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Abstract: - Federated learning is extensively applied in collaborative data scenarios involving multiple data owners. While the majority of 

state-of-the-art federated learning algorithms are currently black-box models, making it challenging for users to comprehend how decisions 

are made. Random forest models are extensively utilized in medical contexts owing to their exceptional interpretability. However, when 

faced with multicenter data, the heterogeneity of data from each center often leads to its predictive performance falling short of expecta-

tions. To mitigate this challenge, the present study introduces DFLRF (Decentralized Federated Learning Random Forest), a federated 

learning algorithm based on random forests. Expanding on conventional random forests, DFLRF employs federated learning to disseminate 

decision tree models. It assesses and consolidates tree models from all client sites, thereby comprehensively addressing data disparities 

across various centers. The algorithm selects the optimal decision tree model based on the magnitude of model loss to guarantee the 

predictive performance of the final federated random forest model. The algorithm undergoes testing on a public dataset. Experimental 

results demonstrate that, compared to baseline algorithms, DFLRF enhances the AUC by 1.5% and the recall rate by 6%, while also 

ensuring superior interpretability. 
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I   INTRODUCTION 

The rapid development of big data[1] and medical information technology[2,3] has led to the generation of a 

substantial amount of data. Machine learning, leveraging these data, has been applied in the realm of intelligent 

healthcare. Traditional machine learning typically necessitates the centralization of data from various data centers 

onto a large server for centralized training.However, as more users become aware of data security and privacy[4] 

issues, data centralization faces significant challenges[5]. In recent years, federated learning, proposed by Google, 

has gained increasing attention. It allows for the establishment of a shared global machine learning model among 

multiple hospitals while keeping users' data local. The most initial algorithm in federated learning is the Federated 

Averaging algorithm[6] (FedAvg), which mainly follows three steps in each communication iteration: (a) the 

server sends the latest global model to clients; (b) clients receive the global model, train it based on their local 

datasets, then send gradient updates back to the server; (c) the server aggregates these gradient updates to form a 

new global model. These steps are repeated until convergence. 

In certain scenarios, such as healthcare[7], Model interpretability[8,9] is also an issue in evaluating the merits of 

predictive models. The application of machine learning typically outputs business decisions, and the level of in-

terpretability refers to the extent to which model users can understand why a decision was made. The better the 

model's interpretability, the deeper people's understanding of the decisions made by the model. 

Decision tree models[10], known for their good interpretability, allow for statistical causal analysis of the model, 

ensuring the rationality of model predictions. Compared to traditional machine learning algorithms, neural net-
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work algorithms[11], even if more accurate in prediction results, suffer from reduced interpretability due to in-

creased complexity. When using black-box models[7], like neural networks, it becomes difficult to interpret the 

model, and the feasibility and rationality of model predictions cannot be discerned, greatly limiting the practical 

application scenarios of the model and reducing its actual benefits. In contrast random forest model[12] have a 

certain interpretability advantage over deep neural networks[13,14]. Random forest models are particularly suited 

to medical data modeling scenarios and have been proven very effective in precisely modeling biomedical data 

for various tasks[15]. Random forests can discover the relationship between prediction results and data infor-

mation based on the branching, nodes, and weight parameters in the model's tree structure. Additionally, tree 

models can identify the contribution of all features to the model's prediction results, which is crucial for the mod-

el's interpretability. Most importantly, tree models allow for the visualization and analysis of the entire tree struc-

ture, ensuring model performance while providing high interpretability. Currently, most heterogeneous optimiza-

tion algorithms for federated learning rely heavily on deep learning, which often results in poor interpretabil-

ity,while federated learning based on the random forest model often fails to meet performance expectations, and 

the construction algorithm is complex. 

Addressing the above issues,We propose a novel federated random forest algorithm, improving the interpretability 

issue of mainstream federated learning algorithms and enhancing the predictive performance of random forest 

models in federated scenarios. The main contributions are as follows: 

1.   Combining traditional random forest algorithms with horizontal federated  learning to propose a peer-to-

peer federated random forest modeling method. 

2.   Introducing a loss matrix in the federated random forest modeling process to balance model complexity and 

performance, making it suitable for cross-silo multi-center horizontal federated learning scenarios and enhancing 

model interpretability while ensuring model performance compared to mainstream federated algorithms. 

3.   We conducted a set of experiments on real datasets, where our federated random forest model significantly 

improved in AUC and Recall compared to baseline algorithms; we visualized the model and analyzed feature 

importance to explain the performance improvement of our algorithm. 

II   RELATED WORKS 

Interpretability is generally defined as the extent to which humans can understand the attribution of decisions 

made by ML models. As machine learning applications continue to expand and deepen, the algorithms used be-

come increasingly complex, leading to a "black box effect" that raises questions and concerns about the predic-

tions made by machines. Consequently, there is a growing demand for model interpretability. Interpretable models 

include decision trees, linear regression, and random forests, whereas less interpretable or "black box" models 

typically involve complex models focused on outcomes, such as deep neural networks. 

In the medical field, models with better interpretability are often traditional machine learning models like linear 

regression and decision tree models. These allow for statistical causal analysis to ensure the rationality of model 

predictions. For instance, Otunaiya et al. have used simple logistic regression models to predict chronic kidney 

disease; Zhang et al. [16]developed a prediction model for urinary toxicity using a naive Bayes classifier. Models 

like linear regression, naive Bayes, and decision trees, which are highly interpretable and conceptually simple to 

understand, are still used in different healthcare domains, even if their predictive performance is lower. Compared 

to traditional machine learning algorithms, neural network algorithms may be more accurate in prediction results, 

but their increased complexity reduces model interpretability. The use of black-box models, such as neural net-

works, makes it difficult to interpret the model, and the feasibility and rationality of model predictions cannot be 

discerned, greatly limiting the practical application scenarios of the model and reducing its actual benefits. Kwon 
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B C et al.[17]used Recurrent Neural Networks (RNN) to establish predictive models for patients with heart failure 

and cataract symptoms on electronic medical records, and used a visualization analysis tool named RetainVis to 

interpret the model. Cheng J et al.[18] used deep neural network models based on preoperative multimodal MRI 

images to grade glioma, adopting SHapley Additive exPlanations (SHAP) for quantitative interpretation and anal-

ysis of the impact of important features on classification. This shows that interpreting complex black-box models 

requires introducing model-agnostic explanation techniques, such as model visualization tools, feature importance, 

SHAP[19], etc., to better explain how predictions are influenced by features. 

In ensemble models, such as random forest algorithms, there is a certain interpretability advantage compared to 

deep neural networks. Random forest models are particularly suited to medical data modeling scenarios and have 

been proven very effective in precisely modeling biomedical data for various tasks. Qiu et al. [20]utilized data 

from 7188 cycles of initial IVF-ET treatment in infertile women to establish a predictive model for cumulative 

live birth rate per ovarian stimulation cycle. The study employed interpretable machine learning algorithms such 

as Random Forest and Extreme Gradient Boosting[21] (XGBoost); Hou et al. [22]combined vertical federated 

learning with a random forest model and proposed a verifiable privacy protection scheme for Vertical Federated 

Random forests (VPRF) based on multi-key homomorphic encryption for homomorphic comparison and voting 

statistics algorithms. Liu et al. [23]proposed a federated random forest algorithm tailored for vertical federated 

learning, aiming to align and match shared users with different features among participating parties while pre-

serving data privacy. Subsequently, all participants jointly learn a global shared random forest model based on 

privacy-preserving protocols. SM Jalal et al. [24]presented a random forest algorithm based on horizontal feder-

ated learning to detect heart disease among patients from distributed hospitals. This federated random forest al-

gorithm integrates the updating processes of both the federated central server model and client-side models, re-

quiring the server to possess data and iterate the server model across client data for updates. 

III   METHOD 

A. Transfer Strategy for Tree Models 

Inspired by the parameter passing process of the FedAvg federated learning strategy, this paper introduces a novel 

federated learning-based Random Forest algorithm. Building upon traditional Random Forest methods, this algo-

rithm enables the secure sharing of complete, unencrypted decision tree models through federated learning, 

thereby facilitating the creation of local Random Forests without introducing latency and noise associated with 

encrypted message exchanges. By collectively modeling data from multiple clients, this approach not only en-

hances predictive performance but also improves the interpretability of tree models.  

Random Forest is not a singular machine learning model; rather, it constructs multiple decision tree models on 

the dataset and then integrates all the decision tree models. Therefore, in the federated process of our algorithm, 

each client sends its constructed decision tree model to other clients, eliminating the need for centralized model 

aggregation. Instead, the best model is selected from the received foundational models. Through this process, all 

clients have a premier foundational model, thereby ensuring the effectiveness of the final integrated model. Since 

decision tree models are transmitted during the federated process, a certain level of security can be ensured, and 

the complexities of homomorphic encryption can be avoided. Consequently, there is no model parameter aggre-

gation process, meaning there is no need for a central server, making the algorithm based on peer-to-peer federated 

learning. 

B. DFLRF：Decentralized Federated Learning Random Forest Algorithm 

Traditional Random Forest algorithms have achieved commendable success in numerous application scenarios. 

However, they encounter challenges when addressing issues related to multi-center data, as encountered in this 
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study. In the conventional Random Forest algorithm, each tree's generation involves randomly selecting a certain 

proportion of data and feature subsets from the local training dataset. This methodology effectively ensures model 

accuracy and mitigates overfitting. However, in federated settings, model training should leverage data from all 

clients, a requirement that the traditional Random Forest algorithm fails to meet. 

This research builds upon the traditional Random Forest framework by integrating the transmission of decision 

tree models through federated learning, evaluating, and integrating tree models from all clients. This approach 

meticulously addresses the data variances distributed across different centers. During the learning process, the 

optimal decision tree model is selected based on model loss, ensuring the final model's accuracy. In the Federated 

Random Forest algorithm, each tree is generated by randomly selecting a certain proportion of data on the client 

side while utilizing all features of the data, thereby maximizing the retention of client information. Each round, 

clients train a decision tree based on their local data, which may not ensure optimal performance across all clients. 

A loss matrix is used to select the best tree. Figure 1 depicts the workflow of the proposed Federated Random 

Forest algorithm. 

 

Figure 1 The Workflow of Federated Random Forest. 

The DFLRF algorithm is presented in Algorithm 1. Each tree in the Federated Random Forest is specifically the 

best-performing tree learned from all participating clients, effectively capturing knowledge from data distributed 

across multiple centers. The Federated Random Forest algorithm delineates the federated learning process into 

four main stages: 

Algorithm 1: DFLRF algorithm 

Input：1) N，Local data user count；2）  NDDD ,,1 = ，sample sets from each client；3）T，maximum com-

munication rounds；4）h，height of Decision Trees； 

Output：Random Forest  T

treetreetree fffF ,, 21=  
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(1)   Client T(1) Training:Each client conducts random sampling with replacement on their local data and trains 

a decision tree model
i

treef using all features, subsequently disseminating the model to all clients. 

(2) Loss Matrix Calculation: Each client receives the decision tree model 
j

treef from other clients and then cal-

culates the model's loss on its local data. The loss 
j

il represents the loss of thejth client's tree model on the ith 

client's test set. Subsequently, the losses il from all models are shared with all clients. 

(3) Selecting the Best Tree: Each client receives model losses from other clients and compiles them into a loss 

matrix   . Through this matrix, a tree model 
loss

treef min
 with the lowest average loss is identified. This tree model 

is then integrated into the random forest as one of its trees. 

   1：for dotot T1   

   2：  for  c = 1, 2, …N in parallel do： 

   3：    ),( hDeeDecisionTrf i

i
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   4：    Send 
i

treef
 

to all clients 

   5：  end for 
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   12：Selecting the tree model with the minimum Loss： )(min_min = lossf loss
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(4) Model Integration: The Federated Random Forest, as an ensemble model, is easily integrated. The set 

 )(),2(),1( minminmin Tfff loss

tree

loss

tree

loss

tree   represents the collection of optimal decision trees with the least loss 

selected from the loss matrix in each communication round  T,2,1t =  

IV   EVALUATION 

A. Federated Dataset 

This research employs electronic medical record data derived from the eICU database, which is openly accessible 

to the public. Originated from Philips Healthcare, the eICU database integrates data from a telehealth system, 

aggregating information from numerous ICUs across more than 200 United States hospitals, specifically focusing 

on patient admissions throughout 2014 to 2015. To legally access and utilize the eICU dataset, you must submit 

an application to the official website of the eICU Collaborative Research Database. This application should in-

clude a detailed research plan and institutional information, along with the signing of the requisite data usage 

agreement.Encompassing a wide array of information, the database includes patient demographics, diagnostic 

details, Glasgow Coma Scale (GCS) scores, results of laboratory tests, pharmacological interventions, nursing 

notes, and APACHE IV scores, among others. This meticulously curated collection of records is systematically 

managed through a PostgreSQL database, formatted as SQL tables for efficient data handling. Time within the 

database is uniquely indicated by offsets, rendering the admission times of patients as negative values, thereby 

facilitating researchers in accurately tracking post-admission event timings. The utilization of this database man-

dates a formal application process, alongside the completion of a confidentiality training pertaining to patient 

information and the execution of a data use agreement, subsequently granting free access to the database for 

research purposes. 

1) Data Preprocessing 

The prediction target of this article is Acute Kidney Injury[25,26] (AKI), based on the universal definition of AKI 

proposed by the Kidney Disease Improving Global Outcomes (KDIGO)[27], as shown in Table 1. 

Table 1 Disease criteria for acute kidney injury. 

AKI Stage Criteria for Assessment 

Stage 1 
（1）It is 1.5-1.9 times the SCr concentration reference value 

（2）Increased by more than0.3 mg/dl (26.4 µmol/l) 

Stage 2 It is 2.0-2.9 times the Scr concentration reference value 

Stage 3 
（1）3 times the SCr concentration reference value 

（2）Increase over 4.0 mg/dl (354 µmol/l) 

Among the indicators, the patient's Serum Creatinine (SCr) monitoring indicator can be used to judge and measure 

the outbreak or degree of AKI. When representing the label value of AKI in patients, the most recent historical 

data value measured before admission is taken as the baseline value for serum creatinine. If no measurement was 

made before admission, the value measured at the time of admission is defined as the baseline value. 

To meet the data structure requirements of machine learning, this paper adopts the following data preprocessing 

strategies:  

For patient records with AKI occurrences, it is necessary to ensure that the prediction point is set before the onset 

of AKI. In this study, the prediction point is established 48 hours (2 days) prior to the AKI onset; only records 

occurring before this prediction point are collected. For patients without AKI, the prediction node is set to 48 

hours (2 days) before the last SCr measurement. Consequently, the feature set formed from data within 48 hours 

prior to the prediction node can be used to predict whether a patient will develop AKI 48 hours in advance. 
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For discrete data, one-hot encoding is employed for processing. For features with temporal information and mul-

tiple record values within the prediction time window, this paper selects the data closest to the prediction point as 

the feature value. Features with a missing rate higher than 0.1% are deleted, retaining only those with a lower 

missing rate for disease prediction or risk factor identification. Finally, expert knowledge is utilized for feature 

selection. 

2) Description of data statistics 

To best align with the real-world scenario of dispersed and highly heterogeneous hospital data, this study catego-

rizes the eICU[28] data by hospital and excludes those with too few samples. Subsequently, all hospitals are 

divided into quartiles based on the size of their sample populations, selecting 5 hospitals from each of the 25%, 

50%, and 75% percentiles, totaling 15 hospitals. These hospitals serve as the 15 clients and exhibit significant 

differences in both the number of patients and the proportion of AKI cases, better reflecting the performance of 

the algorithm in scenarios with data diversity. 

To further illustrate the data distribution differences among these 15 clients, we evaluated the distribution of six 

features across these clients. These six features are diastolic blood pressure, systolic blood pressure, age, red blood 

cells, partial pressure of oxygen, and polymorphonuclear leukocytes. Figure 2 displays the distribution of these 

features.From the graph, it is evident that these 15 clients not only vary in sample size but also exhibit significant 

differences in the distribution of data features, effectively representing real-world medical scenarios. Subsequent 

research will be conducted based on these 15 clients, with the data from each client divided into a training set and 

a test set at a ratio of 7:3. 

  
(a) (b) 

Figure 2 Differences in feature distributions across different client data 

(a) Distribution of Red Blood Cell ; (b) Distribution of Polymorphonuclear leukocyte. 

B. 4.2 Experimental Results and Analysis 

1) Predictive performance 

To illustrate the effectiveness of the proposed DFLRF algorithm  we compare its performance with that of the 

local model and existing horizontal federated random forest algorithms (FRF[29], BOFRF[30]), as well as the 

global model across all clients, as depicted in Figures 3. 
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(a) (b) 

Figure 3 (a)Comparison of average model AUC of different methods.(b)Comparison of average model Recall 

of different methods. 

Analysis of the charts reveals that, on average, the AUC performance of the DFLRF algorithm model is the highest 

at 0.727. This demonstrates an approximate 4% improvement over the Local model across all clients, a 1.5% 

increase compared to the FRF model, and slightly better performance than the BOFRF model, which averages 

0.725, as detailed in Table 2. Regarding Recall performance averaged across clients, the DFLRF algorithm model 

demonstrates a significant improvement compared to other models. It exceeds a 13% increase over the Local 

model, nearly a 4% improvement over the FRF model, and a 6% increase over the BOFRF model, as shown in 

Table 3. This validates the effectiveness of the proposed DFLRF algorithm in this study. 

Table 2 Comparison of model AUC in every client of different methods. 

Client 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg 

Local 0.714 0.634 0.661 0.712 0.851 0.826 0.710 0.749 0.697 0.691 0.601 0.551 0.730 0.668 0.603 0.693 

DFLRF 0.713 0.663 0.700 0.709 0.866 0.856 0.788 0.784 0.688 0.657 0.702 0.645 0.728 0.722 0.681 0.727 

FRF 0.707 0.662 0.683 0.644 0.833 0.827 0.749 0.768 0.724 0.688 0.709 0.660 0.728 0.689 0.614 0.712 

BOFRF 0.680 0.666 0.685 0.702 0.891 0.875 0.760 0.784 0.718 0.660 0.686 0.622 0.760 0.709 0.675 0.725 

 

Table 3 Comparison of model Recall in every client of different methods. 

Client 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Av-

erage 

Local 0.735 0.488 0.548 0.692 0.737 0.669 0.756 0.598 0.667 0.736 0.796 0.316 0.507 0.837 0.706 0.653 

DFLRF 0.743 0.693 0.731 0.813 0.737 0.806 0.872 0.821 0.882 0.793 0.796 0.825 0.648 0.857 0.735 0.784 

FRF 0.640 0.646 0.548 0.935 0.699 0.734 0.936 0.857 0.824 0.770 0.816 0.614 0.549 0.816 0.824 0.747 

BOFRF 0.691 0.606 0.473 0.944 0.821 0.815 0.872 0.661 0.549 0.724 0.959 0.772 0.606 0.816 0.529 0.723 

2) Interpertability Analysis 

In machine learning modeling, the interpretability of a model can be analyzed in the following aspects: 

(1) Which features are considered most important by the model 

(2) How each feature influences the final prediction outcome for a specific record 

In tree models, owing to their unique structure, models can capture interactions between features in the data and 

quantify each feature's contribution to the model's prediction. Most importantly, tree models are relatively straight-

forward to explain. The tree structure can be naturally visualized, and the prediction result for an individual in-

stance can be represented as follows: if a certain feature exceeds/falls below a split point, the prediction will be 



J. Electrical Systems 20-7s (2024): 2389-2400 

 

2397 

 

y1 rather than y2. The federated tree model algorithm proposed in this study offers better model interpretability 

compared to other federated algorithms, such as deep neural networks and MLPs. With other federated algorithms, 

interpreting the model, such as identifying important features or visualizing it, is challenging. Next, we will elu-

cidate the federated random forest algorithm DFLRF model by incorporating experiments, particularly the model 

employed in predicting whether hospitalized patients across different clients will develop AKI. 

To elucidate the performance enhancement of the federated random forest DFLRF algorithm model, we selected 

the local random forest models of clients 11, 12, and 15, which exhibited significant improvements, for compar-

ative analysis. Initially, we compared the top 10 important features of the models for clients 11, 12, and 15 with 

those of the federated model. Subsequently, we visualized the models to explore how features influence the pre-

diction results. Table 4 displays the top 10 important features of the models for various clients. 

Table 4 Top 10 Important Features of Different Models. 

Rank Client 11 Client 12 Client 15 Federated Model 

1 hypertension coronary_artery_dis-

ease 

pulmonary_disease hct 

2 diabetes hypertension peep coronary_artery_dis-

ease 

3 heart_disease pulmonary_disease bedside_glucose pulmonary_disease 

4 pulmonary_disease cancer mpv ptt 

5 coronary_artery_disease diabetes phosphate bicarbonate 

6 stroke heartrate mch basos 

7 rbc race0 st2 fibrinogen 

8 o2_sat bun etCo2 pao2 

9 race5 respiration polys platelets1000 

10 atrial_fibrillation basos atrial_fibrillation insulin 

The table illustrates significant variations in the important features between different clients and the federated 

model. Through analyzing the important features of different clients and the global federated model, along with 

assessing the impact of these features on prediction results, we can augment the weight of important differential 

features or conduct tree pruning operations to adjust the local model. This process enhances the performance of 

the local model. 

                     

 

Figure 4 Branching Structures of Different Model Trees 
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To provide further interpretation of the differences among models, we use SHAP[31]to quantitatively explain and 

analyze the impact of important features on classification and visualized a portion of the structure of the first tree 

in the random forest model and analyzed the positions of the same features in tree nodes across different models, 

as depicted in Figure 4. For the discrete feature "pulmonary disease" (indicated by the red dashed box in the figure), 

the depths in the random forest models for clients 11, 12, and 15 are 2, 1, and 2 respectively, while in the federated 

random forest model, it is at the sixth level. Additionally, there are notable differences in the division values of 

nodes for continuous features. For example, consider the feature "bun" (indicated by the blue dashed box). The 

division values at the feature nodes are <34, <9.5, and <12.5 for clients 11, 12, and 15 respectively. However, this 

feature does not appear in the federated random forest model. 

 

 

 

 

(a) (b) 

Figure 5 (a)SHAP Values of Age in Different Models. (b)SHAP Values of Bmi in Different Models. 

Subsequent to analyzing the impact of features on the model, this study calculated the SHAP values for the same 

feature across each model, as depicted in Figure 5a and 5b for the features age and BMI. The figure illustrates that 

the contribution of the age feature varies among different clients, yet its correlation remains consistent. Conversely, 

the BMI feature displays different correlations across models. For instance, in the model for client 15, as the BMI 

value increases, it demonstrates a negative correlation, whereas in the global federated model, it shows a positive 

correlation. 

V   CONCLUSIONS 

In this paper , we propose DFLRF, a highly interpretable multi data center joint modeling algorithm. This method 

can be applied not only to disease prediction modeling on EHR, which is the focus of this study, but also to joint 

modeling across data silos that focus on the interpretability of other algorithms such as biomedical and financial 

fields. During the federated training phase, each client utilizes bootstrap sampling techniques with replacement to 

ensure that the decision tree models obtained by each client in each federated round are different. During the 

Random Forest update phase, each client evaluates and integrates all tree models from the current round using 

tree model and loss transmission strategy. It selects the optimal trees to join the Random Forest based on a loss 

matrix. To evaluate the effectiveness of this method, federated experiments were conducted using data from 15 

hospitals in the eICU database. The results indicate that compared to baseline algorithms, the DFLRF algorithm 

effectively enhances AUC and Recall, balancing model complexity and performance while ensuring data security. 

This contributes to the interpretability and adaptability of federated learning. 

However, our method also has some shortcomings. For example,the decision tree selected in each round of fed-

erated learning is the one with the lowest average loss across all clients, which is considered to have the best 

generalization performance. Yet, this approach may not perform well in some personalized federated scenar-

ios.We will continue to discuss this issue in-depth in our future work. 

 

Data Availability Statement: The data presented in this study are available on https://eicu-crd.mit.edu/about/eicu/ 
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