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Wind energy Modelling is crucial in studying any site's feasibility. Wind energy Modelling 
principally depends on wind speed distribution. Determining wind speed distribution is 
fundamentally based on the used distribution functions. This paper examines five different 
distributions to describe the wind speed pattern, such as T Location-Scale, Logistic, Extreme 
Value, and Rayleigh distributions. Besides, alternative optimization algorithms like Multi-Verse 
Optimizer, Marine Predators Algorithm, and Grey Wolf Optimization are applied to the pre-
described distributions to determine the best parameters. Five error measures are investigated 
and compared to test the accuracy of the presented distributions and optimization methods. 
Catalca site in Istanbul, Turkey, is chosen for this analysis. The analyzed results verify the 
applicability of the proposed approach to characterize the wind speed pattern. It was observed 
from the experimental results that the Rayleigh distribution occupied the highest rank, whereas 
the Extreme Value distribution was the worst. Many invaluable conclusions are also discussed 
based on the results and deep investigations.  

Keywords: Wind Energy Modelling; Statistical Distributions; PDF; CDF; Inverse CDF (ICDF); Grey 

Wolf Optimization (GWO); Marine Predators Algorithm (MPA); Multi-Verse Optimizer (MVO).  

 

1. Introduction 
 

Modeling wind speed patterns and wind availability is crucial for multiple other essential 

studies. Modeling wind shape and potential primarily rely on wind speed patterns. Once the 

wind pattern is established, the wind availability can efficiently be specified. Therefore, 

wind shape characterization by different distributions is one of the most critical steps. 

Recently, numerous Probability Density Functions (PDFs) were introduced to describe 

wind speed profiles; among them, Rayleigh [3], Gamma [4], Weibull [1, 2], Lognormal [6], 

Normal [5], Logistical [7], Burr [10], Beta [8], Nakagami [9] distributions. Weibull, 

Rayleigh, and Gamma distributions [11-13] are the most commonly used distributions. 

 

The Weibull distribution was used to investigate the statistical characteristics of wind 

speed at Catalca in Turkey [12]. Graphical, Energy Pattern Factor (EPF), and 

approximation estimation methods are utilized to estimate Weibull parameters. The Weibull 

distribution was also utilized [13] to assess the wind speed in Pakistan. The parameters 

were modeled using Particle Swarm Optimization (PSO), Cuckoo Search Optimization 

(CSO), and Grey Wolf Optimization (GWO). Empirical Method of Justus (EMJ), EPF, 

Method of Modified Maximum Likelihood (MML), and Moments (MOM) as numerical 

estimation methods were utilized. Many estimation techniques, such as Method of Moment 

(MOM), Mean least-squares (LS), Standard Deviation (MSD), Power Density (PD), EPF, 

and Genetic Algorithm (GA), to describe the wind speed distribution represented by Wadi 

and Elmasry [14]. Different error measures were introduced to evaluate the Goodness-Of-
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Fitness (GOF) techniques used. The obtained outcomes demonstrated that GA 

outperformed all other methods, whereas the EPF occupied the lowest rank. 

 

The EPF, empirical, graphical, and MML numerical estimation methods 

to evaluate Weibull parameters, then to assess the capacity factor of wind turbines 

studied in [15]. MML method performed the most competent fitting, whereas the graphical 

method provided the worst. The wind speed at the airport site in Dolny Hricov based on 

Weibull, Gamma, and Lognormal was modeled [16]. Only the ML numerical estimation 

method was used to determine the optimal parameters. The Weibull with three-parameter 

occupied the first rank, whereas the Weibull with two-parameter was the second. 

 

In some cases, due to the computations' complicated distribution parameters. Many 

distributions fail to describe the wind pattern due to its variability in other cases. Therefore, 

many researchers suggested alternative distributions [17, 18], like Birnbaum Saunders. The 

Birnbaum Saunders distribution to assess the wind pattern at ten locations in Ontario, 

Canada, is studied by Mohammadi et al. [18]. The analysed results showed that the 

Birnbaum Saunders distribution performance and matching outperformed the others. 

 

Burr [10] and inverse Burr distributions [19-21] also have appeared in many research 

works. Wind data in Antakya, Turkey, were analysed by Burr distribution [10]. The results 

provided that the GOF of the Burr distribution matched more than others. [20] introduced 

the bi-parameter inverse Burr distribution used to assess the extreme wind speed values. 

Different estimation techniques like moment, ML, and quantile were utilized, and the 

results showed that the inverse Burr performed the best fitting. 

 

Alternative distributions are needed to be applied; due to the variability of wind speed 

patterns from one location to another. Based on this role, this paper suggests an extensive 

examination to study the performance of alternative five distributions such as one-

parameter Rayleigh, two-parameter Gamma, Extreme Value, and Logistic, and three-

parameter T Location-Scale. Three optimization algorithms, Multi-Verse Optimizer 

(MVO), Grey Wolf Optimization (GWO), and Marine Predators Algorithm (MPA), are 

employed to evaluate the most acceptable parameters per distribution. Five error measures, 

net fitness, Mean Absolute Error (MAE), Correlation Coefficient (R), Regression 

Coefficient (R
2
), and Root Mean Square Error (RMSE) are utilized to analyse and test these 

methods. Two years of wind data from the Catalca site is employed to conduct the analysis. 

 

This paper is divided into sections: Section two explores the statistical PDFs, 

Cumulative Density Functions (CDFs), and Inverse CDFs (ICDFs) and their formulas per 

distribution. Section three introduces the process of determining the best parameters based 

on optimization algorithms. Section four explains the degree of accuracy per distribution 

based on different error measures. Besides, Section five illustrates the outcomes. 

Ultimately, Section six concludes the paper. 
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2.  Statistical Distributions 
 

As aforesaid, accurate modelling of the wind speed pattern is vital to assess wind energy 

potential in a particular area. Once the wind speed distribution pattern is accurately 

determined, the other features and analyses belonging to the location can be appropriately 

specified. Five different distributions were studied to model the distributions of wind speed 

data. After this, a concise explanation of these distributions is given. 

 

2.1 Rayleigh Distribution 

 

British physicist Lord Rayleigh initially derived Rayleigh distribution (RD). The one-

parameter RD is a special case from the Weibull distribution when the shape parameter 

(kW) equals two [22]. Due to its simplicity and the ability to accurately describe wind 

regimes, many research papers based on Rayleigh distribution to estimate the potential of 

wind at various locations worldwide were introduced [11, 23, 24]. Rayleigh PDF is defined 

as follows [25]. 

          ( )
2

2

2
exp

R R

v v
f v

b b

 
= − 

 
                                                                    (1) 

where  is the probability of observing wind speed v, v = 0, 1, 2, . . ., N, N is the size of 

wind speed vector, and bR > 0. The Rayleigh CDF,  and ICDF,  are defined 

according to equation (2) and equation (3), respectively. 
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where 0≤ �≤ 1 

 

2.2 Gamma Distribution 

 

Gamma distribution (GD) is also a widely used distribution related mainly to 

Exponential and Normal distributions. Besides, many distributions such as Chi-squared, 

Exponential, and Erlang are special cases of the Gamma distribution. The Gamma PDF is 

expressed as: 
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where Gk  and Gc > 0, and Γ  is the gamma function which has the following formula. 

( ) ( )1

0
expGk

Gk t t dt
∞

−Γ = −∫                                                                 (5) 

 

The Gamma distribution formulas for the CDF and ICDF are according to equations (6) and 

(8), respectively. 
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where ( )
v

γΓ  can be computed using the following equation. 

( ) ( )1

0
expG

v
k

v G
k t t dt

−Γ = −∫                                                              (7) 

( )
( )

1

0

1
expG

G

v
k

k

G G G

t
G p t dt

c k c

−  −
=  

Γ  
∫                                           (8) 

 

2.3 Extreme Value Distribution 

 

Extreme Value distribution (EVD) has three identical types: type I (also called Gumbel 

distribution), type II (also known as Frechetandand), and type III (also called Weibull 

distributions). Every type has two representations, one depends on the minimum extreme 

and the other on the maximum extreme [26]. The general PDF formula of the two-

parameter EVD of type I for both representations is defined as follows [27]: 

( ) 1 exp exp expE E
E

E E

v v
f v c

c c

λ λ−
    − −

= −     
    

                              (9) 

 

where 
E

λ  is the location parameter and 
E

c  is the scale parameters. 

 

One of the essential features of EVD its ability to model events with rare probability 

such as the highly-speed wind data [28, 29]. The CDF of EVD of type I for minimum and 

maximum extremes can be defined by the following Equations [29]. 
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( ) ( )( )exp expF v v= − −                                                                         (11) 

 

The ICDF of EVD of type I, also called percent point function, for minimum and 

maximum extremes are defined as in Equations (12) and (13), respectively [30]. 
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2.4 Logistic Distribution 
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Logistic distribution (LD), also referred to hyperbolic secant function distribution, is a 

continuous distribution [31]. It is similar to the Normal distribution in form with bigger 

tails. The PDF formula of LD is defined by the following Equation [32]: 

 

( ) 21

4 2
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L L

v
f v sech

c c

µ −
=  

 
                                                               (14) 

where Lµ  and Lc  are the mean and scale parameters. 

The CDF of LD, which is also a scaled version of hyperbolic tangent distribution, has 

many applications in machine learning models such as logistic regression and feedforward 

neural networks. Its CDF can be computed using Equation (15) [33]. 
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The ICDF of LD can be defined as follows: 
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2.5 T Location-Scale Distribution  

 

T Location-Scale distribution (TLSD) is a member of Location-Scale distributions 

family that based on three parameters, namely, location, scale, and shape. The PDF of 

TLSD can be given as follows [34]: 
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where ( )TkΓ  is the Gamma function that computes by Equation (18). 

( ) ( )1

0
expTk

Tk t t dt
∞

−Γ = −∫                                                                   (18) 

One of the important features of TLSD is its property to represent the wind regimes with 

heavy tailed distributions [34]. It is worth to say, there is no closed formula for both CDF 

and ICDF of the three-parameter T Location-Scale distribution, but they can be calculated 

using iterative methods. 

Table 1 summarizes all the used distributions along with the name and notation of their 

parameters. 

 

Table 1: Parameters per distributions 

Distributions  Number, (Name) of Parameters 
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parameters 

 Rayleigh Distribution (RD)  1, (Defining parameter) P1=bR 

 Gamma Distribution (GD)  2, (Shape, Scale) P1= kG, P2= cG 

 Extreme Value Distribution (EVD)  2, (Location, Scale)  P1= λE, P2= cE 

 Logistic Distribution (LD)  2, (Mean, Scale) P1=µL, P2=cL 

 T Location-Scale Distribution 

(TLSD) 
 3, (Location, Scale, Shape) 

P1= λT, P2=cT, P3= 

kT 

 

3.  Methodology 
 

Evolutionary Optimization Algorithms (EOAs) utilize the mechanisms inspired by 

nature and solve problems via methods that imitate the behaviors of living organisms. 

EOAs represent a crucial pillar for solving nonlinear problems due to simplicity, flexibility, 

and ability to avoid local optima. However, they have drawbacks like computational 

complexity, convergence problems, and parameter initialization [35]. This section 

illustrates GWO, MPA, and MVO EOAs with their formulas, procedures, and flowcharts. 

The primary task of these algorithms is to find the best parameters per distribution. 

 

3.1 Grey Wolf Optimization 

 

The GWO algorithm simulates grey wolves hunting in nature. The hunting mechanism 

contains three stages, seeking a target, encircling the target, and attacking the target [36]. 

All search agents (grey wolves) in the collection (population) are initiated in a random way 

within the period [LB, UB], where LB and UB are the lower and upper borders of the 

parameters, respectively. Later, the fitness score per search agent is assessed by employing 

the objective function. The fitness solution is considered alpha along with beta and delta, 

respectively. Meantime, the rest of the grey wolves are organized under the omega. 

Therefore, in the GWO algorithm, the alpha, beta, and delta are computed, then the omega 

is found. Continuously, grey wolves update their locations depending on the target location 

as follows. 

1 2 3( ) , ( ) , ( )D C X X t D C X X t D C X X tα α β β δ δ= − = − = −
∣ ∣ ∣ ∣ ∣ ∣

                            (19) 

1 2 3, ,X X A D X X A D X X A Dα α α β β β δ δ δ= − = − = −                             (20) 

( 1)
3

X X X
X t

α β δ+ +
+ =                                                                            (21) 

where t  and 1t +  point to the current and the subsequent iterations sequentially. ( )X t  

and ( 1)X t +  are the current and following positions of the prey. Xα , X β , and Xδ  are 

the positions of alpha, beta, and delta, respectively. A  and C  are the coefficient vectors 

computed as follows: 

 

12 *A a r a= −                                                                                                    (22) 
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22C r=                                                                                                                 (23) 

where 1r  and 2r  are uniformly distributed random vectors within [0, 1], and a  is the 

control vector that linearly decreased from 2 to 0. GWO repeats again from the step of the 

fitness evaluation and continues in the same procedure till the maximum iteration number is 

attained. Figure 1(a) shows the flowchart of GWO. 

 

 
 

Figure 1: (a) Flowchart of GWO 

3.2 Marine Predators Algorithm 

 

MPA simulates the food foraging mechanism of marine predators [37]. Principally, 

marine predators rely on Levy and Brownian motion and the effects of vortex generation or 

Fish Aggregating Devices (FADs) [38] when searching for a target in seas. The MPA 

algorithm contains man stages. Initially, all search agents (marine predators) in the target 

matrix (population) are initiated randomly within the range [LB, UB]. The target matrix 

size is NxM, where N represents population size, and M represents the dimension of the 

problem variables, respectively. Later, the fitness score per search agent is assessed by the 

objective function. Then, the top predator is found. The optimal predator vector is repeated 
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many times to create the Elite matrix. The MPA first stage occurs when the target is 

moving quicker than the predator in which the most suited objective for the predator is to 

stay stable. This stage occurs in the first iteration, where the exploration process matters. 

Mathematically, Iter is the current iteration, and Max Iter−  is the maximum iteration 

number; if Iter < (1/3) Max_Iter, predators adjust their locations in the target matrix as 

follows. 

 

( ) , 1,2,...,i B i B iStepsize R Elite R Prey i N= ⊗ − ⊗ =        (24) 

 

.i i iPrey Prey P R Stepsize= + ⊗                                              (25) 

 

where BR , ⊗ , P , R  are vectors to generate random numbers using the normal 

distribution to simulate the Brownian movement, a notation preforms element-wise 

multiplications, a constant number equals 0.5, and a vector of random number uniformly 

distributed in [0, 1], respectively. 

 

The second stage occurs when the predator and target move at about the same speed. 

This stage occurs when the exploration process starts to transform into exploitation. The 

predator is responsible for exploration, while the prey is for exploitation. Consequently, the 

predator drives in Brownian while the prey drives in Levy motion. Mathematically, when 

(1/3) Max_Iter < Iter <(2/3) Max_Iter , predators in the first half of Prey matrix change 

their positions using the following equations. 

 

( ) , 1,2,...,i L i L iStepsize R Elite R Prey i N= ⊗ − ⊗ =                             (26) 

.i i iPrey Prey P R Stepsize= + ⊗                                                                  (27) 

 

where LR  is a vector of random numbers generated by Levy distribution. Meanwhile, in 

the second half of the Prey matrix, predators change their position as follows 

 

( ) , 1,2,...,i B B i iStepsize R R Elite Prey i N= ⊗ ⊗ − =                           (28) 

 

.i i iPrey Elite P CF Stepsize= + ⊗                                                            (29) 

   

2
_

1
_

Iter

Max IterIter
CF

Max Iter

 
 
  

= − 
 

                                                           (30) 

The third stage occurs when the predator moves faster than the target. This stage occurs 

when only the exploitation process matters. Therefore, the most helpful maneuvering for a 

predator is the Levy motion. Mathematically, when Iter > (2/3) Max_Iter, predators in the 

Prey matrix change their positions based on the following equations. 
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( ) , 1,2,...,i L L i iStepsize R R Elite Prey i N= ⊗ ⊗ − =                      (31) 

.i i iPrey Elite P CF Stepsize= + ⊗                                                       (32) 

 

Then, MPA applies the effects of the eddy formations and FADs environments, as 

follows. 

( )

( ) ( )1 21

i

i

i r r

Prey CF LB R UB LB U if r FADs
Prey

Prey FADs r r Prey Prey if r FADs

  + + ⊗ − ⊗ ≤  
= 

 + − + − >  

    (33) 

where FADs is a constant equals 0.2, U  is a binary vector randomly distributed in [0, 1], 

and its array is changed to zero if it is less than 0.2 or to one; otherwise, r  is a uniformly 

distributed random number within [0, 1], and r1, r2 indicate random indices in Prey matrix. 

Finally, MPA repeats again from the step of the fitness evaluation and continues in the 

same procedure until the maximum iteration numbers are satisfied. MPA outputs the top 

predator found so far and its fitness score. Figure 1 (b) depicts the flowchart of MPA. 

 

 
 

Figure 1: (b) Flowchart of MPA 



M. Wadi et al: Comparison of Five Different Distributions based on Three Metaheuristics to 
Model Wind Speed Distribution 

 

 378 

3.3 Multi-Verse Optimizer 

 

MVO simulates three cosmology concepts: white holes, black holes, and wormholes. 

The white or black holes and wormholes are designed to conduct exploration and 

exploitation operations in space. The MVO includes three phases: in the first phase, all 

search agents (universes) in the U matrix (population) are initiated randomly within the 

period [LB, UB]. The U matrix size is NxM, where N indicates the population size 

and M indicates the problem variables, respectively. Later, each search agent's fitness score 

(inflation rate) is assessed by the objective function. Then, the U matrix is sorted in the 

descending hierarchy. The most acceptable solution is renewed if the fitness score of the 

first universe in the sorted U is more reasonable than the fitness score of the current 

solution. Afterward, MVO permits moving objects from one universe with a higher 

inflation rate to another with a lower one. Therefore, the universe with a high inflation rate 

represents a white hole, whereas the universe with a nominal inflation rate denotes a black 

hole. Accordingly, an underpass between the two universes will be created to trade objects 

from white to black holes. Mathematically, to model white or black hole underpasses and 

the motion of objects through them, a roulette wheel is employed to choose one of the 

universes from the sorted U matrix. The white hole represents the specified universe by the 

roulette wheel. Each universe variable in U is renewed as follows. 

 

( )
( )

1

1

j

k ij

i j

i i

x r NI U
x

x r NI U

 <
= 

≥
                                                        (35) 

 

where 
j

i
x , 

j

k
x , r1, and ( )iNI U  are the 

thj  variable of the 
th

i  universe, the 
thj  variable 

of the 
th

k  universe, a random number in [0, 1], and a normalized inflation rate of the 
th

i  

universe, respectively. 

 

Then, MVO allows the movement of objects randomly among universes (regardless their 

inflation rates) by using the concept of wormholes. Every universe in U matrix has a 

wormhole to transport the variables of the best solution explored so far to its variables 

randomly. Mathematically, for each universe in U matrix, its variables are updated using 

the following equation. 

 

( )( )
( )( )

4 3 2

4 3 2

2

0.5

0.5

j j j j

j

i j j j j

j

i

X TDR UB LB r LB if r and r WEP

x X TDR UB LB r LB if r and r WEP

x if r WEP

 + − + < <



= − − + ≥ <


≥


               (36) 

where 
j

i
x  is the 

thj  variable of the 
th

i  universe, 
j

X  is the 
thj  variable of the best 

solution explored, TDR is the Travelling Distance Rate constant, WEP is a wormhole 
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existence probability constant, 
j

UB  is the upper bound of the 
thj  variable, 

j
LB  is the 

lower bound of the 
thj  variable, and r2 to r4 are random numbers within [0, 1]. 

 

Then, WEP and TDR constants are recalculated according to Equations (36) and (37), 

respectively. 

max min
WEP min l

L

− 
= +  

 
                                     (37) 

where 0.2min =  and 1max =  are the minimum and maximum values of WEP, l  is the 

current iteration, and L  is the maximum iteration numbers. 

 
1

1
1

p

p

l
TDR

L

= −                                                                  (38) 

 

where p is the iterations exploitation accuracy and equals 6, finally, MVO repeats from the 

step of the fitness evaluation and continues in the same procedure until the maximum 

iteration number is fulfilled. MVO outputs the best solution explored so far and its fitness 

score. Figure 1(c) depicts the flowchart of MVO. 

 

 
 

Figure 1: (c) Flowchart of MVO 
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3.4 Methodology 

 

The distribution parameter selection is defined as a nonlinear optimization problem that 

minimizes the mean absolute error between the actual and expected wind speed vectors, as 

given below. 

( ){ }min ,
m d

MAE V V                                                 (38) 

where 
m

V  and 
d

V  are actual and expected wind speed vectors, respectively, 
d

V  can be 

created by the ICDF of the distribution, as illustrated in Section 2. 

 

To compute Equation (38), EOAs can find the best solution [39-42]. The search agents 

in GWO, MPA, and MVO algorithms, represent the candidate solutions to the problem. The 

selection of parameters per distribution represented by the search agent consists of integer 

values. The initial search agents population is created randomly within the [LB, UB] 

period. The fitness score per search agent is evaluated by Equation (38). Then, the 

population grows by exploring the highest solution based on the EOAs mechanism. The 

process continues until the number of maximum iterations is reached. Table 2 demonstrates 

the EOAs operation parameters. 

 

Table 2: GWO, MPA and MVO operating values 

Name of parameter  Range Parameter Value 

Population size [5, 50] 50 

Number of maximum 

iterations 
[50, 300] 

RD �100, GD�200, EVD, 

LD, and TLSD �300 

Termination criteria [1xE
-4

, 1xE
-6

] 1xE
-6

 

 

Table 3 illustrates the best parameter values per distribution based on the utilized three 

EOAs. In most cases, GWO, MPA, and MVO have almost the same parameter values. 

Regarding the running time, Table 4 shows the elapsed time of GWO, MPA, and MVO in 

seconds. It can be perceived that GWO is faster than others in convergence regarding all 

used distributions. 

 

Table 3: Created parameters per distribution based on GWO, MPA and MVO algorithms 

Distributions Parameters 

Datasets 

2019 2020 

GWO MPA MVO GWO MPA MVO 

RD 1
st
  3.25 3.25 3.24 3.46 3.46 3.46 

GD 
1

st
  3.33 3.34 3.33 2.86 2.87 2.65 

2
nd

  1.23 1.23 1.24 1.51 1.51 1.63 

EVD 
1

st
  4.81 4.81 4.76 5.03 5.03 4.95 

2
nd

  1.89 1.88 1.89 2.15 2.15 2.10 

LD 1
st
  3.87 3.87 3.84 4.02 4.02 4.13 
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2
nd

  1.42 1.42 1.39 1.58 1.58 1.61 

TLSD 

1
st
  3.85 3.85 3.93 4.03 4.01 4.03 

2
nd

  2.37 2.28 2.32 2.72 2.64 2.64 

3
rd

  345.39 8.37 14.15 614.77 24.25 33.54 

 

4.  Accuracy Measures 
 

This paper employs numerous statistical measures to find the distribution and 

optimization algorithm with the most acceptable GOF. A brief with the formulas of each 

measure is given below: 

 

Table 4: Elapsed running time of distributions in seconds 

Distributions 

Datasets 

2019 2020 

GWO MPA MVO GWO MPA MVO 

RD 3.71 7.80 4.47 4.66 9.26 13.57 

GD 190.12 543.45 282.94 271.66 775.41 503.75 

EVD 5.22 10.43 14.23 7.40 15.81 17.25 

LD 10.51 21.03 26.16 12.59 26.23 31.53 

TLSD 349.50 481.78 476.32 567.24 748.06 808.80 

 

•  MAE is the mean between the actual ( x ) and the expected ( y ) wind speed vectors 

as in Equation (39) [43]. 

1

N

i i

i

y x

MAE
N

=

−

=
∑∣ ∣

                                              (39) 

where N  is the length of wind speed vector. 

 

•  RMSE is the square root of the average of the differences between the expected and 

actual wind speeds [44]. It is computed by: 

 

( )
2

1

N

i i

i

y x

RMSE
N

=

−

=
∑

                                  (40) 

 

•  Regression Coefficient defines the linearity grade between the expected wind speeds 

of distribution and the actual data. It computed by Equation (41). 

 

( ) ( )

( )

2 2

2 1 1

2

1

N N

i i i i

i i

N

i i

i

x z x y

R

x z

= =

=

− − −

=

−

∑ ∑

∑
                     (41) 
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     where 
i

z  is the 
th

i  actual mean wind speed. 

•   Correlation Coefficient demonstrates the correlation degree between the two 

datasets. It is defined within the period [-1, 1]. It can be computed as follows [45]. 

 

1

( )( )1

1

N
i i

i x y

x x y y
R

N σ σ=

− −
=

−
∑                            (42) 

where ( x , y ) and (
x

σ , 
y

σ ) indicates the mean and the standard deviation of the actual 

and the expected wind speed vectors, respectively. 

 

•  Net Fitness estimates the average of all the measures employed before. Again, the 

primary objective of using such a measure is to rank the used distributions based 

on their overall matching. It can be computed as follows [46]. 

2

1 1 1 1

(1 ) (1 )

4

n n n n

i i i i

i i i i

MAE RMSE R R

NetFitness
n

= = = =

+ + − + −

=
∑ ∑ ∑ ∑∣ ∣ ∣ ∣

                    (43) 

  where n  is the total number of applied measures. 

5.  Results and Discussion  
 

The collected data from the Catalca site in Turkey every 30 minutes at 10 m height for 

two years have been used to investigate the efficiency and the performance of the employed 

distributions and the optimization methods. Table 5 shows the details of the analyzed 

location. 

 

Table 5: The Catalca location information 

Station name State Country 
Latitude 

(O)
 N 

Longitude 
(O)

 E 

Altitude  

(m) 
Datasets 

Ataturk Istanbul Turkey 40.967 28.817 37 2019 - 2020 

 

Table 6: 2019-dataset average power and statistical calculations 

EOA Distributions x  σ  σ2
 Min Max Skew. Kurt. 

Average 

Power 

(W/m
2
) 

- Real 4.31 2.25 5.08 0.00 14.44 0.76 0.51 94.41 

GWO 

RD 4.32 2.12 4.51 0.37 13.95 0.62 0.28 88.95 

GD 4.37 2.28 5.21 0.59 18.02 1.10 1.82 100.79 

EVD 4.04 2.19 4.78 -4.72 8.99 -0.96 1.44 69.64 

LD 4.20 2.46 6.05 -3.28 16.92 0.22 1.04 93.96 

TLSD 4.15 2.29 5.26 -2.10 12.77 0.07 0.00 84.36 

MPA 

RD 4.32 2.12 4.51 0.37 13.95 0.62 0.28 88.93 

GD 4.37 2.28 5.21 0.59 18.02 1.10 1.82 100.77 

EVD 4.04 2.18 4.74 -4.69 8.98 -0.96 1.44 69.61 

LD 4.19 2.47 6.08 -3.30 16.94 0.22 1.04 94.00 

TLSD 4.18 2.50 6.23 -3.34 18.10 0.23 1.08 94.61 
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MVO 

RD 4.30 2.11 4.47 0.37 13.89 0.62 0.28 87.75 

GD 4.37 2.29 5.23 0.59 18.05 1.10 1.82 101.12 

EVD 3.99 2.19 4.80 -4.79 8.96 -0.96 1.44 68.00 

LD 4.16 2.42 5.83 -3.18 16.65 0.22 1.04 90.69 

TLSD 4.25 2.40 5.76 -2.67 15.43 0.14 0.49 92.96 

 

The illustrated EOAs, GWO, MPA, and MVO, are employed to assess the parameters 

per distribution. The utilized seven statistical descriptors, such as mean ( x ), standard 

deviation (σ), variance (σ2
), minimum (Min), maximum (Max), skewness (Skew), kurtosis 

(Kurt), and average power, to define the pattern of the actual collected wind data. Tables 6 

and 7 show the statistical analysis for the two datasets. The mean wind speed values at 10 

m height for the 2019 and 2020 datasets of the actual data are about 4.30 and 4.50 m/s, 

respectively. 

 

The wind speed mean value is a vital indication of wind potential at a specific location. 

Locations with high annual wind speed values are suitable for large-scale wind farms. The 

standard deviation value narrowly rises with an increase in the tower height. Variance is the 

square value of the standard deviation, measuring the divergence between wind speed 

values from their mean value. Also, variance narrowly rises with an increase in the tower 

height. The minimum actual wind speed is zero, while the maximum is 21.50 m/s. 

 

The skewness measures the asymmetry from the dataset's average value. The obtained 

skewness values demonstrate that the actual data track the skewness of the positive 

distribution. Kurtosis whereas indicates the peaked grade of a distribution. Kurtosis has 

three classes; positive, negative, and zero [47]. The actual data tend to the kurtosis of 

positive shape.  

 

The average power densities at the location at 10 m height are 94.40 and 111.70 W/m2 

for the 2019 and 2020 datasets. It can be noticed that the average power density rises with 

an increase in the tower height [48-51]. Tables 6 and 7 show that the Rayleigh distribution 

accomplished the most acceptable matching, while the Extreme Value distribution 

delivered the worst. 

 

Table 7: 2020-dataset average power and statistical calculations 

EOA Distributions x  σ  σ2
 Min Max Skew. Kurt. 

Average 

Power 

(W/m
2
) 

- Real 4.5 2.5 6.2 0.0 15.6 0.6 0.2 111.7 

GWO 

RD 4.6 2.3 5.2 0.6 14.9 0.6 0.2 106.6 

GD 4.6 2.6 6.8 0.7 20.6 1.2 2.0 129.6 

EVD 4.1 2.5 6.2 -3.9 9.8 -0.8 0.8 82.1 

LD 4.4 2.7 7.5 -2.6 18.6 0.3 0.8 114.1 

TLSD 4.3 2.6 7.0 -1.9 14.2 0.1 -0.1 106.9 

MPA 

RD 4.6 2.3 5.2 0.6 14.9 0.6 0.2 106.6 

GD 4.6 2.6 6.8 0.7 20.6 1.2 2.0 129.5 

EVD 4.1 2.5 6.2 -3.9 9.8 -0.8 0.8 82.1 

LD 4.3 2.7 7.5 -2.5 18.6 0.3 0.8 114.0 
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TLSD 4.3 2.7 7.1 -2.1 15.6 0.1 0.1 107.3 

MVO 

RD 4.6 2.3 5.2 0.6 14.9 0.6 0.2 106.8 

GD 4.6 2.7 7.3 0.6 21.5 1.2 2.2 135.1 

EVD 4.1 2.4 5.9 -3.8 9.6 -0.8 0.8 77.6 

LD 4.5 2.8 7.9 -2.6 19.0 0.3 0.8 123.0 

TLSD 4.3 2.6 6.9 -1.9 15.1 0.1 0.0 106.8 

 

The distribution accomplishes the highest fitness when the difference between the actual 

and the expected data approaches zero. Tables 8 and 9 summarize the GOF of the presented 

distributions and EOAs. The values in bold indicate the most acceptable ones, whereas 

underlined values indicate the most acceptable at all. In most cases, Rayleigh distribution 

reached the best GOF. Conversely, Extreme Value distribution was the worst. In some 

cases, Gamma distribution delivered the most suitable matching in terms of MAE measure. 

 

Table 8: 2019-dataset accuracy measures  

EOA Distributions 
Accuracy measures 

Net Fitness Rank 
MAE RMSE R

2
 R 

GWO 

RD 0.141 0.179 0.994 0.998 0.082 1 

GD 0.124 0.210 0.991 0.996 0.087 2 

EVD 0.569 0.948 0.823 0.917 0.444 5 

LD 0.234 0.498 0.951 0.983 0.199 4 

TLSD 0.251 0.446 0.961 0.983 0.188 3 

MPA 

RD 0.141 0.179 0.994 0.998 0.082 1 

GD 0.124 0.210 0.991 0.996 0.087 2 

EVD 0.569 0.946 0.824 0.917 0.444 5 

LD 0.234 0.501 0.951 0.983 0.201 3 

TLSD 0.234 0.518 0.947 0.983 0.205 4 

MVO 

RD 0.144 0.186 0.993 0.998 0.085 1 

GD 0.124 0.212 0.991 0.996 0.087 2 

EVD 0.573 0.963 0.818 0.917 0.450 5 

LD 0.244 0.486 0.953 0.983 0.199 4 

TLSD 0.252 0.446 0.961 0.984 0.188 3 

   

 

To firmly specify the accuracy of the best distribution, one average criterion called the 

net fitness test is required. Distributions are arranged according to four GOF tests. The 

rankings are established by considering a maximum of R
2
 and R while a minimum of MAE 

and RMSE. Based on net fitness, the top-down rank of the five distributions based on both 

GWO, MPA, and MVO is Rayleigh, Gamma, T Location-Scale, Logistic, and Extreme 

Value. Table 10 shows the ranking of the five distributions. In addition, comparing Gamma 

and T location-scale distributions based on net fitness, it can be observed that there is a 

slight difference between them. On the other hand, based on computation time, T Location-
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Scale distribution is more complex. For this site, Rayleigh distribution achieves the best in 

terms of matching and computation complexity.  

 

Table 9: 2020-dataset accuracy measures 

EOA Distributions 
Accuracy measures Net 

Fitness 
Rank 

MAE RMSE R
2
 R 

GWO 

RD 0.223 0.271 0.988 0.9988 0.127 1 

GD 0.221 0.381 0.977 0.9910 0.159 2 

EVD 0.594 0.978 0.846 0.9325 0.448 5 

LD 0.260 0.505 0.959 0.9871 0.205 4 

TLSD 0.233 0.433 0.969 0.9885 0.177 3 

MPA 

RD 0.223 0.271 0.988 0.9988 0.127 1 

GD 0.221 0.380 0.977 0.9911 0.158 2 

EVD 0.594 0.978 0.846 0.9325 0.449 5 

LD 0.260 0.504 0.959 0.9871 0.205 4 

TLSD 0.229 0.444 0.968 0.9889 0.179 3 

MVO 

RD 0.223 0.271 0.988 0.9988 0.127 1 

GD 0.228 0.441 0.969 0.9898 0.178 3 

EVD 0.609 0.995 0.841 0.9325 0.458 5 

LD 0.300 0.527 0.955 0.9871 0.221 4 

TLSD 0.231 0.426 0.971 0.9888 0.174 2 

 

To display the obtained results visually for all datasets, Figures 2 and 3 depict the fitted 

PDFs and CDFs, respectively. In the PDF and CDF plots, the horizontal axis represents the 

wind speed in m/s. Regarding PDF plots, two different-scale vertical axes are used; the left 

one is for the histogram of the measured wind data, whereas the right is for the introduced 

distributions. These vertical axes represent the probability density. The vertical axis for 

CDF plots represents the cumulative density. Obviously, it is noticed from Figures 2 and 3 

that all the introduced distributions achieved good matching. Rayleigh distribution occupied 

the first rank in terms of matching and computation complexity. 

Table 10: Ranking of distributions using GWO, MPA and MVO 

Distributions 
2019 2020 

1
st
  2

nd
  3

rd
  4

th
  5

th
  1

st
  2

nd
  3

rd
  4

th
  5

th
  

RD 3 - - - - 3 - - - - 

GD - 3 - - - - 2 1 - - 

EVD - - - - 3 - - - - 3 

LD - - 1 2 - - - - 3 - 

TLSD - - 2 1 - - 1 2 - - 

Best RD GD TLSD LD EVD RD GD TLSD LD EVD 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2: The PDF curves of introduced distributions when using: (a) GWO-2019, (b) 

MPA-2019, (c) MVO-2019, (d) GWO-2020, (e) MPA-2020, and (f) MVO-2020 

 

Many invaluable deductions can be drawn from this study as follows: 

• One of the most paramount deductions is related to the wind regime pattern that varies 

from one location to another and from year to year; therefore, various distributions 

should be utilized to describe the wind pattern accurately. In other words, a specific 

distribution function can accomplish the fittest GOF at a specific location but not at 

another. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure 3: The CDF curves of introduced distributions when using: (a) GWO-2019, (b) 

MPA-2019, (c) MVO-2019, (d) GWO-2020, (e) MPA-2020, and (f) MVO-2020 

 

• The second important deduction is the selection of the optimization method. The success 

of the optimization method mainly depends on the features of wind speed data, 

computation complexity, and convergence. Consequently, the trade-off between 

various optimization methods is an indispensable requisite. 

• The third important deduction is the applied error criteria. For example, a particular error 

measure may achieve the best with a particular distribution but the worst with another. 
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Consequently, it is crucial to use several error criteria. Afterward, to decide the rank of 

the estimation method accurately, the net fitness calculation is needed. 

• The fourth significant deduction is the skewness and kurtosis statistical descriptor values 

which can also be crucial to describe the wind regime since they can display the whole 

wind distribution pattern. In this study, skewness and kurtosis values are positive. 

Therefore, the wind pattern takes the shape of positive skewness and leptokurtic. 

Accordingly, the selection of the convenient distribution can be recognized. 

 

6.  Conclusion  
 

Many distribution functions are suggested to describe wind speed. However, alternative 

distributions are required due to the inability of some distributions and the computation 

complexities of others. This paper presents five alternative distributions to model the wind 

speed for two refresh data (2019&2020) at Catalca in Turkey. Three optimization 

algorithms, such as GWO, MPA, and MVO, are employed to determine the optimal 

parameter values per distribution. Many errors and statistical measures are utilized to 

specify the distribution and optimization with the best matching. The Rayleigh distribution 

outperformed the other distributions regarding computation complexity and best fitness. 

Conversely, the Extreme Value distribution provided the poorest matching. This study 

concludes with many essential findings to select the suitable distribution and optimization 

method that accurately helps describe the wind pattern at any site. 
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