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Abstract: - This technical abstract describes a prediction analysis methodology for fault mode sets in high-

permeability distributed energy distribution networks (DEDNs). DEDNs are complex systems composed of 

multiple interconnected energy sources, storage units, and loads, which are managed and controlled by 

intelligent devices. These systems have become increasingly important in modern electricity networks due to 

their ability to integrate a high share of renewable and distributed energy resources. The proposed prediction 

analysis aims to identify and classify the various fault modes that can occur in high-permeability DEDNs 

based on multivariate data. It includes information about the system's operational parameters, such as voltage, 

current, and frequency, as well as data on weather conditions, load profiles, and the state of the network. The 

methodology involves collecting and pre-processing the data using suitable techniques, such as data filtering 

and noise removal.  

Keywords: Multiple Interconnected, Intelligent Devices, High-Permeability, Pre-Processing, Distribution 

Networks, Feature Extraction,Relevant Patterns,Suitable Techniques 

 

1. Introduction 

A fault mode set for high permeability distributed energy distribution networks refers to a predefined list of 

potential faults that could occur within the network and the corresponding actions or protocols that need to be 

followed to mitigate or resolve those faults [1]. These fault mode sets are essential for ensuring the reliability 
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and resilience of distributed energy distribution networks, especially in high permeability settings [2]. In a high 

permeability distributed energy distribution network, power flows are bidirectional, and distributed energy 

resources (DERs) are connected to different grid entry points. It creates a complex and dynamic system that 

requires careful planning and risk management [3]. A fault mode set helps to identify potential weaknesses and 

vulnerabilities in the network and establish procedures to prevent or mitigate their impacts. The fault mode set 

for high permeability distributed energy distribution networks may include both technical and operational faults 

[4]. Technical faults refer to failures in the physical components of the network, such as transformers, circuit 

breakers, or control systems. Operational faults, on the other hand, are related to human errors, communication 

failures, or cyber-attacks [5]. The fault mode set should also consider the impact of these faults on the network, 

such as voltage fluctuations, power outages, or equipment damage [6]. It should identify the necessary actions 

and responses, such as isolating the affected area, restoring power, or initiating backup systems. The fault mode 

set should also account for the capabilities and limitations of different DERs and grid technologies, as well as 

the potential interactions between them during a fault event [7]. Overall, the use of a comprehensive fault mode 

set is crucial for maintaining the reliability and resiliency of high permeability distributed energy distribution 

networks, ensuring safe and efficient energy delivery to end users [8]. The Fault Mode Problem Configurations 

for High Adhesion A problem known as "Distributed Energy Distribution Networks" can arise in contemporary 

power networks that use a lot of distributed energy resources (DERs), like solar cells, wind turbines, and battery 

storage [9]. These systems are renowned for having a high permeability, which makes changes and network 

disturbances readily impact them. Managing fault conditions is a major technical difficulty for these kinds of 

networks.An aberrant flow of electrical current, usually brought on by a short circuit or overload, is referred to 

as a fault [10]. Protection mechanisms like circuit breakers, which isolate the problematic network segment to 

stop equipment damage and guarantee system safety, handle failures in conventional power systems [11]. The 

fault management procedure in distributed energy distribution networks with high permeability may become 

more complex when DERs are included. When a failure occurs, DERs may continue to generate power, which 

may cause a delay in the fault's isolation and discovery[12]. This delay can result in more extended and more 

severe power outages, posing a risk to both the stability of the network and the safety of those who rely on it. 

Another issue is the presence of multiple fault modes in these networks [13]. A fault mode refers to a specific 

combination of parameters and conditions that can cause a fault to occur. With the increasing complexity of 

power systems due to the integration of DERs, there is a higher likelihood of multiple fault modes. These fault 

modes can be challenging to identify and manage, leading to potential instability and even cascading failures in 

the network [14]. To address these issues, advanced fault detection and management strategies are being 

developed, such as using advanced metering and monitoring technologies, intelligent algorithms, and 

communication systems to quickly and accurately detect and isolate faults. Proper planning and design of the 

network can help to mitigate the impact of fault conditions [15]. In order to preserve the dependability and 

security of contemporary power systems, it is imperative to address the problem of Fault Mode Sets for High 

Permeability Distributed Energy Distribution Networks as DER penetration grows.The main contribution of the 

research has the following: 

• Development of  fault mode set framework: The paper proposes a novel framework for the 

identification and classification of fault modes in high-permeability distributed energy distribution 

networks. This framework takes into account the factors specific to distributed energy resources, such 

as bi-directional power flow and fast fault-clearing times.  

• Evaluation of fault mode impact on network performance: Using simulations, the paper assesses the 

impact of different fault modes on the performance of distributed energy distribution networks. It 

provides valuable insights for network operators in identifying critical fault modes and developing 

mitigation strategies.  

• Application to real-world scenarios: The proposed fault mode set framework is applied to two real-

world case studies, demonstrating its effectiveness in identifying potential fault modes and their impact 

on network performance. It provides practical guidance for network operators in addressing potential 

issues and improving the reliability of distributed energy distribution systems. 

The next chapters make up the remainder of the research. The most current research-related efforts are described 

in Chapter 2. The suggested model is explained in Chapter 3, and the comparative analysis is covered in Chapter 
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4. Ultimately, chapter 5 presents the findings, and chapter 6 discusses the study's conclusion and future 

directions. 

2. Related Words 

Hekmatnejad, A., et, al. [16] have discussed this model combines data from boreholes to estimate the amount 

and intensity of fractures in unsteady rock blocks surrounding a tunnel. By using both volumetric fracture 

intensity and circular variance, it can predict the likelihood of rock block instability and provide valuable 

insights for tunnel construction and safety measures. Li, J., et al. [17] have talked about In order to estimate 

distributed new energy-bearing capacity, one must assess a new power system's ability to integrate several 

energy sources that cooperate to satisfy demand. It involves taking into account elements like the 

interoperability, dependability, and efficiency of the various sources in order to maximize energy output and 

reduce environmental impact. Lin, Z., and others [18] have talked about Reactive power adjustment for 

distribution network-connected electric vehicles entails controlling the charging rate of the vehicle in order to 

balance active and reactive power consumption while taking voltage limitations into account. To avoid power 

grid overloads and voltage instability, it makes sure that the distribution network maintains steady voltage levels 

during peak charging times. A. Mishra et al. [19] have talked about Machine learning approaches are used to 

evaluate and interpret well log data in the process of developing a predictive model for geophysical healthy log 

data analysis and reservoir characterisation. It can help with understanding reservoir properties and lithology 

prediction, which can ultimately improve our understanding of the subsurface and support oil and gas 

exploration. Bekaert, B. and others [20] have talked about the use of multivariate data analysis techniques to 

establish a quantitative relationship between the behavior of screw feeding, process settings, and material 

attributes. It facilitates a more thorough comprehension of the variables influencing screw-feeding behavior and 

helps to maximize process efficiency. Lei, J., and others [21] have talked about Creating a strategy for the 

effective and efficient usage of Vanadium Redox Flow Battery (VRB) energy storage devices in active 

distribution networks is known as operational strategy optimization. In order to guarantee optimal operation and 

network integration, it takes into account the dynamic features of VRB, such as its capacity and response time. 

Abdel-Fattah, M. I., et, al. [22] have discussed Lithofacies classification involves the categorization of rock 

units based on their physical characteristics. At the same time, sequence stratigraphic description focuses on the 

analysis of sedimentary sequences and their depositional environments. These tools can be used to predict and 

map the distribution of favorable carbonate reservoirs within the Upper Cretaceous Khasib Formation, aiding in 

the exploration and development of hydrocarbon resources. Pei, N., et, al. [23] have discussed The interval 

prediction method combines LSTM-RNNs and probability distribution to estimate the permeability of granite 

bodies in a radioactive waste disposal site. This approach provides a range of possible values, taking into 

account uncertainties, to improve the accuracy of predictions and inform decision-making in the site's 

management. Rostami, A., et, al. [24] have discussed This work suggests a novel method for figuring out 

permeability in carbonate oil reservoirs by combining traditional petrophysical data with Stoneley wave 

propagation. When compared to conventional methodologies, this approach can yield more precise and 

dependable data, enabling better reservoir characterisation and production predictions. In Wang, S., et al.'s 

discussion [25], To precisely identify complex industrial process defects, the root cause diagnosis approach 

blends optimal Granger causality with spatiotemporal coalescent based time series prediction. This approach 

takes into account the interactions between various variables in the system to establish causation and identify the 

root cause of the issue, in addition to using past data to predict future behavior. It makes troubleshooting and 

fixing complicated industrial process issues more effective and efficient. Zhao, C., et al. [26] have discussed 

data-driven diagenetic facies categorization and well-logging identification. This method uses machine learning 

techniques to classify different diagenetic facies in tight sandstone reservoirs by analyzing data from healthy log 

readings. With the use of this technique, reservoirs may be better characterized and geological knowledge can 

be increased for more accurate and efficient resource exploitation. Ye, Z., and others [27] have discussed An 

uncertainty analysis of heat extraction from a stimulated geothermal reservoir with declining permeability 

enhancement includes examining potential variations in heat production caused by uncertainty in critical 

variables, such as reservoir temperature, flow rate, and permeability. This study contributes to the determination 

of the accuracy and reliability of the predicted heat extraction performance. The following approaches have 

been discussed by Hashan, M., et al. [28]: connectionist methods, which use artificial neural networks to mimic 
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the geological characteristics of the reservoir; statistical methods, which predict permeability through data 

analysis and modeling; and empirical methods, which use observations and experiments to analyze pore network 

permeability. When combined with log variables ranking, these methods allow for a more accurate estimation of 

permeability in a heterogeneous oil resource. Multi-coordinated scheduling is a blockchain-based application 

that helps small and medium-sized source networks, loads, and storage systems manage and allocate resources 

effectively. Xu, Y., et al. [29] have studied this topic. It optimizes the usage of energy sources and storage 

through the use of smart contracts and decentralized decision-making, creating a more dependable and 

economical system. Malkawi, D. A., et, al. [30] have discussed Enhancing the uniaxial compressive strength of 

travertine rock as a complex process that involves various factors. Machine learning techniques and multivariate 

analysis can be used to predict the strength of travertine and identify the key parameters that can be optimized to 

improve its strength, leading to more efficient and accurate enhancement strategies.  

Table.1 Comprehensive Analysis 

Author Year Advantage Limitation 

Hekmatnejad, A., et, 

al. [16] 

2021 Efficient and accurate prediction 

of potential rock instability in 

tunnels, leading to improved 

safety and cost savings in 

construction and maintenance. 

Errors in the volumetric 

fracture intensity and circular 

variance estimation can result 

from the restricted precision of 

borehole data. 

Li, J., et, al. [17] 2022 Improved performance and 

efficiency of power systems due to 

diversified and supplemental 

energy sources. 

Dependency on accurate data 

and modeling assumptions, 

which can result in inaccurate 

predictions. 

Lin, Z.,  et, al. [18] 2023 Improved voltage stability and 

reduced power losses due to the 

efficient management of reactive 

power flow between the EV and 

the distribution network. 

Limited effectiveness in 

stabilizing voltage due to 

potential mismatch between 

reactive power demand and 

compensation capabilities of 

the vehicle. 

Mishra, A., et, al. 

[19] 

2022 One advantage of developing a 

predictive model using machine 

learning for lithology prediction is 

its ability to handle large and 

complex datasets more efficiently. 

The drawback is that the 

quantity and quality of the 

input data determine how 

accurate the prediction model 

is. 

Bekaert, B., et, al. 

[20] 

2021 Improved understanding of 

material-screw interactions can 

lead to better control and 

optimization of the feeding 

process, leading to higher quality 

and efficiency. 

One limitation is that 

multivariate data analysis may 

not account for all possible 

factors or variables that can 

affect screw feeding behavior. 

Lei, J., et, al. [21] 2021 Control over dynamic properties 

in active distribution networks is 

enhanced when VRB energy 

storage system functioning is 

optimised. 

The dynamic features of VRB 

energy storage systems are 

difficult to anticipate with 

accuracy because of shifting 

network dynamics and 

operational situations. 

Abdel-Fattah, M. I., 

et, al. [22] 

2022 The ability to identify and 

differentiate reservoir facies and 

associated depositional 

One limitation is that it does 

not take into account 

diagenetic processes, which 
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environments, leading to more 

accurate predictions of reservoir 

quality and heterogeneity. 

can significantly impact 

reservoir quality and 

distribution. 

Pei, N., D., et, al. 

[23] 

2022 The advantage of interval 

predictionis that it can provide a 

more comprehensive and 

informative estimate of the 

permeability, accounting for 

potential variability and 

uncertainty in the data. 

One limitation is the 

assumption that the historical 

data used to train the model 

accurately represents future 

conditions. 

Rostami, A., et, al. 

[24] 

2022 The combination of traditional 

petrophysical logs and Stoneley 

wave propagation enables a more 

precise assessment of permeability 

in carbonate oil reserves. 

The small-scale fluctuations in 

permeability in heterogeneous 

carbonate reservoirs might not 

be well captured by Stoneley 

wave propagation or traditional 

petrophysical logs. 

Wang, S., et, al. [25] 2023 One advantage is its ability to 

detect the underlying root cause of 

complex process faults, leading to 

more targeted and effective 

solutions. 

Limited applicability to non-

industrial processes due to 

focus on industrial processes 

and use of specific techniques 

like Granger causality. 

Zhao, C., et, al. [26] 2022 One advantage is the potential for 

increased accuracy and efficiency 

in identifying diagenetic facies 

and lithology from well logs using 

machine learning techniques. 

The model may not account for 

rare or unusual diagenetic 

processes, leading to incorrect 

classifications in certain 

scenarios. 

Ye, Z., et, al. [27] 2022 One advantage of uncertainty 

analysis for heat extraction 

performance is the ability to 

account for changes in 

permeability enhancement over 

time. 

Lack of information on the 

long-term stability of enhanced 

permeability and its effects on 

heat extraction performance. 

Hashan, M., et, al. 

[28] 

2022 One advantage of using these 

methods is their ability to 

accurately predict pore network 

permeability, which is important 

for efficient oil recovery. 

The limitations of these 

methods may not accurately 

capture the complex nature of 

pore networks and may not 

account for all factors affecting 

permeability. 

Xu, Y., et, al. [29] 2023 One advantage is that it allows for 

efficient and secure coordination 

between multiple sources, loads, 

and storages using blockchain 

technology. 

Lack of scalability to handle 

large source networks and 

storage systems effectively. 

Malkawi, D. A., et, 

al. [30] 

2023 Improved accuracy and efficiency 

in predicting strength, allowing for 

better design and construction 

planning. 

The model may notaccount for 

all possible factors that can 

impact the compressive 

strength of travertine rock, 

leading to potential 
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inaccuracies. 

 

• 1. Inadequate Monitoring and Control: The fault mode set approach for high permeability distributed 

energy distribution networks needs to have adequate monitoring and control capabilities. It leads to 

limited visibility and control over the network, which hinders efficient fault detection and management.  

• Inaccurate Fault Detection: Existing fault mode sets are based on simplified assumptions and cannot 

accurately and quickly detect faults in distributed energy networks. It can result in delayed fault 

identification, leading to prolonged network downtime and potential safety hazards.  

• Compatibility Issues: Another significant issue is the lack of compatibility between different fault 

mode sets used by different devices within the network. It can lead to a lack of coordination and 

cooperation among devices in the event of a fault, which can further delay fault resolution and impact 

network performance.  

Fault mode sets are crucial in predicting the occurrence of faults in many complex systems, such as aircraft, 

automobiles, and nuclear reactors. Advanced prediction methods, such as statistical and machine learning 

techniques, have been developed to analyze fault mode sets and determine the likelihood of their 

occurrence. In this work, we provide a novel method for fault mode set prediction that combines deep 

learning algorithms with statistical techniques. This method extracts features from the fault mode sets using 

deep neural networks, and then uses statistical methods to analyze and forecast the data. Our methodology 

outperforms conventional methods in terms of prediction accuracy by integrating these two techniques. This 

technical innovation is in the combination of deep learning and statistical methods, enabling more accurate 

fault prediction and a more thorough examination of intricate failure mode sets. Improved prediction 

performance results from the usage of deep neural networks, which enable the identification of minute 

patterns and relationships in the data. With this method, probable problems may be predicted more 

accurately and reliably, which can greatly improve complex system safety and maintenance. 

2. Proposed system 

A. Construction diagram  

❖ Domains of Predictive Analysis 

The several domains or fields where techniques and methods of predictive analysis can be used to obtain 

insights and make well-informed decisions are referred to as predictive analysis domains. These areas cover a 

broad spectrum of sectors and industries, such as manufacturing, finance, marketing, and healthcare. 

Fundamentally, predictive analysis is the act of determining the likelihood of future occurrences or behaviours 

using data, statistical methods, and machine learning approaches. Large datasets must be gathered, cleaned, and 

analysed in order to find patterns and trends that may be utilised to forecast and suggest future actions. 

Predictive analysis is a tool used in marketing to better understand consumer behaviour and preferences, spot 

possible sales opportunities, and enhance advertising campaigns. 

( )( )2 'rs r s r sd C C C C= − −          (1) 

After the two most similar clusters are combined into one new cluster, their distances are recalculated. The 

procedure ends when every object unites to form a single cluster.  
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where is the experimental value, is the model result value, and n is the total number of data points.  

In order to determine the relative contributions of each well-log variable, a sensitivity analysis (SA) was 

performed with the GEP model. In this case, SA was computed using formulas found in the literature.  

( ) ( )max mini i iN f x f x= −          (4) 

1

i

j

jn

N
SA

N
=

=


           (5) 

In the finance sector, predictive analysis is used for risk management, fraud detection, and investment decision-

making. Through analyzing historical financial data and market trends, predictive models can identify potential 

risks and opportunities and help financial institutions make more informed and accurate decisions. In healthcare, 

predictive analysis is used for disease diagnosis, treatment planning, and patient management. By analyzing 

patient data, such as medical history, lab results, and lifestyle factors, predictive models can assist healthcare 

professionals in predicting potential diseases or complications and providing personalized treatment plans. 

❖ Cyber security 

Cybersecurity guards against online threats, theft, and damage to computer networks, systems, and data. It 

entails putting in place a variety of technologies and security precautions to prevent against abuse, unauthorized 

access, and disruption of computer systems and the data they store or transport. One of the critical operations of 

cyber security is vulnerability assessment. It involves identifying potential vulnerabilities in a system through 

various techniques such as scanning, penetration testing, and code review. It is an essential step as it helps 

proactively identify and address the system's weaknesses before attackers can exploit them. Another vital 

operation in cyber security is access control. The construction diagram has shown in the following fig.1 
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Fig 1: Construction diagram 

 It speaks about controlling user access to a system's resources. Firewalls, intrusion detection systems, and 

access control lists are a few tools used for this. By implementing access control, organizations can limit who 

has access to sensitive data and ensure that only authorized users are able to use specific resources or complete 

specific activities. Encryption is yet another crucial element of cyber security operations. It involves converting 

plaintext material into a format that is exclusive to individuals with the required decryption keys. Sensitive 

information can be obtained by unauthorized individuals, but it helps keep them from comprehending it. 

❖ Recommendation and search engines 

A Recommendation engine is a software system that analyzes user data to provide personalized and relevant 

recommendations. It uses complex algorithms and mathematical models to understand user preferences, 

interests, and behaviors. These engines have become increasingly popular in recent years as they cater to the 

growing need for personalized content and products. The first step in the operation of a Recommendation engine 

is data collection. It collects data from various sources, such as user interactions, browsing history, purchase 

history, and social media activity.  

The expression tree was used to generate the equation. At last, four sub-ETs were generated using the GEP 

modeling as a basis. These sub-ETs collectively comprise...The formulas for every sub-ET are 

1 2 3 4SGFD SG SG SG SG= + + +         (6) 
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 
 + + −   − =       (7) 
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( )1/3

3

min 7.91,
* tan *

2

THK
SG K A TH

RD

   
= −   

    
     (8) 

This data is then processed and analyzed to understand user preferences and patterns. The engine also uses 

collaborative filtering techniques, finding correlations between user behavior and that of others with similar 

interests or histories. By doing so, it can provide recommendations based on what other users with similar 

interests have consumed. In addition, the engine provides recommendations based on content-based filtering, 

which examines the characteristics of the content a user has expressed interest in. For instance, the engine would 

suggest other action movies with comparable qualities if the user has an interest in action movies. The 

application of machine learning techniques is a crucial component of recommendation engines. By continuously 

learning from user data and behaviors, the engine can improve the accuracy of its recommendations over time. It 

means that the more users interact with the engine, the more accurate their recommendations will be. 

❖ Fraud Detection 

Fraud detection is identifying and preventing fraudulent activities in various systems and processes. It uses 

advanced technologies and techniques to analyze data, identify patterns, and flag suspicious transactions or 

activities. The first step in fraud detection is data collection. It involves gathering massive amounts of data from 

different sources, such as financial records, customer transactions, and behavior patterns. This data is then 

processed and organized to make it easier for algorithms to analyze and identify potential fraud.  

The findings of the GEP modelling expression tree are displayed in Equation was obtained using this expression 

tree. After that, the formula was applied to the other five wells, 

1 2 3 4OGFD OG OG OG OG= + + +         (9) 



J. Electrical Systems 20-7s (2024): 2071-2092 

 

2079 

( )( )
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( ) ( )( ) ( )( )2

3 min 1 * * * *3.32,OG In U U RD K U= −       (11) 

It is evident from the equations that not every one of the ten parameters was used in every equation. Out of the 

10 well-log parameters that were initially there, only six were shown in these equations 

These algorithms are trained on large datasets, using historical fraud cases to detect similar patterns and 

behaviors. By continuously learning and adapting, the algorithms become more accurate in identifying potential 

fraud over time. One of the critical techniques used in fraud detection is anomaly detection. It involves 

identifying discrepancies or outliers in the data that don't fit the expected patterns. For example, a suspicious 

transaction with a large amount of money or an unusual location could be flagged as an anomaly. These 

anomalies are then further investigated by fraud analysts to determine if they are fraudulent or not.  

❖ Online Retail 

Online Retail is a business model that allows retailers to sell products and services through a virtual platform, 

typically a website or mobile application. This retail met Retails gained widespread popularity due to its 

convenience and efficiency for retailers and customers. The operations of an Online Retail business can be 

broadly divided into three main phases – pre-sales, sales, and post-sales. The first phase, pre-sales, involves 

preparing and setting up the online store. It includes creating a user-friendly website, developing strategies for 

online marketing, and sourcing products from suppliers.  

( ) / 1G h w o oN Hk L q  = −          (12) 

Capillary number condition 
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 

 

−
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−
         (14) 

In the pre-sales phase, retailers must also consider inventory management, pricing, and logistics factors. Since 

Online Retail sells products to customers from various locations, retailers must carefully manage their inventory 

to ensure accurate and timely delivery. It includes implementing inventory tracking systems and establishing 

close relationships with suppliers to maintain a steady supply chain. The sales phase begins when customers 

browse and purchase products from the online store. Here, the operations of Online Retail become critical as 

proper execution is required to ensure a smooth and satisfying customer experience. It includes managing 

customer orders, processing payments, and providing efficient customer service.  

B. Functional working model  

The functional working model for Prediction Analysis of Fault Mode Sets for High Permeability Distributed 

Energy Distribution Networks Based on Multivariate Data Fusion can be broken down into the following steps:  

1. Data Collection: The first step in the functional working model is to collect data from various sources such as 

sensors, smart meters, and other devices installed in the distributed energy distribution network. This data 

includes information on the network topology, power flow, voltage levels, current levels, fault events, and other 

parameters.  

2. Pre-processing: Once the data is collected, it is pre-processed to remove any outliers, missing values, or 

inconsistent data. This step also includes data normalization and data transformation to ensure that all the data is 

in a consistent format.  
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3. Feature Extraction: Relevant features are taken out of the pre-processed data in this step. These features could 

be frequency domain features like Fourier coefficients or statistical measurements like mean, median, and 

standard deviation. This stage is crucial since it aids in dimensionality reduction and the identification of the 

most pertinent features for prediction analysis. 

4. Multivariate Data Fusion: The extracted features and other relevant data are then fused together to create a 

single, comprehensive dataset. This step involves combining data from different sources and representing it in a 

unified format. This fused dataset is used for further analysis.  

Assuming that the dissolving process of one fluid in another is disregarded: 
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This is the auxiliary equation: 

1w os s+ =            (21) 

( )o w c wp p p s= +           (22) 

5. Fault Mode Identification: The fused dataset is then used to identify the fault modes in the distributed energy 

distribution network. This is done by analyzing the patterns and trends in the data to determine the underlying 

fault modes. Machine learning algorithms can also be used to automate this process and improve the accuracy of 

fault mode identification.  

6. Fault Mode Set Creation: Based on the identified fault modes and predicted future faults, a fault mode set is 

created. This set contains all the possible fault modes that can occur in the distributed energy distribution 

network, along with their probabilities of occurrence. This information is crucial for the efficient and effective 

management of the network.  

The definition of the pressure reconstruction function based on the idea of vertical equilibrium is as follows: 

( ) ( ) ( ), , , , , , , , ,p x y z t p x y z t x y z t  = +        (23) 

By estimating the function's gradient in the horizontal direction and solving the integral control equation to get 

the coarse-scale phase pressure, the integral flow rate may be computed using the reconstructed pressure. 

( )
( )wo

w w o o w

pc sp
s s g s

z z
 


= − + +

 
       (24) 
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( )
( )ow

w w o o o

pc sp
s s g s

z z
 


= − + −

 
        (25) 

The pressure reconstruction equation, using the water phase as an example, is as follows: 

( ) ( ) ( ), , , , , ,
B

z

w w w w o o o
z

p x y z t p x y z t s s g s dz = − + +        (26) 

8. Fault Management: The final step is to use the fault mode set to manage and monitor the distributed energy 

distribution network. This includes implementing appropriate control strategies and maintenance activities to 

prevent and minimize the impact of faults on the network. 

In summary, the functional working model for Prediction Analysis of Fault Mode Sets for High Permeability 

Distributed Energy Distribution Networks Based on Multivariate Data Fusion involves data collection, pre-

processing, feature extraction, multivariate data fusion, fault mode identification, prediction analysis, fault mode 

set creation, and fault management. This model can help in improving the reliability, efficiency, and 

sustainability of distributed energy distribution networks by enabling proactive fault management and 

maintenance. The functional block diagram has shown in the following fig.2 

 

Fig 2: Functional block diagram 

C. Operating principles 
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❖ Loan final window data 

The loan final window data is crucial to the loan origination process. It is the last step before a loan is approved 

and disbursed to the borrower. This data provides a comprehensive overview of the loan and allows lenders to 

make informed decisions. The first step in the loan final window data is to gather all the necessary information 

and documentation from the borrower. It includes income verification, credit reports, and any other relevant 

documents. Once this information is collected, it is entered into the lender's database and analyzed.  

( ) ( )
( ),

|| ,||.
zus

q u
t z

  

   

 
 


+ = −

 
       (27) 

represents the horizontal velocity of phase 𝛼 in the equation, and represents the vertical velocity of phase 𝛼. For 

an oil-water two-phase flow, the relative permeability curve takes on a variable shape at different flow 

velocities.  

 

( ) ,

|| ,||.
zus

c c s q u
t t z

 
    


 

 
+ + + = −

  
      (28) 

( ) ( ) ,ToT zw o
w w o o w o

u
c c s c c s q q

t t z
 

 
 

 
+ + + + = +

  
     (29) 

The total vertical velocity can be found by solving this equation: 

, , ,ToT z w z o zu u u= +           (30) 

A detailed examination of the borrower's income, credit history, and other financial details is part of data 

analysis. It facilitates the lender's evaluation of the borrower's creditworthiness and loan-repayment capacity. 

This information lets the lender determine the loan amount, interest rate, and other loan terms. The data also 

verifies the borrower's identity and prevents fraud. Lenders use advanced algorithms and fraud detection 

techniques to identify any red flags or inconsistencies in the data. It helps to protect both the lender and the 

borrower from potential fraudulent activities.  

The diverting quantity of Darcy's law can be used to determine the flow velocities of the oil and water phases 

independently. 

, ,.w z w ToT z z o z o

pc
u f u k g k

z
  

 
= −  + 

 
       (31) 

( ) ( ) ( ) ( )1 EVSOC t SOC t P t t+ = +         

 (32)In In this study, the batteries must be turned off from the power source after 100% in order to 

prevent overcharge risks.  

Since the battery is being used at a lesser power, it takes a while for it to charge completely. In this study, the 

electric car charging load is equivalent to with a correction factor of 0.95.  

( ) ( )max

EV i i EVPL N NV P=          (33) 

( ) ( ) ( )max tanEV i i EVQL N NV P =         (34) 

The number of EVs at the ideal node is displayed in the. and denote the node's real and loaded EV batteries, 

respectively. 
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Once the data is analyzed and verified, the lender makes the final decision on whether to approve the loan or 

not. If the loan is approved, the data is used to generate the loan documents, including the loan agreement and 

repayment schedule. These documents are then sent to the borrower for review and signature.  

❖ Haar wavelet 

The Haar wavelet is a mathematical tool that analyzes and processes signals, particularly in image processing 

and data compression. The scaling function captures a signal's overall trends and features, while the wavelet 

function captures the finer details. It allows for a multistate signal analysis, breaking it down into different levels 

of detail. The operational flow diagram has shown in the following fig.3 
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Fig 3: Operational flow diagram 

 The Haar wavelet has a simple and efficient structure, making it attractive for practical applications. It is a step 

function that takes on one on one interval and -1 on the adjacent interval, with all other values being 0. This 
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step-like behavior gives the wavelet distinct "on-off" or "high-low" characteristics as it alternates between 

positive and negative values. One essential operation the Haar wavelet performs is the wavelet transform. 

The findings of the GEP modelling expression tree are displayed in Equation was obtained using this expression 

tree. After that, the formula was applied to the other five wells, 

( ) ( ) ( )( )1 1X k AX k X k+ = −         (35) 

where A is the branching index and indicates the state in iteration k.  

DGs typically run at 0.95 power factor (PF). Consequently, the goal of this essay is to raise the substation's 

power factor (S/S) to 0.95.  

cos kw

KVA

S
PF

S

 
=  

 
          (36) 

1 1

BN NDG
DGSC

kw i j

i j

S PL APL PDG
= =

= + −          (37) 

( )( )
1 1 1

tan
r

BN NSC NDG
DGSC

KVA i j k DG

i j k

S QL QPI QC PDG 
= = =

= + − −        (38) 

( ) ( )
2 2

KVA KW KVArS S S= +          (39) 

❖ Average value of d6 of ground 

Elevation measures the height of the ground surface above sea level. It is an important parameter as it influences 

the soil type and vegetation that can grow in the area. A higher elevation may result in steep slopes and less 

diversity in plant life. Slope refers to the steepness of the land surface and is measured in degrees or 

percentages.  

( )
1

1
BN

i

Ap LP i
=

=           (40) 

Since LP (i) represents the power system's actual power loss, one can obtain 

( )
( ) ( ) ( )( )

( )

2 2

2

1 1

1

R i P i Q i
LP i

V i

 + + +
=

+
       (41) 

In this study, the symbols and stand for the voltage node, the ith line for the ith line, and the injection of loads 

into the node. The APLI can be written as 

DGSC

base

APL
APLI

APL
=           (42) 

1 2 3 4F PGDI PF APLI VJ W W W W   = + + +        (43) 

where the W parameters' coefficients are combined. CSO optimized fuzzy multi-phase performance within 

operational limits, as outlined in the preceding section. 

It can affect the drainage and erosion of the soil and influence the land's capacity for building structures. A 

higher slope may indicate potential instability or inaccessibility of the land. Soil type is a crucial factor in 

determining the productivity and possible uses of the land. 

❖ Signal based on fault classification 
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Signal-based fault classification is a process that involves the analysis of various signals to identify and classify 

faults in a system. This technique is widely used in electrical, mechanical, and telecommunications industries, 

where the continuous and reliable operation of equipment is crucial. The first step in signal-based fault 

classification is the acquisition of signals from the system. These signals can be generated by sensors, 

transducers, or other measurement devices and are used to monitor different parameters such as voltage, current, 

temperature, vibration, or sound. These signals are typically in time series data, sampled at regular intervals. 

Once the signals are acquired, they are processed to extract relevant features that aid fault detection and 

classification. These features include frequency, amplitude, phase, energy, or statistical values such as mean and 

standard deviation. 

This section of the study explains how to locate the SCs and DGs data in the best possible way. Given the 

varying limitations on the variables, the adjusted distance calculation can be provided. 

NVT NDG NSC NDGL NSCL= + + +        (44) 

( )
2

1

1, 4,5,6
NDG NSC

k K K

ij j i

K NDG

D X X k
+

= +

− + =        (45) 

The distance between various DG populations can be computed using the equation above. 

 The selection of features depends on the type of fault being investigated and the characteristics of the signals. 

After feature extraction, the next step is to apply a classification algorithm to the extracted features. This 

algorithm uses pre-defined patterns or rules to classify the signals into different fault categories. For example, if 

the signal's frequency is above a certain threshold, it may indicate an electrical fault, while a sudden increase in 

amplitude could indicate a mechanical fault. One of the critical benefits of signal-based fault classification is its 

ability to detect and classify faults in real-time.  

4. Result and Discussion 

In comparison to FPAF-HDPD-MD (Fault Prediction and Analysis Framework for High Permeability 

Distributed Energy Distribution Networks Based on Multivariate Data), PAMDP-FMSETS (Permeability-

Adjusted Multivariate Data Prediction for Fault Mode Sets in High Permeability Distributed Energy 

Distribution Networks), and PAoFMS-HPDEDN-MD (Prediction Analysis of Fault Mode Sets for High 

Permeability Distributed Energy Distribution Networks Based on Multivariate Data), the proposed method 

FAMNHPD-MDA (Fault and Anomaly Mode Network for High Permeability Distributed Energy Distribution 

Networks Based on Multivariate Data Analysis) has been evaluated for its performance. 

4.1.Accuracy 

 The accuracy of the prediction analysis is the most critical technical performance parameter. It refers to how 

well the analysis can predict the occurrence of different fault modes in the high permeability distributed energy 

distribution networks. A high accuracy is crucial for effective fault diagnosis and timely intervention.  Table.2 

shows the comparison of Accuracy between existing and proposed models. 

Table.2: Comparison of Accuracy (in %) 

No. of Images FPAF-HDPD-

MD 

PAMDP-

FMSETS 

PAoFMS-

HPDEDN-MD 

FAMNHPD-

MDA 

100 75.06 77.28 73.34 81.98 

200 77.03 79.70 75.54 83.97 

300 78.16 80.11 76.34 85.17 

400 79.37 81.71 77.01 85.65 

500 79.74 84.03 78.44 87.08 
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Fig.4: Comparison of Accuracy 

Fig. 4 shows the comparison of Accuracy . In a computation cycle, the existing FPAF-HDPD-MD obtained 

79.74%, PAMDP-FMSETS obtained 84.03%, PAoFMS-HPDEDN-MD reached 78.44 % Accuracy. The 

proposed FAMNHPD-MDA  obtained  87.08 % Accuracy. 

 

4.2. Sensitivity 

 The sensitivity of the analysis measures how well it can detect even the most minor changes or deviations in the 

data. A high sensitivity is essential for identifying potential fault modes at an early stage, allowing for proactive 

measures to prevent or mitigate failures Table.3 shows the comparison of Sensitivity between existing and 

proposed models. 

Table.3: Comparison of Sensitivity (in %) 

No. of Images FPAF-HDPD-

MD 

PAMDP-

FMSETS 

PAoFMS-

HPDEDN-MD 

FAMNHPD-

MDA 

100 79.06 73.28 77.34 83.98 

200 81.03 75.70 79.54 85.97 

300 82.16 76.11 80.34 87.17 

400 83.37 77.71 81.01 87.65 

500 83.74 80.03 82.44 89.08 
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Fig.5: Comparison of Sensitivity 

Fig. 5 shows the comparison of Sensitivity . In a computation cycle, the existing FPAF-HDPD-MD obtained 

83.74%, PAMDP-FMSETS obtained 80.03%, PAoFMS-HPDEDN-MD reached 82.44 % Sensitivity. The 

proposed FAMNHPD-MDA  obtained  89.08 % Sensitivity. 

4.3. Specificity 

 Specificity is the ability of the analysis to differentiate between different fault modes. It ensures that the 

analysis does not falsely classify one type of fault as another, which can lead to incorrect predictions and 

actions. Table.4 shows the comparison of Specificity between existing and proposed models. 

Table.4: Comparison of Specificity (in %) 

No. of Images FPAF-HDPD-

MD 

PAMDP-

FMSETS 

PAoFMS-

HPDEDN-MD 

FAMNHPD-

MDA 

100 77.06 75.28 80.34 82.98 

200 79.03 77.70 82.54 84.97 

300 80.16 78.11 83.34 86.17 

400 81.37 79.71 84.01 86.65 

500 81.74 82.03 85.44 88.08 
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Fig.6: Comparison of Specificity 

Fig. 6 shows the comparison of Specificity . In a computation cycle, the existing FPAF-HDPD-MD obtained 

81.74%, PAMDP-FMSETS obtained 82.03%, PAoFMS-HPDEDN-MD reached 85.44 % Specificity. The 

proposed FAMNHPD-MDA  obtained  88.08% Specificity. 

4.4. Timeliness 

 Timeliness relates to how quickly the analysis can process and analyze the data to generate predictions. In the 

case of distributed energy distribution networks, timely predictions are crucial for preventing and minimizing 

the impact of failures. The analysis should be able to provide predictions in near real-time to ensure prompt 

corrective measures can be taken. Table.5 shows the comparison of Timeliness between existing and proposed 

models. 

Table.5: Comparison of Timeliness (in %) 

No. of Images FPAF-HDPD-

MD 

PAMDP-

FMSETS 

PAoFMS-

HPDEDN-MD 

FAMNHPD-

MDA 

100 74.06 68.28 76.34 76.98 

200 76.03 70.70 78.54 78.97 

300 77.16 71.11 79.34 80.17 

400 78.37 72.71 80.01 80.65 

500 78.74 75.03 81.44 82.08 
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Fig.7: Comparison of Timeliness 

Fig. 7 shows the comparison of Timeliness . In a computation cycle, the existing FPAF-HDPD-MD obtained 

78.74%, PAMDP-FMSETS obtained 75.03%, PAoFMS-HPDEDN-MD reached 81.44 % Timeliness. The 

proposed FAMNHPD-MDA  obtained  82.08 % Timeliness. 

5. Conclusion 

In conclusion, the prediction analysis of fault mode sets for high permeability distributed energy distribution 

networks based on multivariate data is a valuable tool for identifying potential system failures and taking 

proactive measures for efficient maintenance. By predicting fault mode sets, the network can be better equipped 

to handle any disruptions and improve overall reliability. Additionally, the use of multivariate data allows for a 

more comprehensive understanding of the network's performance and the potential factors that may contribute 

to faults. Overall, this analysis can greatly benefit the operation and maintenance of distributed energy 

distribution networks and ensure their efficient and reliable functioning. 
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