 

Additive exPlanations) and ANN (Artificial Neural Networks).  

 

Interpretability and Feature Learning: Understanding the variables affecting model predictions is made possible 

by employing interpretable AI approaches such as SHAP and ANN. Better comprehension and confidence in the 

model's judgements are fostered by SHAP values, which offer insights into each feature's contribution to the 

model's output. Furthermore, higher-level representations of the input data are extracted using feature learning 

techniques like Autoencoder, which improves the interpretability and performance of the model.  
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Figure 2: Proposed model conceptual architecture 

 

Improved TinyML Model: With better sensitivity, specificity, precision, and F1 Score than any of the current 

algorithms, the Improved TinyML model identifies irregular heart rate patterns while reducing false positives and 

negatives. 

V. RESULTS AND DISCUSSION 

The results of the proposed framework is obtained by (I) directly training various ML models with the raw features 

and classifying the data; (II) extracting features from autoencoder, ANN, and XAI-apply extracted features to 

various ML models for classification. 

 

A. Classification without feature extraction 

Table 1 provides the performance of different ML models in two different classification tasks: spam data 

recognition and abnormal heart rate detection. With F1 scores of 0.76 and 0.80, respectively, Decision Tree and 

TensorFlowLite performs well in the category of abnormal heart rate detection. These table values show an 

interconnection with  accuracy and recall, which is important for reducing the number of false positives and 

negatives when diagnosing problems. The Optimised TinyML model produces a precision of 0.85, which shows 

that it correctly spots irregular heart rates while still having a good recall rate of 0.83. 

The Optimised TinyML model produces an F1 score of 0.84 when it comes to spam data identification. This 

means that it depicts the difference between spam and user-generated data, with as few false positives and 

negatives as possible. Even though the SVM and Random Forest models perform better with F1 scores between 

0.73 and 0.76, they still need improvement. 

Overall, the results show that machine learning models, especially the Optimised TinyML model, work well in 

both healthcare and defence. The accuracy, recall, and F1 scores of these models shows that they could be used 

to improve medical diagnosis and internet safety. 

 

Table 1: ML models classification performance 

ML Model Heartrate abnormality detection Spam data identification 

Precision Recall F1 score Precision Recall F1 score 

SVM 0.73 0.77 0.73 0.74 0.75 0.74 

Random Forest 0.76 0.74 0.73 0.77 0.76 0.76 

Decision Tree 0.77 0.76 0.76 0.80 0.80 0.79 

TensorFlowLite 0.81 0.82 0.80 0.83 0.82 0.81 

Optimized TinyML 

model 

0.85 0.83 0.83 0.86 0.85 0.84 

 

B. ML classification with feature extraction: 

In this method, the collected dataset is trained with feature AI models such as ANN, autoencoder, and XAI. The 

models first acquire the dataset, learn the features, and extract the important features as in Figure 3 while training. 

The extracted features are saved and fed to the machine learning models for classification.  
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Figure 3: SHAP XAI feature ranking 

C. Heartrate abnormality detection 

Table 2 shows the different machine learning model performance when combined with ANN to find irregular 

heart rates. The ANN + Optimised TinyML model shows the best performance, with a sensitivity score of 0.92, a 

precision score of 0.91, and an F1 score of 0.91, which means accurate spotting with a low false discovery rate. 

Table 2: ANN feature extraction with ML heartrate abnormality detection 

ANN + ML Model Sensitivity Specificity Precision False Discovery 

Rate 

Accuracy F1 

score 

ANN + SVM 0.81 0.81 0.83 0.06 0.81 0.80 

ANN + Random Forest 0.86 0.85 0.85 0.07 0.85 0.85 

ANN + Decision Tree 0.89 0.87 0.88 0.07 0.90 0.89 

ANN + TensorFlowLite 0.89 0.90 0.89 0.07 0.89 0.89 

ANN + Optimized 

TinyML model 

0.92 0.89 0.91 0.08 0.92 0.91 

 

ANN + TensorFlowLite, Decision Tree, and Random Forest are some other combinations that also perform better. 

Overall, these results show that ANN combined with machine learning models, especially Optimised TinyML, 

accurately and reliably finds heart rate problems in healthcare monitors. 

Table 3: Autoencoder feature extraction with ML heartrate abnormality detection 

Autoencoder +  

ML Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

Autoencoder + SVM 0.77 0.76 0.76 0.07 0.78 0.76 

Autoencoder + Random 

Forest 

0.81 0.80 0.81 0.07 0.80 0.81 

Autoencoder + Decision 

Tree 

0.84 0.86 0.87 0.08 0.88 0.86 

Autoencoder + 

TensorFlowLite 

0.89 0.90 0.88 0.08 0.89 0.88 

Autoencoder + Optimized 

TinyML model 

0.91 0.90 0.92 0.09 0.91 0.91 

 

Table 3 shows the different machine learning models working when combined with autoencoders to find irregular 

heart rates. In general, adding autoencoders improves the model performance. A pair of functions is the same as 

an autoencoder. We need an assignment in order to assess its quality. A reference probability distribution defines 

a task. The training loss function of the autoencoder is defined below. 

 

𝐿𝑜𝑠𝑠(𝜕, 𝑝): = 𝐸𝑥∼𝜇𝑟𝑒𝑓
[𝑑 (𝑥, 𝐷𝜕(𝐸𝑝(𝑥)))] 

𝑚𝑖𝑛
𝜕,𝑝

 𝐿𝑜𝑠𝑠(𝜕, 𝑝), 𝑤ℎ𝑒𝑟𝑒 𝐿(𝜕, 𝑝) =
1

𝑁
∑ ⬚

𝑁

𝑖=1

  ∥ 𝑥𝑖 − 𝐷𝜕 (𝐸𝑝𝜙(𝑥𝑖)) ∥2
2 

The Autoencoder + Optimised TinyML model has the best sensitivity (0.91), specificity (0.90), accuracy (0.92), 

and F1 score (0.91). This means that it correctly finds things and doesn't find many false ones. Autoencoder + 

TensorFlowLite, Decision Tree, and Random Forest are some other combinations. These results show that using 
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autoencoders along with machine learning models, especially Optimised TinyML, finds abnormal heart rates more 

accurately and reliably. 

 

Table 4: XAI feature extraction with ML heartrate abnormality detection 

XAI + ML Model Sensitivity Specificity Precision False Discovery 

Rate 

Accuracy F1 

score 

XAI + SVM 0.80 0.82 0.80 0.05 0.84 0.82 

XAI + Random Forest 0.89 0.87 0.88 0.06 0.89 0.88 

XAI + Decision Tree 0.91 0.90 0.92 0.06 0.91 0.90 

XAI + TensorFlowLite 0.93 0.92 0.92 0.07 0.93 0.93 

XAI + Optimized TinyML 

model 

0.93 0.92 0.94 0.05 0.95 0.94 

 

 
Figure 4: ML model comparative study of heartrate abnormality detection 

Table 4 and Figure 4 shows the different machine learning models working when combined with XAI methods 

for finding abnormal heart rates. XAI makes models easier to understand and better at what they do in all combos. 

The XAI + Optimised TinyML model has the best sensitivity (0.93), specificity (0.92), precision (0.94), and F1 

score (0.94), which means it finds things correctly and rarely makes false findings. These results show that using 

XAI techniques, especially with Optimised TinyML, finds abnormal heart rates in healthcare apps that are accurate 

and easy to understand.  

D. Span data identification 

The proposed healthcare framework introduces attacks such as DDoS, phishing attacks, and other routing attacks. 

The classification performance of various ML models with different feature extraction methods are explained 

below. 

Table 5: ANN feature extraction with ML spam data identification 

ANN +  

ML Model 

Sensitivity Specificity Precision False Discovery 

Rate 

Accuracy F1 

score 

ANN + SVM 0.83 0.87 0.83 0.06 0.87 0.83 

ANN + Random Forest 0.86 0.84 0.83 0.06 0.84 0.83 

ANN + Decision Tree 0.84 0.85 0.84 0.07 0.85 0.84 

ANN + TensorFlowLite 0.87 0.86 0.86 0.07 0.86 0.86 

ANN + Optimized 

TinyML model 

0.89 0.89 0.90 0.06 0.90 0.89 

 

Combinations of features taken from ANN using different machine learning models are included in Table 5 for 

the purpose of spam identification. Notably, the Optimised TinyML model combined with ANN yields the best 

results in terms of F1 score, sensitivity, specificity, accuracy, and precision. Competitive outcomes are also shown 

by other combinations, such as Random Forest, Decision Tree, and ANN + TensorFlowLite. All things considered, 

using ANN features in conjunction with machine learning models particularly the Optimised TinyML model 

offers a viable strategy for efficient spam identification. These results are important for improving communication 

channel cybersecurity with dependable and effective spam filtering systems. 

 

Table 6: Autoencoder feature extraction with ML spam data identification 

Autoencoder +  

ML Model 

Sensitivity Specificity Precision False Discovery 

Rate 

Accuracy F1 

score 
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Autoencoder + SVM 0.82 0.83 0.83 0.06 0.84 0.84 

Autoencoder + Random 

Forest 

0.83 0.84 0.83 0.06 0.84 0.84 

Autoencoder + Decision 

Tree 

0.89 0.87 0.88 0.07 0.87 0.87 

Autoencoder + 

TensorFlowLite 

0.88 0.89 0.88 0.08 0.89 0.89 

XAI + Optimized TinyML 

model 

0.91 0.91 0.90 0.08 0.91 0.90 

 

The performance of autoencoder based feature extraction combined with different machine learning models for 

spam detection is shown in Table 6. The detection accuracy is increased when autoencoders and machine learning 

models are combined. High sensitivity (0.89), specificity (0.87), and F1 score (0.87) are notable results of the 

Autoencoder + Decision Tree combo, suggesting accurate spam identification with few false positives. 

Additionally, Autoencoder + TensorFlowLite performs good. But the XAI + Optimised TinyML model performs 

better than the others, displaying the highest F1 score (0.90), precision (0.90), specificity (0.91), sensitivity (0.91), 

and recall (0.91). These results indicate strong detection capabilities with a balanced precision and recall. 

 

Table 7: XAI feature extraction with ML spam data identification 

XAI + ML Model Sensitivity Specificity Precision False Discovery 

Rate 

Accuracy F1 

score 

XAI + SVM 0.79 0.79 0.80 0.07 0.82 0.80 

XAI + Random Forest 0.88 0.86 0.87 0.08 0.87 0.86 

XAI + Decision Tree 0.89 0.88 0.88 0.08 0.90 0.89 

XAI + TensorFlowLite 0.92 0.91 0.91 0.09 0.92 0.92 

XAI + Optimized TinyML 

model 

0.93 0.92 0.92 0.09 0.93 0.92 

 

The effectiveness of XAI methods in conjunction with several machine learning models for spam detection is 

shown in Table 7 and Figure 5. In every scenario, XAI improves detection precision. It is noteworthy that the XAI 

+ Optimised TinyML model earns the highest scores for F1 (0.92), specificity (0.92), precision (0.92), and 

sensitivity (0.93), showing balanced and accurate identification of spam with few false positives. Strong 

performance is also shown by other combinations, such as Random Forest, Decision Tree, and XAI + 

TensorFlowLite. These results highlight that XAI approaches is effectively integrated for trustworthy and 

comprehensible spam identification in communication channels, especially when combined with the Optimised 

TinyML model. 

 

 
 

Figure 5: ML model comparative study of spam data identification 

The performance of several feature extraction techniques and machine learning algorithms for spam identification 

and abnormal heart rate categorization is displayed in the tables. Better outcomes are consistently obtained when 

XAI features are integrated with the proposed optimised TinyML model. This combination outperforms all other 

combinations in terms of sensitivity, specificity, accuracy, precision, and F1 score in both tasks. These results 

emphasise the superiority of the Optimised TinyML model in accurate and dependable classification across 

several domains, such as spam detection and abnormal heart rate classification, and demonstrate the high 

performance of XAI features is integrated with the model.  
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CONCLUSION 

The proposed method presents a comprehensive framework, ETML-FEXIC (Enhanced Tiny Machine Learning - 

Feature Extraction and Interpretability Combiner), aimed at advancing abnormal heart rate monitoring systems 

using TinyML. By harnessing the capabilities of TinyML and transfer learning (TL), our approach enables the 

deployment of sophisticated ML models directly on resource-constrained edge devices, thereby alleviating 

concerns related to data privacy, latency, and energy consumption associated with cloud processing. 

 

Through a systematic methodology involving data collection, feature extraction, and evaluation of TinyML 

models augmented with explainable AI techniques, we have demonstrated significant advancements in abnormal 

heart rate detection. Our findings highlight the efficacy of the Optimised TinyML model, particularly when 

combined with feature extraction methods such as autoencoders and explainable AI approaches. Notably, this 

combination exhibits superior performance in both abnormal heart rate detection and spam data identification 

tasks, showcasing its potential for real-world applications across various domains. Moreover, our research 

underscores the importance of transfer learning in enhancing the efficiency and reliability of heart rate monitoring 

systems.  
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