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Abstract: - As smart cities continue to grow and the number of connected devices increases, power consumption becomes a critical concern. 

By offloading computationally intensive tasks from resource-constrained devices to more powerful edge servers, energy efficiency can be 

significantly improved. The research proposes a framework for managing power consumption in smart cities by offloading computational 

tasks to edge servers. This approach, considering factors like device capabilities, network conditions, and energy profiles, can improve energy 

efficiency. The framework's effectiveness is evaluated through real-world data simulations and performance metrics. Results show that 

offloading tasks to edge servers significantly reduces power consumption, conserving energy and prolonging battery life. The framework's 

adaptability ensures optimal resource allocation, maximizing energy efficiency without compromising performance. This research offers 

practical solutions for sustainable and energy-efficient operations in smarter cities.    
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Introduction 

1.1 Background 

The coming era of computers aims to change the way people interact with technology. The technological 

revolution of recent decades has revolutionized the way people communicate, work, travel, live, etc., driven by 

advances and developments in Information and Communication Technologies (ICT). Cities are becoming smart, 

dynamic infrastructures serving citizens, meeting energy efficiency and sustainability criteria [1]. In these densely 

populated cities and new urban areas, societies are facing new challenges to minimize the consumption of natural 

energy resources, promote renewable energy, and reduce atmospheric CO2 emissions. The concept of the Smart 

City [2] provides an effective means of managing infrastructure and services efficiently and in line with the needs 

of the city and its inhabitants. 

Smart cities face numerous challenges in terms of energy consumption. The deployment of a large number of IoT 

devices, sensors, and infrastructure components leads to increased power demand. Moreover, the diverse range of 

applications, such as smart transportation, energy management, and urban planning, further exacerbates the energy 

challenges. Researchers have emphasized the need for energy-efficient solutions to ensure the sustainable 

development of smart cities. IoT devices play a pivotal role in smart city environments, but their energy 

consumption is a significant concern. These devices often operate on battery power and may have limited energy 

resources. Therefore, reducing the energy consumption of IoT devices is essential to prolong their battery life, 

minimize maintenance efforts, and enhance the overall sustainability of the smart city ecosystem [3]. 

Energy consumption is a critical metric that quantifies the amount of energy utilized by a mobile device during 

the execution of tasks. It serves as a key indicator for evaluating the device's power efficiency and has significant 

implications for sustainability, battery life, and environmental impact. By measuring and analyzing energy 

consumption, we gain insights into how effectively the device utilizes its power resources. A device with lower 

energy consumption is considered more power-efficient, as it accomplishes tasks while minimizing unnecessary 

energy usage. This efficiency translates into extended battery life, allowing users to use their devices for longer 

durations without needing frequent recharges [4]. Minimizing energy consumption is not only advantageous for 

users but also contributes to environmental conservation. As mobile devices have become integral to our daily 

lives, the collective energy consumption of these devices has increased significantly. By optimizing energy usage, 
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we can reduce the overall environmental impact associated with mobile device manufacturing, charging, and 

disposal. 

Efficient energy consumption also aligns with the growing trend of sustainable technology. Consumers and 

organizations are increasingly prioritizing eco-friendly practices, and mobile devices that consume less energy 

are viewed positively from an environmental standpoint. Furthermore, managing energy consumption is crucial 

in resource-constrained scenarios, such as remote areas or situations where access to power sources is limited. By 

designing mobile devices with optimized energy consumption, we can ensure their usability and functionality in 

diverse environments. Measuring energy consumption provides us with essential information about a device's 

power efficiency, sustainability, and environmental impact. Minimizing energy consumption not only extends 

battery life and enhances user experience but also contributes to overall environmental conservation and supports 

the adoption of sustainable technology practices [5].  

Efficient and dynamic computation offloading on the network edge has emerged as a promising solution to 

manage energy consumption in smart city environments. By offloading computationally intensive tasks to edge 

servers or cloud infrastructure, the energy burden on individual IoT devices can be reduced, leading to improved 

energy efficiency. Researchers have explored various offloading techniques and strategies to optimize power 

consumption while maintaining acceptable performance levels. The literature highlights the significance of 

energy-aware decision-making algorithms for computation offloading in smart cities [6]. These algorithms 

consider energy consumption as a critical factor in determining whether a task should be offloaded or processed 

locally. Researchers have proposed optimization models, machine learning algorithms, and heuristic approaches 

to make energy-aware offloading decisions, thereby minimizing energy consumption in smart city environments. 

1.2 Research Objectives 

The research seeks to: 

● Analyze the energy consumption patterns in smart city environments.  

● Understand the specific challenges related to energy consumption in smart cities such as the deployment 

of numerous IoT devices, diverse applications, and infrastructure components. 

● Explore efficient and dynamic computation offloading techniques as a means to reduce power 

consumption in smart cities.  

● Examine existing offloading strategies and evaluating their effectiveness in terms of energy savings and 

performance trade-offs. 

Literature review 

Various studies have focused on exploring innovative approaches to address the energy challenges associated with 

the growing deployment of IoT devices in urban environments. In this literature review, we will examine the 

existing research related to efficient and dynamic computation offloading on the network edge for smart city 

environments, which aligns with the objectives of the current study. One notable study in this field is the work by 

Chen et al. [7], where they proposed an energy-efficient computation offloading framework for IoT devices in 

smart cities. They developed an optimization algorithm that dynamically decides whether to offload a task to the 

network edge or process it locally based on factors like energy consumption, task size, and available resources. 

Their results demonstrated significant energy savings while maintaining acceptable latency levels. 

Another relevant research contribution is the work by Zhang et al. [8], which focused on the energy optimization 

of IoT devices through dynamic computation offloading in smart cities. They proposed an energy-aware 

offloading scheme that considers the variations in energy prices and network conditions. Their approach 

intelligently determines the optimal offloading decision by considering both energy consumption and monetary 

costs, resulting in substantial power savings. Furthermore, the study by Li et al. [9] investigated the trade-offs 

between cloud offloading and edge offloading in a smart city context. They developed a hybrid offloading strategy 

that dynamically selects between cloud and edge resources based on factors such as task characteristics, network 
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conditions, and energy consumption. Their evaluation showed that dynamic offloading decisions can effectively 

reduce power consumption and improve response time for IoT applications. 

2.1 Edge Computing and Power Efficiency 

Edge computing is a paradigm that offers cloud computing capabilities at the network edge, in close proximity to 

end devices. This approach reduces latency, improves energy efficiency, and offers flexible computing options 

for computation-intensive tasks. By offloading tasks to nearby edge nodes, devices can reduce reliance on 

backhaul and cloud network bandwidth, improving efficiency and reducing network congestion. Edge computing 

is particularly beneficial for time-critical applications like IoT, video streaming, autonomous vehicles, and 

augmented reality. It also offers energy efficiency by reducing the need for extensive local processing, which can 

consume significant amounts of energy. Edge nodes, also known as fog nodes, mobile-edge servers, or cloudlets, 

provide storage and computational resources with minimal delay, enabling efficient execution of tasks requiring 

substantial computing power or large amounts of data processing [10]. 

Edge computing refers to the practice of processing and analyzing data closer to the source or at the network edge, 

rather than sending all the data to a central cloud or data center. This approach offers several benefits, including 

improved latency, bandwidth optimization, enhanced data privacy, and increased reliability. In the context of 

power efficiency, edge computing can play a significant role in reducing energy consumption.  One of the key 

advantages of edge computing is the ability to process data locally, closer to where it is generated. By processing 

and analyzing data at the edge, only relevant and summarized information needs to be transmitted to the central 

cloud or data center. This reduces the volume of data that needs to be transmitted over the network, resulting in 

lower energy consumption associated with data transmission [11]. Edge computing reduces network latency by 

processing data closer to the source. This is particularly beneficial for time-sensitive applications, such as real-

time monitoring and control systems in smart cities. By minimizing the time it takes for data to travel back and 

forth between devices and the cloud, edge computing reduces the need for constant network communication, 

leading to lower energy consumption. 

Edge computing distributes computing resources across various edge devices, such as edge servers, gateways, and 

IoT devices. This distribution allows for localized processing and reduces the reliance on centralized data centers. 

By leveraging the computing capabilities of edge devices, the overall energy consumption can be optimized, as 

the workload is distributed and processed efficiently across the network. Efficient task offloading and resource 

allocation strategies can further enhance power efficiency in edge computing environments. By intelligently 

offloading computationally intensive tasks from resource-constrained devices to more powerful edge servers, 

energy consumption can be optimized. Dynamic resource allocation techniques ensure that resources are allocated 

based on workload demand, minimizing idle resource consumption and maximizing energy efficiency [12]. 

Edge computing facilitates real-time decision-making by processing data locally and providing immediate 

responses. In smart city applications, such as traffic management or emergency response systems, quick decision-

making is crucial. By avoiding the latency associated with sending data to a remote cloud, edge computing reduces 

response times, leading to more efficient operations and optimized energy usage. In traditional cloud-based 

architectures, data from IoT devices or sensors is typically sent to a central data center for processing and analysis 

[13]. This constant transmission of data over the network can result in significant energy consumption. Edge 

computing minimizes network overhead by performing computations locally, thereby reducing the need for 

continuous data transmission. This reduction in network traffic leads to energy savings and improved overall 

network efficiency. 

Edge computing utilizes distributed computing resources across various edge devices, allowing for efficient 

resource utilization. Instead of relying solely on centralized data centers, edge devices contribute their computing 

capabilities to process data locally. This distributed approach ensures that computing resources are used more 

efficiently and reduces the energy consumption associated with idle resources. Additionally, edge devices can 

dynamically allocate resources based on workload demands, further optimizing energy usage [14]. Edge 

computing enables finer-grained power management at the device level. Edge devices can employ power-saving 

techniques, such as low-power sleep modes or dynamic voltage scaling, to optimize energy consumption based 

on workload requirements. By tailoring power management strategies to the specific needs of edge devices, power 
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efficiency can be significantly improved, resulting in extended battery life for battery-powered devices and 

reduced overall energy consumption. 

Edge computing provides scalability and flexibility in managing computational resources. As the number of IoT 

devices and data sources in smart city environments increases, edge computing can dynamically scale resources 

to handle the growing workload. By distributing computing tasks across edge devices, the system can adapt to 

changing demands, ensuring efficient resource utilization and minimizing unnecessary energy expenditure. 

Energy-aware decision-making algorithms and policies can be designed specifically for edge computing 

environments. These algorithms consider energy consumption as a crucial factor when making decisions related 

to task offloading, resource allocation, and workload management. By prioritizing energy efficiency in decision-

making processes, edge computing systems can effectively reduce power consumption and maximize the 

utilization of available energy resources [15]. 

2.3 Dynamic resource allocation 

Dynamic resource allocation in smart cities plays a vital role in optimizing power efficiency. By balancing 

workloads, making energy-aware decisions, enabling adaptive scaling, facilitating task offloading, leveraging 

predictive analytics, and integrating with energy management systems, dynamic resource allocation contributes 

to efficient utilization of computing resources and minimizes energy consumption in smart city environments 

[16]. Dynamic resource allocation plays a crucial role in optimizing power efficiency in smart cities. It involves 

intelligently allocating computing resources, such as processing power, memory, and storage, based on the real-

time demands of applications and services. Dynamic resource allocation ensures that workloads are evenly 

distributed across available computing resources. By analyzing the workload patterns and resource utilization, 

resources can be allocated dynamically to prevent the overloading of certain devices or servers. This balancing of 

workloads helps avoid resource bottlenecks and reduces the need for additional resources, leading to optimized 

energy consumption. 

Dynamic resource allocation algorithms take into account energy consumption as a critical factor when making 

resource allocation decisions. By considering the energy efficiency of available resources, the algorithms can 

intelligently allocate workloads to devices or servers with lower power consumption. This energy-aware decision-

making ensures that tasks are assigned to the most energy-efficient resources, thereby reducing overall power 

consumption in the smart city environment [17]. 

Dynamic resource allocation enables adaptive scaling of resources based on workload demand. When the 

workload increases, resources can be scaled up to accommodate the additional processing requirements. 

Conversely, when the workload decreases, resources can be scaled down or placed in low-power modes to 

conserve energy. This dynamic scaling ensures that resources are utilized optimally, preventing unnecessary 

energy consumption during periods of low demand. Dynamic resource allocation facilitates task offloading, where 

computationally intensive tasks are offloaded from resource-constrained devices to more powerful edge servers 

or cloud infrastructure. By offloading tasks to devices with higher computing capabilities, energy-constrained 

devices can conserve energy and operate at lower power levels. Task offloading also enables workload distribution 

across the network, preventing devices from operating at maximum capacity and reducing overall energy 

consumption [18]. 

Dynamic resource allocation can leverage predictive analytics techniques to anticipate future workload patterns 

and resource requirements. By analyzing historical data and trends, the algorithms can make proactive decisions 

in allocating resources ahead of time. This predictive approach helps avoid resource shortages or over-

provisioning, ensuring efficient resource utilization and minimizing unnecessary energy usage. Dynamic resource 

allocation continuously monitors the system's performance and adjusts resource allocation in real-time. By 

considering real-time data on workload, resource utilization, and energy consumption, the algorithms can optimize 

resource allocation dynamically. This real-time optimization ensures that resources are allocated based on the 

immediate demand, avoiding energy waste due to idle or underutilized resources [19]. 

Dynamic resource allocation can be integrated with energy management systems in smart cities. By exchanging 

information with energy monitoring systems, resource allocation algorithms can consider real-time energy 
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consumption data and adjust resource allocation accordingly. This integration enables a holistic approach to power 

efficiency, where resource allocation decisions align with the energy management goals of the smart city, resulting 

in optimized energy consumption. 

Numerous researches have tried to address problems with resource allocation, particularly the allocation of 

processing resources, by figuring out which device's operational mode is the most efficient. The most important 

aspect of edge computing is the effective distribution of scarce resources, and the effectiveness of this process 

directly impacts how well the edge computing paradigm as a whole performs. Due to its enormous success, edge 

computing is becoming more and more popular, and the research community is paying close attention to it.  

To address the problems of resource allocation and management in mobile edge computing (MEC), a broad variety 

of resource allocation methodologies and algorithms have been put forth. The effectiveness of edge computing 

jobs depends critically on the effective use of resources. This was discussed in a study published in [20], which 

offers the alternate direction method of multipliers (ADMM) algorithm to address the problems of resource 

allocation, content caching tactics, and compute offloading for MEC in wireless cellular networks. The suggested 

algorithm divides the main problem into smaller ones and finds distributed and efficient solutions for each one. 

Another effort in the same vein was published in [21], where the authors developed an algorithm for resource 

allocation in the distributed cloud environment by taking into account the quantity of virtual machines needed for 

the huge computing activities and the user requests for resources. The proposed work was also suitable for the 

optimal selection of datacenters in the edge computing environment. The objectives of the algorithm are to 

decrease the maximum latency and the distance between the selected datacenters. 

MiLAN is a piece of software that was first introduced in [22] and is intended to manage and distribute network 

resources for applications that use data from different sensors and necessitate the choice of the best sensor set. 

Each sensor's quality, however, is fixed and cannot be altered. Furthermore, MiLAN only considers the network's 

bandwidth capacity and ignores its processing power. Additionally, because it does not simulate on-board 

processing, it is unable to accommodate a variety of offloading strategies. 

According to the researchers in [23], efficient resource scheduling is essential for achieving resource efficiency. 

In order to control the distribution of computer resources in edge computing, they created a method called Zenith. 

The suggested method enables service providers (SPs) to contract with edge infrastructure providers for the 

pooling of resources. To enable tasks to satisfy their latency requirements and successfully complete, SPs use a 

latency-aware scheduling and resource provisioning method based on these contracts. For use in the edge/fog 

computing environment, the Time-Cost aware Scheduling (TCaS) method was put forth in [24]. For efficient 

resource allocation, the authors suggested a three-layered approach (edge devices layer, edge/fog layer, and cloud 

layer). The technique was tested using multiple datasets of tasks for edge/fog nodes and the cloud. Its goal is to 

distribute tasks to edge devices and edge/fog nodes. The trade-off between cost, time, and user comfort was one 

of the evaluation factors. The technique has a drawback, too, in that it allots resources before task processing and 

does not offer runtime resource allocation. 

An investigation of MEC's energy efficiency and performance guarantee was done by Tao et al. [25]. They 

developed an optimization problem that reduces energy use while enhancing task performance and used Karush-

Kuhn-Tucker criteria to solve it. They also created a request offloading method that details each time slot's 

bandwidth and energy requirements. This plan aims to lower energy usage while enhancing MEC performance. 

In multi-access edge computing environments, Mehrabi et al.'s [26] proposal for a heuristic-based approach with 

low complexity and minimal requirements for parameter adjustment. To demonstrate the effectiveness of the 

suggested solution and quantify the advantages of network-assisted adaptation over client-based techniques, they 

tested the optimized solution against two common client-based solutions, namely buffer-based adaptation and 

rate-based adaptation. The goal of this work is to create a mechanism that can effectively adapt to the shifting 

conditions of multi-access edge computing environments without requiring a large amount of CPU power or 

intricate parameter adjustment. To reduce the overall average latency of all mobile devices, Ren et al. [27] 

addressed the issue of joint computing and communication resource allocation. In terms of normalized cloud 

computation and backhaul communication capacities, they developed a closed-form optimal job allocation policy. 

In order to determine the best allocation of compute resources, they also converted the original issue into an 
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analogous convex optimization problem and solved it using a convex optimization method. In this study, we 

efficiently allocate computing and communication resources to reduce latency in mobile devices. 

The framework presented by Wang et al. [28] addresses the challenge of balancing performance and power 

consumption in mobile service providers. To maximize system effectiveness, it is necessary to coordinate the 

scheduling of network resources within a cloud radio access network (C-RAN) and computation resources inside 

a mobile edge cloud computing (MEC). The authors develop a stochastic resource scheduling problem to address 

this issue. The decision-making process for distributing network and computing resources in a dynamic and 

uncertain environment is represented by this problem. Discovery the best resource scheduling method that 

maximizes system performance while minimizing power usage is the goal. 

In [29], Hu and Li put forth an idea for reducing energy usage in mobile communication by optimizing the 

distribution of transmitting power among mobile users. To address the issue, the authors combine a quasiconvex 

method with a sub-gradient-based non-cooperative game model. In order to reduce request response time, they 

also model a simultaneous resource scheduling and request offloading problem. An enhanced fast and elitist multi-

objective genetic algorithm is used to tackle this problem after it is first stated as a mixed-integer nonlinear 

program. 

A multiuser mobile edge computing (MEC) system with energy harvesting devices is the subject of a study by 

Zhang et al. [8] that focuses on power consumption issues. The authors seek to reduce power usage while taking 

into account battery stability limits and quality of service (QoS) standards. The authors develop a stochastic 

optimization program to address this issue. Using this program as a mathematical model of the system, it is 

possible to define an objective function and constraints that account for the trade-off between power consumption, 

QoS, and battery stability.  

To solve the stochastic optimization problem, the authors propose an online algorithm based on Lyapunov 

optimization. Lyapunov optimization is a technique that utilizes a Lyapunov function, which measures the 

system's energy and stability, to guide the optimization process. The online algorithm designed by Zhang et al. 

leverages the Lyapunov optimization framework and considers only the current state of users, making it suitable 

for real-time decision-making in dynamic environments. 

Methodology 

3.1 The proposed method 

This chapter describes our efforts to create a precise online system for offloading edge computing tasks. The 

system model for our offloading situation is presented initially with the intention of resolving the prior raised 

difficulties in this thesis. The method we suggested is then included in a class of honest offloading methods that 

we define later. Then, we narrow down on our specific problem and look into possible ways to solve its special 

characteristics using the basic convex optimization techniques. Finally, we show the method we created as our 

recommended correction. 

This research explores the concept of independent tasks for mobile users, characterized by parameters such as 

CPU cycle per bit, task data size, deadline, and priority value. The study introduces the concept of desired power 

consumption for each mobile device. The partial offloading process model aims to balance local execution and 

complete offloading models, focusing on determining the optimal fraction of tasks to be offloaded for each user. 

This decision impacts the energy efficiency and performance of the Mobile Edge Computing (MEC) system.  

The offloading decision problem is an optimization challenge that aims to minimize energy consumption while 

satisfying latency requirements within the MEC system. This approach is particularly important in resource-

constrained environments with limited battery capacity. The offloading decision problem under latency 

requirement constraints allows for a balance between response times and energy efficiency, making it crucial for 

applications requiring real-time processing. This approach opens up avenues for further exploration and 

innovation in mobile computing and edge intelligence. 

3.2 Task Model 
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In this study, we investigate the idea of an independent task for distinct mobile users, designated as 

T=t_1,t_2,t_3,...,t_j. The parameters c_n, d_n, T_n, and P_n can be used to describe each task, denoted by t, which 

is submitted by a mobile user, and represented by n. These variables represent, in turn, the size of the task data, 

the task deadline, the priority value given to task t_n, and the needed CPU cycle per bit of tasks. We also define 

l_n as the amount of data that a mobile user n offloads, and _n as the percentage of tasks that user offloads. L_n 

is determined as the sum of d_n and _n, or l_n=d_n._n. In addition, we introduce the idea of desired power 

consumption for each mobile device, represented as E_(b,n). This figure acts as a starting point for calculating 

each mobile device's energy needs. 

3.3 Offloading Decision Model 

The concepts of local execution and complete offloading models are relatively easy to understand. Local execution 

refers to the scenario where all tasks are processed entirely on the mobile device itself, without involving any 

external resources. On the other hand, complete offloading involves transferring all tasks to a remote server or 

cloud for processing. These models have their advantages and limitations, but the partial offloading process model 

aims to strike a balance between the two. 

In the partial offloading process model, the challenge lies in determining the optimal fraction of tasks to be 

offloaded for each mobile user. This decision is crucial as it directly impacts the energy efficiency and overall 

performance of the Mobile Edge Computing (MEC) system. By offloading a portion of tasks, the mobile device 

can leverage the computational capabilities and resources of the MEC infrastructure, thereby reducing energy 

consumption and potentially improving response times. 

To address this challenge, we formulate the offloading decision problem as an optimization challenge that focuses 

on maximizing energy efficiency while satisfying latency requirements within the MEC system. The goal is to 

find the optimal offloading fraction that minimizes energy consumption while ensuring that the latency constraints 

are met. This formulation draws inspiration from Tao's research [46], which provides valuable insights into the 

energy-latency trade-off in MEC systems. 

By considering the energy efficiency aspect, we aim to minimize the power consumption of mobile devices while 

still meeting the required latency thresholds. This is particularly important in resource-constrained environments 

where mobile devices have limited battery capacity. By intelligently allocating the tasks between local execution 

and offloading, we can optimize the energy usage of mobile devices and prolong their battery life. 

3.3.1 Optimization Offloading Model 

This chapter presents a comprehensive assessment of the proposed approach to analyzing traffic patterns in mobile 

devices. The approach is evaluated using a simulation environment that accurately replicates real-world scenarios 

and parameters. A simulator was developed using MatLab software in 2019 to provide a versatile platform for 

evaluating the methodology across various scenarios and conditions. The simulator offers an intuitive interface, 

allowing users to customize simulation parameters, fine-tune algorithmic settings, and visualize results. 

The proposed method is compared against four alternative approaches: "All Local," "All Offload," "All 

Offload+Priority," and "Random." The "All Local" strategy focuses on executing tasks locally without offloading 

them to external servers, leveraging the computing capabilities of mobile devices. This approach reduces reliance 

on external servers, minimizes network latency, enhances data privacy and security, and distributes computational 

workload more evenly across the network. However, the effectiveness of this strategy depends on the 

computational capabilities of individual mobile devices. 

The all-local process model focuses on tasks performed locally without task transmission, resulting in energy 

consumption based on task data size and CPU requirements. The offload process model considers only energy 

consumption for transmission, while the all-local process model includes both transmission and execution time. 

The energy consumption of the partial offload process model is divided into local execution consumption and 

partial offloading tasks transmission consumption. The energy consumption of each mobile device can be divided 

into local execution consumption and transmission consumption. 
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The "All Offload" strategy offloads tasks to edge layer servers, leveraging their superior processing power and 

abundant resources. This strategy allows mobile devices to conserve their limited battery power and computational 

resources, extending their battery life and enabling users to utilize their devices for longer durations. Edge servers 

are typically equipped with more powerful processors, larger memory capacities, and faster network connections 

compared to mobile devices, enhancing efficiency and speed of task execution. 

The energy consumption of the all offload process model can be defined as 𝐸𝑜 and 𝑡𝑛,𝑜, respectively. 

(4-3) 𝐸𝑜 =
𝑑𝑛. 𝑝𝑛

𝑟𝑛

= 𝑝𝑛 . 𝑡𝑛 

 

(4-4) 𝑡𝑛,𝑜 =
𝑑𝑛 

𝑟𝑛

+
𝑐𝑛 

ℎ𝑛
𝑒

 

 

Let 𝑝𝑛 represent the transmission power for mobile n, and let 𝑟𝑛 denote the transmission rate of mobile n. The 

transmission rate of mobile n can be defined as equation (4-5). 

 

(4-5) 𝑟𝑛 = 𝛽(1 +
𝑝𝑛 𝑔𝑛

2

𝑁𝑜 𝛽
)  

 

Let 𝛽 represent the bandwidth of the wireless channel, and let 𝑔𝑛 denote the channel gain of the edge server. 

The Mobile Layer Algorithm for Energy-Efficient Task Offloading aims to optimize task offloading for each 

mobile user by iterating over each user and task. The optimal offloading fraction, denoted as α_n, is calculated 

using equations that consider factors such as network conditions, device capabilities, and task characteristics. 

Once the optimal offloading fraction is calculated, tasks are offloaded to the edge server, which helps conserve 

energy and improve the overall performance of the mobile device. 

Table 4-1 Description of Energy-Efficient Task Offloading Algorithm 

Energy-Efficient Task Offloading Algorithm (Part A) 

Line Code 

1: for each mobile user n 

2: for each task 𝑑𝑖 in mobile n 

3: Calculate the optimal offloading fraction 𝛼𝑛 by (4-20) 

4: Offload 𝑑𝑖 × 𝛼𝑛 tasks to edge server; 

5: Execute 𝑑𝑖 × (1 − 𝛼𝑛) tasks at local mobile 

6: end for 

7: end for 
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3.4 Performance Evaluation 

Energy consumption has been chosen as one of the primary measures for our performance assessment. On the 

other hand, energy consumption measures how much power is used when a task is carried out on a mobile device. 

It is essential for assessing the device's power effectiveness. We may evaluate a device's sustainability and how 

effectively it uses its power resources by evaluating its energy usage. In order to increase battery life and lessen 

the environmental impact of using mobile devices, energy consumption must be kept to a minimum. 

Energy Consumption: 

The partial offload process model is used to optimize energy efficiency and task execution by dividing 

computational tasks between mobile devices and edge servers. The energy consumption is quantified using a 

variable α_n, which represents the offloading fraction to the edge server. The model consists of local execution 

and transmission consumption, allowing for better decision-making regarding task allocation strategies and 

resource management techniques. The energy consumption model can be expressed mathematically as equation 

(4 6), providing valuable insights into the process. 

(4-6) 𝐸𝑛 = 𝐸𝑜  . 𝛼𝑛 + 𝐸𝑙  . (1 − 𝛼𝑛) =  𝑝𝑛  . 𝑡𝑛. 𝛼𝑛 + 𝑓𝑛 . 𝑐𝑛 . (1 − 𝛼𝑛) 

In summary, the energy consumption of the partial offload process model considers the interplay between local 

execution and task offloading to the edge server. By carefully balancing the task offloading fraction and 

optimizing the energy consumption components, we can achieve better energy efficiency and enhance the overall 

performance of mobile computing systems. 

Results 

Within this section, we will present the simulation results obtained from the simulations conducted using the 

aforementioned settings. These simulations were carefully developed in order to assess the performance and 

usefulness of the system in question. 

We wanted to get deeper understanding of the system's behavior, potential, and limitations by using these models. 

The results of these simulations provide a detailed understanding of how the system behaves and reacts in various 

situations. 

Evaluation based on the number of tasks 

An early experiment was carried out to assess the efficacy of the suggested strategy, with an emphasis on the 

quantity of tasks generated and carried out on mobile devices. Figures 5-2 show the outcomes of this experiment 

and their implications for execution time and energy consumption, respectively. 

Energy consumption 

Figure 5-2, on the other hand, sheds light on the energy consumption associated with the execution of tasks. It 

quantifies the amount of energy utilized by the mobile devices during the execution process. Understanding the 

energy consumption is crucial for evaluating the method's power efficiency and sustainability. Lower energy 

consumption suggests that the proposed method efficiently utilizes the device's power resources, leading to 

extended battery life and reduced environmental impact. 
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Figure 5-2 Comparison of Energy Consumption based on the Number of Tasks for the proposed method and the 

benchmarks. 

Discussion 

The comprehensive analysis of Figure 5- 2 allows us to obtain a holistic understanding of the performance of the 

proposed method when applied to mobile devices. The method's efficiency, efficacy, and sustainability are all 

useful information that can be gained from the evaluation based on execution time. 

Similarly, Figure 5- 2 provides crucial information about the energy consumption associated with the execution 

of tasks. We may assess the method's power efficiency and sustainability by looking at the findings of the energy 

consumption analysis. A strategy that uses the power resources of the device more efficiently will result in a lower 

energy consumption, longer battery life, and a smaller environmental impact. Making decisions about the method's 

resource utilization and energy optimization is made easier by these insights. 

4.2 Evaluation based on task data size 

To further evaluate the effectiveness of the proposed method, a second experiment was conducted, centering on 

the size of tasks generated and executed on mobile devices. This experiment aimed to investigate how the task 

size affects the performance of the method. The results of this experiment are presented in Figure 5-4, showcasing 

the findings regarding execution time and energy consumption, respectively. 

Energy consumption 

Figure 5-4, on the other hand, focuses on the energy usage related to various-sized tasks. It measures the amount 

of energy used when carrying out tasks of various complexity. The energy efficiency of the approach can be 

assessed by examining the energy consumption figures shown in Figure 5-4, and any patterns or trends connected 

to job size can be found. This knowledge can help us make decisions on how to best manage power, allocate 

resources, and optimize energy use in order to increase the proposed method's overall effectiveness and 

sustainability. 

 

Figure 5-4 Comparison of Energy Consumption based on the Task Data Size for the proposed method and the 

benchmarks. 
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Discussion 

Indeed, examining Figure 5- 4 in conjunction allows us to acquire valuable insights into the performance 

characteristics of the proposed method concerning task size. A thorough picture of how the method operates while 

handling jobs of various complexities or sizes can be gained from the evaluation based on execution time and 

energy usage. 

Figure 5- 4 simultaneously displays the data on energy consumption for various work sizes. We may assess the 

method's power efficiency and spot any patterns or trends related to job size by looking at the energy consumption 

figures. This study helps us decide how to best use resources, allocate energy, and control power in order to 

improve the proposed method's overall effectiveness and sustainability. 

4.3 Evaluation based on exponential distributions 

A third experiment, which concentrated on the exponential distribution of task size, was conducted to further 

evaluate the efficacy of the suggested approach. The purpose of this experiment was to examine how well the 

approach performs when the size of the tasks is distributed exponentially. Figure 5-6 show the data from this 

experiment, which are connected to execution time and energy use, respectively. 

Energy consumption 

Figure 5-6 focuses on the energy consumption associated with tasks following an exponential distribution of size. 

It measures the amount of energy used when jobs of various sizes and distributions are carried out. We can assess 

the method's power effectiveness and find any trends or patterns associated with the distribution of job sizes by 

examining the energy consumption figures shown in Figure 5-6. In scenarios with an exponential distribution of 

task sizes, this knowledge enables us to optimize energy consumption, resource allocation, and power 

management tactics to increase the overall efficiency and sustainability of the suggested strategy. 

 

Figure 5-6 Comparison of the proposed method and the benchmarks in terms of Energy consumption. 

Discussion 

Absolutely, examining Figure 5- 6 allows us to gain valuable insights into the performance characteristics of the 

proposed method when tasks follow an exponential distribution of size. The evaluation based on execution time 

and energy consumption provides a comprehensive understanding of how the method performs in such scenarios. 

Similar insights into energy usage are provided by Figures 5- 6 for tasks whose sizes follow an exponential 

distribution. We may assess the method's power efficiency and spot any patterns or trends unique to this 

distribution by looking at the energy consumption results. In scenarios where task sizes follow an exponential 
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distribution; this study directs us in optimizing energy utilization, resource allocation, and power management 

strategies to increase the overall efficiency and sustainability of the suggested method. 

Conclusion 

The findings demonstrate that the Joint Computation Offloading and Prioritized Scheduling technique 

successfully reduces task completion time and energy consumption, leading to quicker task execution and shorter 

wait times. By shifting workloads to the mobile-edge computing infrastructure, it also reduces the amount of 

energy used by powerful edge servers and resource-constrained devices. The method also improves the mobile-

edge computing system's Quality of Service (QoS) metrics, which enables more tasks to be completed in a given 

amount of time. 

The study reveals that task offloading to edge servers significantly reduces energy consumption for mobile devices 

compared to executing all tasks locally. This is because these servers' utilization of computational resources and 

capabilities lessens the demand on scarce power resources. Mobile devices operate more effectively and for a 

longer period of time as a result. Additionally, the results imply that partial offloading, or selective offloading, 

uses less battery power for mobile devices than full offloading. By utilizing the edge server's processing power 

while reducing the amount of wireless data transfer that uses a lot of energy, this method maximizes energy 

consumption. The research highlights the significance of taking task characteristics and related data quantities 

into account when developing offloading mechanisms. 

The study investigates the relationship between changes in task-related delay requirements and energy use. It 

demonstrates that using the edge server's greater processing capability to offload jobs results in lower energy 

consumption. However, despite changes in latency requirements, every local execution uses the same amount of 

energy. In order to optimize task allocation and offloading strategies based on particular application requirements, 

the study emphasizes the significance of taking latency requirements into account when making decisions on task 

offloading. 
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