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Abstract: - In traditional methods, it is critical for an effective continuous pulse monitor for 

humans prone to heart rate abnormalities. This paper proposes a secured heartrate abnormality 

detector which continuously monitors human pulse rate and SpO2 level. The current studies 

proposes that machine learning (ML) models performs well in classification; also, TinyML 

model shows better performance for data from resource constrained IoT devices. Hence, the 

research first analyses abnormal heart rate detection and spam data identification using 

standard ML algorithms such as SVM, Random Forest, Decision Tree, and TinyML. Though 

ML models are superior in classification, deep learning approaches outperforms them in 

feature learning. Hence, our proposed framework combines the merits of both ML and DL 

models. In our approach, the generated healthcare dataset is fed to DL models such as ANN, 

and autoencoder and also to SHAP XAI (eXplainable Artificial Intelligence) for feature 

extraction and learning. These learnt features are fed to ML models for classification. In this 

experiment, the proposed ETL-FEXIC (Enhanced Tiny Machine Learning with Automated 

Feature Extraction) outperforms the other ML models where the extracted features from XAI 

is fed to optimized TinyML classification model. 
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I.  INTRODUCTION 

In the field of healthcare, continuous monitoring of vital signs plays a crucial role in the 

detection and prevention of health problems, particularly in the case of people who are more 

likely to have abnormal heart rates. The capacity to screen heart rate and oxygen saturation 

levels (SpO2) [1] consistently and successfully is significant for early mediation and opportune 

clinical help. This has always been a problem, especially in environments with limited 

resources and limited access to cutting-edge medical equipment. However, recent 

technological advancements, particularly in the areas of machine learning (ML) and deep 

learning (DL) [2][3], have opened up new opportunities for the creation of sophisticated 

monitoring systems that are able to function effectively even on devices with limited resources. 

 

TinyML transforms classification processes on IoT devices with limited resources by installing 

lightweight machine learning models directly on these devices, doing away with the 

requirement for continuous data transfer to centralised servers. TinyML[4][10] focuses on 

being efficient and using little power. It allows for real-time decision-making and inference at 
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the edge, which cuts down on delay and improves privacy. TinyML makes sure that even 

devices with limited memory and processing power can handle complex machine learning tasks 

by using optimised algorithms and model compression methods. This makes a huge range of 

uses possible, including predictive maintenance, finding strange behaviour, and keeping an eye 

on the environment in IoT settings. TinyML also lets edge devices change and learn from data 

locally, without needing to be connected to cloud servers all the time. This makes it perfect for 

situations where internet access is spotty or not available at all. To put it simply, TinyML brings 

the power of machine learning to the edge, letting smart decisions be made in places with few 

resources. Though TinyML is better for classification it requires manual feature selection from 

the generated dataset. Hence, there is a need for algorithms to automatically extract and learn 

features from the dataset. 

 

XAI [11]extracts and learns features from datasets in a disruptive manner. XAI uses powerful 

algorithms to automatically extract and analyse meaningful features from raw data, unlike 

laborious feature engineering. XAI improves model accuracy and interpretability by revealing 

dataset patterns and correlations. XAI can find intricate, nonlinear correlations that manual 

inspection may miss. XAI approaches like SHAP (SHapley Additive exPlanations) [12] reveal 

how each feature affects model performance by analysing their contributions to model 

predictions. By providing human-readable model decision explanations, XAI makes machine 

learning models more understandable. This builds model trust and lets domain experts assess 

and improve learned features. 

 

By utilising the  merits of machine learning (ML) and deep learning (DL) models, we improve 

the efficacy of healthcare data analysis within the proposed framework. By integrating the 

generated healthcare dataset into DL models such as Artificial Neural Networks (ANN) [15] 

and autoencoders, and employing SHAP XAI (eXplainable Artificial Intelligence) for feature 

extraction and learning, we achieve the desired results. Then, machine learning models employ 

the acquired features to perform classification. Our proposed framework, ETL-FEXIC 

(Enhanced Tiny Machine Learning with Automated Feature Extraction), exhibits superior 

performance compared to standard machine learning models . This is  apparent when the SHAP 

XAI-extracted features are incorporated into optimized TinyML [16] model which attains 

improved precision and effectiveness in the classification of healthcare data. 

 

II. PAPER ORGANIZATION 

The paper is organized as follows: 

Section II provides a literature review of the proposed system with the current systems. 

Section III provides the proposed methodology and the components required for the research. 

Section IV provides the results obtained from the proposed work and a discussion about the 

performance of the proposed work. Section V provides the conclusion and future works of the 

research. 

III. RELATED WORKS 

The author in [5] proposes conventional transformation techniques, methods that make use 

of Wigner-Ville Transform (WVT) and Two-Dimensional Fast Fourier Transform (2-D FFT) 

for time-frequency representations. These approaches use Convolutional Neural Networks 
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(CNNs) to accomplish impressive results in challenges related to Human healthcare monitor. 

But there has been a big change since deep learning (DL) became popular. For example, a 

CNN-LSTM model with an adaptive batch size has been developed to effectively handle non-

normalized data and imbalanced classes. The CapsLSTM model is another noteworthy 

development. It makes use of spatiotemporal information to identify numerous human 

activities and demonstrates resilience in situations where data is poor.  

 

Furthermore, in [6], a semi-supervised deep learning (DL) framework has been shown that 

effectively leverages weakly labelled sensor data using an intelligent auto-labeling strategy 

based on deep Q-network (DQN) and a multi-sensor data fusion mechanism in a reinforcement 

learning (RL) approach. To further improve the interoperability of health monitor tasks without 

adding extra computing loads, a temporal-aware and modality-aware (TAMA) attention 

mechanism has been devised, highlighting the significance of various temporal steps or 

modalities.  

 

The author in [7] depicts the use of wireless fidelity (WiFi) channel state information (CSI) 

using orthogonal frequency division multiple access (OFDMA) sub-carriers CSI which is 

another significant development. Using CSI measures, a DL based model known as attention-

based bidirectional LSTM (ABLSTM) has demonstrated better performance. This model 

significantly improves recognition performance by giving different weights to learned features.  

 

Moreover, in [8] generative adversarial networks (GANs) combined with multi-modal 

generators have been applied to tackle the problem of non-uniformly distributed unlabeled data. 

This novel method increases the variety of data that is produced, which improves the 

identification of certain activities in a range of environmental contexts. These developments 

indicate a positive trajectory and hint at possible future improvements.  

 

As we move towards TinyML technologies, in [9] [14] a number of creative methods have 

been developed to strike a balance between the demand for data and the utilisation of available 

resources. These include lightweight ANN designs created especially for heart rate monitor, 

binarized neural networks, and adaptive neural networks. Furthermore, efforts have been made 

to use frameworks like BandX to save network traffic and optimise DL models for wearable 

devices.  

 

Subsequent research endeavours are examining the effective implementation of deep 

learning models on devices with limited resources. Research is being done on methods like 

TensorFlow Lite compression and TinyML integration with edge computing [13][20] through 

different sensing solutions. Notwithstanding these developments, issues like data shortages and 

privacy concerns continue to exist. Transfer Learning (TL), which efficiently uses knowledge 

from related jobs to enhance human monitor applications, has become an important solution. 

TL provides an effective way to deal with issues with data privacy, data collecting and 

annotation, and precise cross-domain knowledge transfer.  
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Our objective in this work is to leverage TL to expedite TinyML development by tackling 

issues like model adaption, inference rate, and fast deployment. By utilising TL approaches, 

we want to expedite model deployment and improve IoT application performance by making 

resource-intensive ML models easier to implement on edge devices. We also explore the 

possibilities of TinyML, highlighting TFLite-µ's contribution [17][18][19] to this paradigm 

change. Additionally, building on previous efforts, our analysis examines the effectiveness of 

TL in improving the accuracy of proposed models trained on sparsely labelled data, as well as 

its impact on edge inference performance. 

 

IV. PROPOSED METHODOLOGY 

From data collection to model evaluation, Figure 1 and Figure 2 explains the  methodology 

for identifying abnormal heart rates, with a focus on combining machine learning and 

explainable AI techniques for enhanced interpretability and accuracy.  

 

Dataset collection and Preparation: The procedure begins with collecting heart rate data, 

through the MAX30102 sensor [13][14] connected with Arduino microcontroller. The 

ThingSpeak cloud platform is then used to store this data, allowing for centralised access and 

storage. After that, the data is cleaned and made ready for analysis, making sure it is well-

organized and structured.  

 

Feature Extraction and Model Training: The proposed ETL-FEXIC model is used to extract 

features from heart rate data. In order to extract features from the raw data and identify patterns 

of abnormal heart rate, this model probably uses hybrid approaches.  

 
Figure 1: Proposed ETL-FEXIC framework 

 

Evaluation of TinyML Models: The data is supplied into TinyML models for assessment after 

feature extraction. TinyML describes machine learning models that are optimised for resource-

constrained devices, such as wearables or medical monitoring. This makes them appropriate 
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for deployment in edge computing contexts. A number of ML models are evaluated, including 

an Optimised TinyML model, RandomForest, Decision Tree, Support Vector Machine (SVM), 

and TensorFlowLite.  

 

Evaluation Metrics and Explainable AI: Each TinyML model's performance is measured using 

metrics including sensitivity, specificity, and F1 Score. The rate at which true positives are 

accurately identified is measured by sensitivity, and the rate at which true negatives are 

correctly identified is measured by specificity. The F1 Score provides a fair evaluation that 

takes precision and memory into account. Furthermore, the procedure integrates interpretable 

AI methods for feature dependency analysis, ranking, and interpretability, including SHAP 

(SHapley Additive exPlanations) and ANN (Artificial Neural Networks).  

 

Interpretability and Feature Learning: Understanding the variables affecting model predictions 

is made possible by employing interpretable AI approaches such as SHAP and ANN. Better 

comprehension and confidence in the model's judgements are fostered by SHAP values, which 

offer insights into each feature's contribution to the model's output. Furthermore, higher-level 

representations of the input data are extracted using feature learning techniques like 

Autoencoder, which improves the interpretability and performance of the model.  

 

 
Figure 2: Proposed model conceptual architecture 

 

Improved TinyML Model: With better sensitivity, specificity, precision, and F1 Score 

than any of the current algorithms, the Improved TinyML model identifies irregular heart rate 

patterns while reducing false positives and negatives. 

 

V. RESULTS AND DISCUSSION 

The results of the proposed framework is obtained by (I) directly training various ML 

models with the raw features and classifying the data; (II) extracting features from autoencoder, 

ANN, and XAI-apply extracted features to various ML models for classification. 

 

A. Classification without feature extraction 

Table 1 provides the performance of different ML models in two different classification 

tasks: spam data recognition and abnormal heart rate detection. With F1 scores of 0.76 and 

0.80, respectively, Decision Tree and TensorFlowLite performs well in the category of 

abnormal heart rate detection. These table values show an interconnection with  accuracy and 

recall, which is important for reducing the number of false positives and negatives when 
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diagnosing problems. The Optimised TinyML model produces a precision of 0.85, which 

shows that it correctly spots irregular heart rates while still having a good recall rate of 0.83. 

The Optimised TinyML model produces an F1 score of 0.84 when it comes to spam data 

identification. This means that it depicts the difference between spam and user-generated data, 

with as few false positives and negatives as possible. Even though the SVM and Random Forest 

models perform better with F1 scores between 0.73 and 0.76, they still need improvement. 

Overall, the results show that machine learning models, especially the Optimised TinyML 

model, work well in both healthcare and defence. The accuracy, recall, and F1 scores of these 

models shows that they could be used to improve medical diagnosis and internet safety. 

 

Table 1: ML models classification performance 

ML Model Heartrate abnormality 

detection 

Spam data identification 

Precision Recal

l 

F1 score Precision Recall F1 score 

SVM 0.73 0.77 0.73 0.74 0.75 0.74 

Random Forest 0.76 0.74 0.73 0.77 0.76 0.76 

Decision Tree 0.77 0.76 0.76 0.80 0.80 0.79 

TensorFlowLite 0.81 0.82 0.80 0.83 0.82 0.81 

Optimized 

TinyML model 

0.85 0.83 0.83 0.86 0.85 0.84 

 

B. ML classification with feature extraction: 

In this method, the collected dataset is trained with feature AI models such as ANN, 

autoencoder, and XAI. The models first acquire the dataset, learn the features, and extract the 

important features as in Figure 3 while training. The extracted features are saved and fed to the 

machine learning models for classification.  

 

 
Figure 3: SHAP XAI feature ranking 

C. Heartrate abnormality detection 

Table 2 shows the different machine learning model performance when combined with 

ANN to find irregular heart rates. The ANN + Optimised TinyML model shows the best 

performance, with a sensitivity score of 0.92, a precision score of 0.91, and an F1 score of 0.91, 

which means accurate spotting with a low false discovery rate. 
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Table 2: ANN feature extraction with ML heartrate abnormality detection 

ANN + ML 

Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

ANN + SVM 0.81 0.81 0.83 0.06 0.81 0.80 

ANN + Random 

Forest 

0.86 0.85 0.85 0.07 0.85 0.85 

ANN + Decision 

Tree 

0.89 0.87 0.88 0.07 0.90 0.89 

ANN + 

TensorFlowLite 

0.89 0.90 0.89 0.07 0.89 0.89 

ANN + 

Optimized 

TinyML model 

0.92 0.89 0.91 0.08 0.92 0.91 

 

ANN + TensorFlowLite, Decision Tree, and Random Forest are some other 

combinations that also perform better. Overall, these results show that ANN combined with 

machine learning models, especially Optimised TinyML, accurately and reliably finds heart 

rate problems in healthcare monitors. 

Table 3: Autoencoder feature extraction with ML heartrate abnormality detection 

Autoencoder +  

ML Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

Autoencoder + 

SVM 

0.77 0.76 0.76 0.07 0.78 0.76 

Autoencoder + 

Random Forest 

0.81 0.80 0.81 0.07 0.80 0.81 

Autoencoder + 

Decision Tree 

0.84 0.86 0.87 0.08 0.88 0.86 

Autoencoder + 

TensorFlowLite 

0.89 0.90 0.88 0.08 0.89 0.88 

Autoencoder + 

Optimized 

TinyML model 

0.91 0.90 0.92 0.09 0.91 0.91 

 

Table 3 shows the different machine learning models working when combined with 

autoencoders to find irregular heart rates. In general, adding autoencoders improves the model 

performance. A pair of functions is the same as an autoencoder. We need an assignment in 

order to assess its quality. A reference probability distribution defines a task. The training loss 

function of the autoencoder is defined below. 

 

𝐿𝑜𝑠𝑠(𝜕, 𝑝): = 𝐸𝑥∼𝜇𝑟𝑒𝑓
[𝑑 (𝑥, 𝐷𝜕(𝐸𝑝(𝑥)))] 

𝑚𝑖𝑛
𝜕,𝑝

 𝐿𝑜𝑠𝑠(𝜕, 𝑝), 𝑤ℎ𝑒𝑟𝑒 𝐿(𝜕, 𝑝) =
1

𝑁
∑ ⬚

𝑁

𝑖=1

  ∥ 𝑥𝑖 − 𝐷𝜕 (𝐸𝑝𝜙(𝑥𝑖)) ∥2
2 

The Autoencoder + Optimised TinyML model has the best sensitivity (0.91), specificity 

(0.90), accuracy (0.92), and F1 score (0.91). This means that it correctly finds things and doesn't 

find many false ones. Autoencoder + TensorFlowLite, Decision Tree, and Random Forest are 

some other combinations. These results show that using autoencoders along with machine 
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learning models, especially Optimised TinyML, finds abnormal heart rates more accurately 

and reliably. 

 

Table 4: XAI feature extraction with ML heartrate abnormality detection 

XAI + ML 

Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

XAI + SVM 0.80 0.82 0.80 0.05 0.84 0.82 

XAI + Random 

Forest 

0.89 0.87 0.88 0.06 0.89 0.88 

XAI + Decision 

Tree 

0.91 0.90 0.92 0.06 0.91 0.90 

XAI + 

TensorFlowLite 

0.93 0.92 0.92 0.07 0.93 0.93 

XAI + Optimized 

TinyML model 

0.93 0.92 0.94 0.05 0.95 0.94 

 

 
Figure 4: ML model comparative study of heartrate abnormality detection 

 

Table 4 and Figure 4 shows the different machine learning models working when 

combined with XAI methods for finding abnormal heart rates. XAI makes models easier to 

understand and better at what they do in all combos. The XAI + Optimised TinyML model has 

the best sensitivity (0.93), specificity (0.92), precision (0.94), and F1 score (0.94), which means 

it finds things correctly and rarely makes false findings. These results show that using XAI 

techniques, especially with Optimised TinyML, finds abnormal heart rates in healthcare apps 

that are accurate and easy to understand.  
D. Span data identification 

The proposed healthcare framework introduces attacks such as DDoS, phishing attacks, 

and other routing attacks. The classification performance of various ML models with different 

feature extraction methods are explained below. 

 

Table 5: ANN feature extraction with ML spam data identification 

ANN +  

ML Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

ANN + SVM 0.83 0.87 0.83 0.06 0.87 0.83 

ANN + Random 0.86 0.84 0.83 0.06 0.84 0.83 
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Forest 

ANN + Decision 

Tree 

0.84 0.85 0.84 0.07 0.85 0.84 

ANN + 

TensorFlowLite 

0.87 0.86 0.86 0.07 0.86 0.86 

ANN + 

Optimized 

TinyML model 

0.89 0.89 0.90 0.06 0.90 0.89 

 

Combinations of features taken from ANN using different machine learning models are 

included in Table 5 for the purpose of spam identification. Notably, the Optimised TinyML 

model combined with ANN yields the best results in terms of F1 score, sensitivity, specificity, 

accuracy, and precision. Competitive outcomes are also shown by other combinations, such as 

Random Forest, Decision Tree, and ANN + TensorFlowLite. All things considered, using ANN 

features in conjunction with machine learning models particularly the Optimised TinyML 

model offers a viable strategy for efficient spam identification. These results are important for 

improving communication channel cybersecurity with dependable and effective spam filtering 

systems. 

 

Table 6: Autoencoder feature extraction with ML spam data identification 

Autoencoder +  

ML Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

Autoencoder + 

SVM 

0.82 0.83 0.83 0.06 0.84 0.84 

Autoencoder + 

Random Forest 

0.83 0.84 0.83 0.06 0.84 0.84 

Autoencoder + 

Decision Tree 

0.89 0.87 0.88 0.07 0.87 0.87 

Autoencoder + 

TensorFlowLite 

0.88 0.89 0.88 0.08 0.89 0.89 

XAI + Optimized 

TinyML model 

0.91 0.91 0.90 0.08 0.91 0.90 

 

The performance of autoencoder based feature extraction combined with different 

machine learning models for spam detection is shown in Table 6. The detection accuracy is 

increased when autoencoders and machine learning models are combined. High sensitivity 

(0.89), specificity (0.87), and F1 score (0.87) are notable results of the Autoencoder + Decision 

Tree combo, suggesting accurate spam identification with few false positives. Additionally, 

Autoencoder + TensorFlowLite performs good. But the XAI + Optimised TinyML model 

performs better than the others, displaying the highest F1 score (0.90), precision (0.90), 

specificity (0.91), sensitivity (0.91), and recall (0.91). These results indicate strong detection 

capabilities with a balanced precision and recall. 
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Table 7: XAI feature extraction with ML spam data identification 

XAI + ML 

Model 

Sensitivity Specificity Precision False 

Discovery 

Rate 

Accuracy F1 

score 

XAI + SVM 0.79 0.79 0.80 0.07 0.82 0.80 

XAI + Random 

Forest 

0.88 0.86 0.87 0.08 0.87 0.86 

XAI + Decision 

Tree 

0.89 0.88 0.88 0.08 0.90 0.89 

XAI + 

TensorFlowLite 

0.92 0.91 0.91 0.09 0.92 0.92 

XAI + Optimized 

TinyML model 

0.93 0.92 0.92 0.09 0.93 0.92 

 

The effectiveness of XAI methods in conjunction with several machine learning models 

for spam detection is shown in Table 7 and Figure 5. In every scenario, XAI improves detection 

precision. It is noteworthy that the XAI + Optimised TinyML model earns the highest scores 

for F1 (0.92), specificity (0.92), precision (0.92), and sensitivity (0.93), showing balanced and 

accurate identification of spam with few false positives. Strong performance is also shown by 

other combinations, such as Random Forest, Decision Tree, and XAI + TensorFlowLite. These 

results highlight that XAI approaches is effectively integrated for trustworthy and 

comprehensible spam identification in communication channels, especially when combined 

with the Optimised TinyML model. 

 

 
 

Figure 5: ML model comparative study of spam data identification 

The performance of several feature extraction techniques and machine learning 

algorithms for spam identification and abnormal heart rate categorization is displayed in the 

tables. Better outcomes are consistently obtained when XAI features are integrated with the 

proposed optimised TinyML model. This combination outperforms all other combinations in 

terms of sensitivity, specificity, accuracy, precision, and F1 score in both tasks. These results 

emphasise the superiority of the Optimised TinyML model in accurate and dependable 

classification across several domains, such as spam detection and abnormal heart rate 

classification, and demonstrate the high performance of XAI features is integrated with the 

model. 
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CONCLUSION 

The proposed method presents a comprehensive framework, ETML-FEXIC (Enhanced 

Tiny Machine Learning - Feature Extraction and Interpretability Combiner), aimed at 

advancing abnormal heart rate monitoring systems using TinyML. By harnessing the 

capabilities of TinyML and transfer learning (TL), our approach enables the deployment of 

sophisticated ML models directly on resource-constrained edge devices, thereby alleviating 

concerns related to data privacy, latency, and energy consumption associated with cloud 

processing. 

 

Through a systematic methodology involving data collection, feature extraction, and 

evaluation of TinyML models augmented with explainable AI techniques, we have 

demonstrated significant advancements in abnormal heart rate detection. Our findings highlight 

the efficacy of the Optimised TinyML model, particularly when combined with feature 

extraction methods such as autoencoders and explainable AI approaches. Notably, this 

combination exhibits superior performance in both abnormal heart rate detection and spam data 

identification tasks, showcasing its potential for real-world applications across various 

domains. Moreover, our research underscores the importance of transfer learning in enhancing 

the efficiency and reliability of heart rate monitoring systems.  
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