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Abstract: - The construction industry has experienced important changes in recent years due to advancements in digital, artificial 

intelligence, and construction technologies, as well as the sector's on-going development and the advancement of science and 

technology. The creative growth of building industry, creative creation of architectural forms are partially supported technically by 

sophisticated parametric design apparatuses, the potent computing benefits of computer technology. In this manuscript, Exploration 
of Natural Element Form Optimization Algorithm using Spatial-Temporal Multi-Scale Alignment Graph Neural Network in 

Architectural Design Based on Morphological Theory (ENEF-OA-ADMT) is proposed. The STMSA-GNN and the Chaotic Coyote 

Algorithm (CCA) are two tools used by the proposed ENEF-OA-ADMT approach to improve architectural design based on 
morphological theory. The ST-MSA GNN's ability to capture intricate interactions and dependencies between several components in 

both space and time allows it to perform a comprehensive study of the morphological aspects of architectural designs. This graph 

neural network's integration of spatial and temporal dimensions enables a deeper understanding of how the architectural structural 
form design changes over time. The CCA optimized the ST-MSA-GNN to enhance the architectural structural form design. The 

proposed ENEF-OA-ADMT methodology skill fully combines these methodologies, creating a strong framework that allows 

architects and designers to work together to explore, refine, and create architectural structural design forms. The framework 
provided serves as a spur for further research, encouraging a more complete integration of technology and environment in the 

architectural domain. The effectiveness of proposed method is executed in python, evaluated through performance metrics 

encompassing accuracy, precision, specificity, Recall, computational time, F1 score, population diversification, randomness. 
Proposed ENEF-OA-ADMT method 34.56%, 28.63% and 21.89% higher accuracy, 34.97%, 32.13% and 21.89% higher precision 

and 34.68%, 20.84% and 29.76% higher randomness when compared with the existing methods such as Study of Morphological 

Design of Architecture from Geometric Logic Perspective (SOT-MDA-GLP), learning deep morphological networks by neural 
architecture search (LD-MN-NAS) and identifying degrees of deprivation from space utilizing deep learning with morphological 

spatial analysis of deprived urban areas (IDDS-DLMSA-DUA) respectively. 

Keywords: Architectural Design, Chaotic Coyote Algorithm, Exploration of Optimization, Morphological Theory, 

Natural Form Element, STMSA-GNN. 

 

I. INTRODUCTION 

Architectural design is undergoing a significant metamorphosis in the modern construction industry, which 

is characterized by quick advances in digital technology, artificial intelligence, and creative building techniques. 

The convergence of advanced parametric design tools with the computational capabilities of contemporary 

computers has spurred a renewed interest in architectural innovation [1-3]. Architects are empowered by this 

revolutionary synergy to surpass traditional forms, enhancing the spirit and breadth of architectural design [4-6]. 

The democratization of the construction of complex buildings has been facilitated by the introduction of 

geometric logic principles and the development of parametric design tools. A paradigm change in the design of 

architectural forms may be seen in the once avant-garde, now conventional [7-9]. This progression aligns with 

the growing focus of the architectural community on design standards, which highlight the necessity of rational 

architectural forms and enhanced usefulness. Within this dynamic environment, the study adopts a dual focus, 

examining the interface between basic natural principles and state-of-the-art computers [10-12]. Based on 

fundamental ideas of Morphological Theory, takes readers on an engrossing journey into the field of natural 

element form optimization while the architectural world struggles with these changing dynamics [13-15]. 

Architects and designers are constantly aware of how reality is changing, thus they actively look for new 

approaches to challenge established ideas. The incorporation of cutting-edge optimization algorithms, which are 

inspired by the natural intelligence of the world, emphasizes this quest [16-18]. This combination has enormous 

disruptive potential and might lead to a new direction in architectural design. This inquiry, positioned at the 

confluence of theory and algorithm, tries to untangle the deep relationships between advanced algorithms and 

Morphological Theory [19, 20]. The voyage is expected to provide both visually striking architectural forms 

and optimally functional solutions. This complex confluence becomes a focus point for further research on the 

topic, demonstrating how innovation, technology, and nature can work together to transform the very core of 

architectural design. 
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The problem statement for this research lays in the dynamic development of architectural design, spurred by 

significant breakthroughs in digital technology and new building processes. As architects adopt advanced 

parametric design tools, a fundamental problem develops in managing this transformational convergence. There 

is pressure on the architectural community to meet greater design standards by emphasizing better functionality 

and logical forms. This calls for investigating methods that combine natural laws with state-of-the-art 

computation. This work, which is based on morphological theory, aims to explore the relationships between 

sophisticated algorithms and architectural design, emphasizing both practicality and beauty. The fundamental 

issue is how to rethink the fundamentals of architectural design by utilizing the disruptive potential of 

combining natural element form optimization with cutting-edge algorithms. 

Major contribution of this paper a follows; 

• Exploration of Natural Element Form Optimization Algorithm using STMSA-GNN in Architectural 

Design Based on Morphological Theory (ENEF-OA-ADMT) is proposed. 

• The proposed ENEF-OA-ADMT technique for architectural structural form design makes use of the 

ST-MSA-GNN. 

• Using the Chaotic Coyote Algorithm (CCA), the proposed ENEF-OA-ADMT technique optimizes the 

ST-MSA-GNN to improve the architectural structural form design, which is based on morphological 

theory. 

Remaining portion of this work structured below: section 2: literature review, section 3: describes proposed 

methodology’ section 4: illustrates outcomes with discussion, section 5: conclusion. 

II. LITERATURE REVIEW 

Zhao and Yang, [21] have presented, study of MDA from GLP. This work proposes a research methodology 

for geometric logic perspective-based architectural form design in order to tackle intricate structural problems. 

Taking structures as a case study and combining architectural form design requirements, the ideal architectural 

structure is examined using evolutionary algorithms. Emphasizing the validation of building plane, space 

optimization based displacement restrictions, geometric logic design technique includes the full design process, 

including building usage, site, system, production constraints. Architectural idea schemes were developed by 

logic construction and computer language simulation, resulting in promotion of extremely accurate building 

goods. 

Hu et al. [22] have suggested, LD-MN with NAS. This research explores the incorporation of morphological 

operators into a comprehensive end-to-end deep learning system. Deep Neural Networks (DNNs) were tuned to 

capture realistic representations for specific tasks, whereas morphological operators give topological descriptors 

communicating vital information about object forms in pictures. The suggested method integrates 

morphological operators into DNNs with ease by using meta-learning. The gained architecture highlights how 

these unique morphological procedures dramatically boost DNN performance across many applications, 

comprising picture classification, edge discovery, semantic segmentation. 

Abascal et al., [23] have presented, IDDS utilizing DLMSA of deprived urban areas. Here, addresses the 

information gap regarding urban deprivation in disadvantaged urban areas (DUAs) of low- and middle-income 

nations. This presented method determines deprivation levels resulting from rapid unplanned expansion using 

morphological analysis and deep learning. By using a community-based participatory approach, establishes a 

building footprint reference dataset. Here, modifies DL method depend on U-Net for purpose of semantic 

segmentation of World View 3 satellite data. Deprivation levels may be determined with the help of 

morphological parameters from expected structures, such as size, directionality, interior irregularity, and 

closeness. It contributes to creating up-to-date and disaggregated morphological spatial data for DUAs, vital for 

designing targeted interventions based on a detailed knowledge of physical features of deprivation. 

Sun et al. [24] have presented understanding building energy efficacy by administrative with developing 

urban big data by DL in Glasgow. This research presented multi-source data fusion system for building energy 

efficacy estimation based on deep learning. Conventional parameters from Glasgow, UK's 160,000 properties' 

Energy Performance Certificates (EPC) and Google Street View (GSV) photos of building façades were taken 

into account. Performance gains were compared amongst image-only models, conventional morphological 

features, and the data-fusion framework. It draws attention to the possibility of using data from several sources 
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to estimate building energy efficiency accurately and effectively. It provide city-level insights that are crucial 

for meeting the net-zero goals by 2050. 

Salvati et al. [25] have presented defect-depend physics-informed ML framework for fatigue finite life 

prediction in additive manufacturing. Here, presents unique method for forecasting fatigue limited life of 

additively manufactured faulty materials. The solution overcomes the limits of data-hungry machine learning 

systems by including fracture mechanics restrictions during the training process, all while leveraging a Physics-

Informed Neural Network structure. The prediction tool shows improved accuracy in taking into account 

morphological characteristics of faults by using extensive defect analysis from literature, including computer 

tomography and fractography, together with experimental findings. This development might lead to previously 

unheard-of levels of precision in novel structural design techniques that respect the principles of fracture 

mechanics and only require a smaller experimental dataset. 

Wu et al. [26] have suggested, cultivating historical heritage region vitality utilizing urban morphology 

method depend on big data with ML. Here, examines the consistency or divergence of urban morphological 

components affects the vitality of historic and urban regions using multi-source large geospatial data, utilizing 

ridge regression and Light GBM. Our analysis of twelve Chinese towns reveals that the factors that affect 

historic areas aren’t the same as those that affect urban vitality. These characteristics also show change between 

cities and during the day. Using measurements of urban form, vitality generated from massive geospatial data, 

the study presents a quantitative, reproducible framework for heritage adaptation. This theoretical support for 

historical protection, urban expansion, and economic growth helps to explain the shapes of heritage areas. 

Seydi et al. [27] have suggested quadratic morphological DNN fusing radar with optical data for mapping of 

burned regions. Here, presents a unique methodology for mapping burnt regions by combining post-event 

sentinel-2 data by multi-temporal sentinel-1 coherence images. QMDNN-Net was a proposed deep feature 

extraction architecture that combines a set of hybrid QM techniques with convolution layers. QMDNN-Net 

functions as a deep Siamese network and consists of two streams for deep feature extraction from sentinel-2 

images with multi-temporal coherence data. Both streams have an identical structure with similar number of 

group-dilated convolution blocks, QM layers. QMDNN-Net defines quadratic dilation, erosion, its output was 

average of such processes. Sentinel-1, sentinel-2 imagery-based real-world wildfire dataset were used to assess 

efficacy of QMDNN-Net-based wildfire mapping. 

III. PROPOSED METHODOLOGY 

In this section, Exploration of Natural Element Form Optimization Algorithm using STMSA-GNN in 

Architectural Design Based on Morphological Theory is discussed. In the proposed methodology section 

dataset, neural network and optimization are described. Block diagram of proposed ENEF-OA-ADMT is given 

below in Figure 1, 

Morphological Theory based architecture

Architectural structural form design based on 

Spatial Temporal Multi-Scale Alignment Graph 

Neural Network 

Optimization of ST-MSA-GNN using Chaotic 

Coyote Algorithm
 

Figure 1: Block diagram of ENEF-OA-ADMT 
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A. Architectural structural form design based on Spatial Temporal Multi-Scale Alignment Graph Neural 

Network 

This section discusses the ST-MSA-GNN [28]. An essential component of the ENEF-OA-ADMT system is 

the ST-MSA-GNN. This neural network is intended to process data at many dimensions, both spatial and 

temporal, in the context of architectural design. The ST-MSA GNN is able to do a thorough analysis of the 

morphological features of architectural designs because it is skilled at capturing complex interactions and 

dependencies between numerous components in both space and time. It attains novel idea for scientific 

structural design. Architectural designs change progressively throughout time, with elements from one stage 

influencing other stages. Recurring patterns are widespread and represent popular design concepts. Precise 

forecasting of the evolution of architectural forms improves comprehension and facilitates morphological study. 

To enable a coherent analysis of the morphological evolution of architectural design, the investigation utilizes 

uniform network architecture in three compositions. Transportation network representations with node signal 

properties are made possible by using spectrogram theory, which extends 2D convolution to graph topologies. 

However, samples containing graphs have higher computational complexity, mostly because of the composition 

of Laplace matrix U features. It is expensive to directly decompose Laplace matrix eigenvalues in large-scale 

networks. This paper addresses the problem with an effective solution based on Chebyshev polynomials it is 

shown in equation (1), 
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Here, i represent the eigenvalues of Laplace matrix, z represent the traffic flow signal, N represent the 

Laplace matrix, M represent the end node and mV represent the traffic signal time at end node. A CNN directly 

working on graph, coupled with local first-order approximation of spectrogram convolution, boosts efficacy of 

the convolution structure it is shown in equation (2), 

( ) ( ) ( )( )111ˆRe −−= YJCLUJ nn                              (2) 

Here,
( )nJ  represent the convolution output, Ĉ  represent the adjacent matrix and LURe  denotes the 

activation function. Adjacent time slices of a node's signal are updated merging through typical convolution 

layer in time dimension after node nearby information is captured spatially using a graph convolution operation. 

The first time dimension level operation is therefore stated as in equation (3), 
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Here, ( )m
jZ  short cycle dependence, LURe  denotes the activation function, means standard convolution 

operation and   represent temporal dimension convolution kernel. In order to preserve similarity when 

propagating graph neural networks, pairwise relations must be captured, a concept taken from CRF. Depend on 

such facts, CRF is shown in equation (4), 
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Here,
( )nJ  represent the convolution output; 

( )nQ  represent the random variable under in condition, B  

represent the normalize factor and G  denotes the energy function. Learn different similarity from hidden layer, 

pairwise energy function expressed in equation (5), 
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Here, r represent temporal dimension convolution kernel,
( )nJ represent convolution output, 

( )nQ represent 

the random variable under in condition and kli  denotes the similarity of nodes k  and .l The distance between 

nodes will enlarged, consequently, same nodes mapped to parallel position in hidden space. Energy shown in 

equation (6), 
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Here, G denotes the energy function, kli denotes the similarity of nodes k and l ,
( )nJ represent the 

convolution output, 
( )nQ represent the random variable under in condition and ,  denotes the non-negative 

parameters. To allow CRF to aid comfort similarity restrain in a graph convolution, an objective function is 

shown in equation (7), 
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Here, ( )nJ represent the convolution output, Ĉ  represent the adjacent matrix, N  denotes number of layers of 

graph convolution network, M denotes objective function. The moderate conditions, it becomes harder to 

require the similarity constraint to be satisfied as  grows. The goal is to use the objection function displayed 

in and regularization to the convolution output in order to resolve this problem is shown in equation (8), 
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Here, ( )nJ  represent the convolution output, M  denotes the objective function, Ĉ  represent the adjacent 

matrix, M  denote the objective function, N  denotes number of layers of graph convolution network,T denotes 

regularization function to compute the back propagation. To obtain time shift, extract weight representation, this 

approach now chooses the attention mechanism. Regarding the chosen time frame, the overall weight 

represented by equation (9), 
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Here, s represent the total weight, r time interval in days, S  represent the time interval and 
sr

vkz ,

,  represent 

the hidden state. It may derive the weight formally by comparing the prior hidden state by temporal, spatial 

representations gained short-term memory.  Each r  from the day before is used to obtain the cycle 

representation. The representation of time given in equation (10), 
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Here, LURe  denotes the activation function and 
r

vkZ ,.  denotes the weight. The daily and weekly 

component production in multi-scale fusion could be more challenging and crucial. Nevertheless, daily and 

weekly cycle components might not be useful in predicting outcomes on other days when there are no nitid 

traffic cycle patterns. As a result, each node's output weight changes when the three components are fused, and 

it must learn from past experience. In conclusion, following fusion, the ultimate predicted result is shown in 

equation (11), 

yyffjj AYAYAYA ˆˆˆˆ ++=                                                                                 (11) 

Here,   denotes inner product and yfj YandYY ,  are represent the learning parameters. The forecasting 

aim is influenced to varying degrees by the temporal-dimensional components, as shown by the inner products 

and learning parameters. The combination of spatial and temporal dimensions in this graph neural network 

allows for a more thorough comprehension of the changing architectural structural design throughout time.  

 B. Optimization of ST-MSA-GNN using Chaotic Coyote Algorithm  

In this section, Chaotic Coyote Algorithm (CCA) [29] is discussed. The optimization method might 

incorporate CCA, which is recognized for its dynamic and chaotic nature. This might entail adding 

unpredictability or disorder to some areas of the design investigation in order to increase the diversity of 

possible solutions. The morphological theory-based ENEF-OA-ADMT offers a basis, the spatial-temporal 

relationship-capturing ST-MSA-GNN supports decision-making, and the chaotic dynamics-introducing CCA 

improves the optimization process. It's crucial to remember that the efficiency of this kind of method would rely 

on the particulars of the algorithms, how they are parameterized, and how effectively they work in tandem to 

accomplish the objectives of architectural design optimization. 

Step 1: Initialization 
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The Chaotic Coyote Algorithm (CCA) takes a different approach from traditional algorithms by separating 

its population into discrete packs, each with custom social influences. Because it only requires a few critical 

hyper parameters, comprising number of packs, population size, maximum number of generations, technique is 

known for its simplicity. The individual coyotes that make up each pack are initiated inside the search space 

delineated by predetermined intervals. It is shown in equation (12), 

( )llll
vr
le ndwdtndso −+=,
,              (12) 

Here, e  represent the coyotes, r represent the packs, ll ndandwd are represented the interval lt represent 

the random number inside  1,0 made by uniform probability distribution and v  denotes iteration. The alpha 

coyote in the wild is the one with the finest social structure. It denotes best objective function cost in CCA and 

is represented by equation (13), 

  ( ) vr
e

e sohPe

vr
e

vr soalpha ,minarg|
,...,2,1

,,

=
=                                        (13) 

Here, e  represent the coyotes, r represent the packs and v  denotes the iteration 

Step 2: Random generation 

After initialization, weight parameters are formed randomly generated. The values generated randomly 

between 0  and1. 

Step 3: Fitness function 

It makes random solution form initialized values. It intended utilizing optimizing parameter. Thus it is 

shown in equation (14), 

( ) n
l

r
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Step 4: Exploration Phase 

Updates to the social state are produced during the CCA exploration phase in response to the alpha coyote 

and the social tendency. Equation (15) indicates that the cause of these effects is two randomly selected coyotes 

within the pack. 
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Here, e represent the coyotes, r represent the packs, v  denotes the iteration, 1t and 2t  represent weights 

of pack with alpha influence, c  denotes alpha coyote, v  denotes the social tendency. To go on to following 

iteration, coyotes select social state that best fits surrounding conditions. As Equation (16) illustrates, this 

translates to selecting the social condition with best objective function cost. 
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Here, e represent the coyotes, r represent the packs and v denotes the iteration. 

Step 5: Exploitation Phase 

In exploitation phase of CCA, a puppy with age 0 is produced, using both scatter and association 

probability, shown in equation (17), 
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Here, r represent the packs and v denotes the iteration, 1m and 2m  are represented the selected coyotes 

from the pack, 1l and 2l  are represented the random dimension of the problem, lT  represent the random 

number inside decision bound of dimension, lrand  denotes the random number inside  1,0 . Every repetition, 

the coyote's age is updated, yielding the following equation (18), 

11,1, += ++ vr
e

vr
e ageage                             (18) 

Here, e represent the coyotes, r represent the packs and v  denotes the iteration. The optimization problem 

is solved by choosing the coyote that is most adaptable out of all the packs. 

Step 6: Termination 
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In the STMSA-GNN, weight parameters for generators are optimized using the CCA, dynamically adjusting 

weights inspired by celestial mechanics. The iterative refinement, guided by halting criteria 1,
,

,
, += vr

le
vr
le soso , 

ensures optimal weight convergence, maximizing STMSA-GNN's generator performance. Then Flowchart of 

CCA for optimizing the weight parameter of STMSA-GNN for enhances the architectural structural form 

design based on morphological theory is given below in Figure 2, 

Start

Initialize Parameters

Iterate through Generate 

population 

Coyote Population Initialization 

using equation (12)

Evaluate objective function 

using equation (13)

Update Social Condition using 

equation (15)

Choose best social condition
Generate pup using 

equation (17)

Stop

Age Update using 

equation (18)

 
Figure 2: Flowchart of CCA for optimizing the weight parameter of STMSA-GNN for enhances the architectural structural form design 

based on morphological theory 

C. Architectural form design under Geometric logic  

1) Factors Influencing Formation of Complex Architectural Structure Form. 

Sometimes, to attain different goals, building's structure form system divided into two corners, structure 

itself divided into different function schemes. These complex form buildings have internal structures that are 

separated from external forms, but this does not mean that the structure deviates from the logic of building form 

generation. Even with intricate architectural designs, some buildings nonetheless follow the conventional floor 

plan separation of rooms for interior functions. In this instance, the building's structural system can be split into 

many sections based on the real demand, with the form creation logic obtaining the structural section most 

closely associated with the shape. The more structured area of the interior can use the conventional beam, plate, 

column system's straightforward construction. Intended plan prevents needless financial losses brought on by 

the difficulty of straightforward issues. For instance, the central square core tube of super higher-rise China 

Respect Project is simple component of entire structural scheme, but structure's perimeter, which includes giant 

column, waist truss systems that alter as the building's form changes, is more complex. 

2) Structural Mechanical Factor 

Since a structure's mechanical qualities directly affect its applicability, longevity, and safety, mechanical 

considerations take precedence when designing structures. In general, special mechanical properties are needed 

by complicated building structural systems in order to realize complex shapes. It is capable of efficiently 

distributing its load, stress across entire structural system. It ability to distribute load uniformly suggests its 

great efficiency, as per the principles of structural mechanics. Because of this, complex structural system itself 

has a relatively higher mechanical rationality, makes it more logical to create than conventional beam, plate, 

column system. Structural optimization and form-based optimization are the two main subfields of 
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optimization. Form-based optimization involves using form as optimization variable, selecting best optimization 

process, obtaining optimal form. This process referred to arithmetical technique of making form because it 

requires high level of structural engineering expertise. However, when building surface form established under  

impact of structural indicators, structural component system is analyzed and optimized using the structural 

design software PKPM and the finite element program ANSYS. The study's primary focus is on static, modal, 

and buckling analysis. To find the best solution for the structure's mechanical characteristics, secondary 

components are tested and examined. 

3) Structural with Functional Factor 

In definite cases, construction of structural system offer a related dynamic system for configuration space 

features of crowd movement trend function; for instance, structure's linear setup can identify the crowd flow 

line's single path. Certain behavioural patterns or spatial uses may be enabled by the structure's set size and 

transparency of the area. The conventional structure also reflects this association, which is not exclusive to 

complex structure; nonetheless, complex structure may be inferred from the more comprehensively obvious. 

Particularly after using parameterized technology, feature space behavior integration, and intellectual 

programming language through process, the system's structure becomes further varied, pertinent, and useful. 

The direct integration of structure and function also reflects the impact of function on the former. The 

distinction among structural skin, space has gotten progressively hazy as architecture has developed in a more 

diverse manner. Occasionally, the structure serves as a functional space, and the structure also reflects the 

space. With its beamless floor, seaweed light columns reflecting building, the Toyo ITO Sendai Media Center, 

for instance, has a totally free system of behavior, no room separation. These structural hollow columns have 

higher degree of structure-function integration because of their creative design, which includes uses for them as 

stairwells, elevators, equipment, pipelines, and little rest areas. 

D. Geometric logic in architectural structural form design 

1) Selective Construction Starting Point 

The nonlinear thinking technique, supports flexibility, uncertainty in the design process, resists stylization 

and solidification of thought processes, serves as the foundation for the building of parametric geometric logic. 

Parametric geometric logic building, thus, encourages constructors to approach task of geometric logic creation 

from several angles. They can get a deeper grasp of the design environment during the design process by 

updating and reconstructing, and they can eventually achieve a state of balance with the limits of the design. 

Architectural design is complicated, nevertheless. Parameterized geometric logic building should first define 

design goals and conduct a detailed analysis of the interaction between different factors and the surrounding 

environment. As such, the construction begins with one or more discrete geometric logics, as opposed to the 

conventional top-down method. 

2) Select Parameters 

Improving the variable selection is a critical step in the construction of parameterized logic. The optimum 

control over the parameterized geometric model can only be achieved by choosing the appropriate parameters. 

In general, number of parameters set depend on less-is-more principle, with an emphasis on setting the 

parameters during the early stages of geometric logic construction to minimize parameter adjustments during 

the construction process. The parameters chosen to meet basic conditions of architectural form control 

precision. In design process, architect first analyzes the desired geometry logically, creates logical framework 

on computer, develops script, debugs it. When logical linkages are unclear, architects most frequently utilize 

debugging, which is a crucial component of programming. In addition to confirming that the software operates 

correctly, debugging may help the constructor solve errors by offering guidance and motivation. The feedback 

mechanism is dynamic. Furthermore, the geometric shape of an architectural form typically possesses internal 

principles and a somewhat stable topological structure. To complete parametric building tasks, architects 

depend on well-established processes. For example, they can produce hyperboloid minimum surfaces directly 

by utilizing MATLAB and Mathematical functions. 

3) Output 

In theory, the creation of a parametric model completes the process of parametric geometric logic 

construction. However, in actual practice, architects need a solid model to be output for further tasks like 

rendering, animation, and 3D printing. In order to facilitate the building and implementation of projects, 

parameterized software must simultaneously send the manufacturer the building model and the management 

database containing all production components, such as material attributes, positioning parameters, and naming 
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guidelines. As well as being the final stage in constructing parametric geometric logic, the output of the result is 

also the crucial component that moves the logic's development from thinking awareness to material form. 

Currently, different digital manufacturing software and parametric software have different file output formats. 

File format conversion between different software programs is a common task for architects. While file formats 

with limited storage capacity are generally well-compatible, information loss is a common occurrence and 

model accuracy is insufficient. High precision file formats are ideal for storing different parameter model data, 

but they take up a lot of room and operate slowly. Thus, at the outset of geometric logic creation, architects 

must take the output of outcomes into account. These days, 3DS, IGCS, OBJ, and other output formats are often 

employed. 

IV. RESULT AND DISCUSSION 

In this paper, Exploration of Natural Element Form Optimization Algorithm using STMSA-GNN in 

Architectural Design Based on Morphological Theory is discussed. The proposed technique is implemented in 

python and evaluated by using several performance metrics like accuracy, precision, specificity, Recall, 

computational time, F1 score, population diversification, randomness. The result of ENEF-OA-ADMT 

approaches was compared with existing SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA techniques. 

A. Performance measures 

This is a crucial step for determining the exploration of optimization algorithm. Performance measures to 

evaluate to access performance such as accuracy, precision, specificity, Recall, computational time, F1 score, 

population diversification, randomness. 

1) Accuracy 

The value of accuracy is deliberate as ratio of number of samples precisely characterized by system by total 

samples. It is computed using equation (19), 

FPFNTNTP

TNTP
accuracy

+++

+
=                            (19) 

Here, TPsignifies true positive, TN  denotes true negative, FN  indicates false negative, FP  signifies false 

positive. 

2) Precision 

Precision computes number of true positives divided through true positives plus number, false positive 

number and it is given by the equation (20), 

TNFP

TN
precision

+
=                             (20) 

Here, TN represent true negative and FP represent false positive. 

3) F1 score 

A popular statistic for assessing the performance of the model in binary classification issues is F1-score. The 

harmonic mean of recall, precision is what it is. It is shown in equation (21), 

callecision

callecision
scoreF

RePr

RePr
21

+


=−             (21) 

4) Computational time 

It is amount of time required to complete computational process. A calculation refers sequence of rule 

applications, the computation time proportional to number of rule applications. 

5) Recall 

Recall is intended by dividing total number of true positive, false negative predictions by number of true 

positives. The model's capacity to collect all pertinent instances is measured. It is shown in equation (22), 

FNTP

TP
call

+
=Re                                          (22) 

Here, TP represent true positive, FN denotes false negative.  

6) Specificity 

Specificity estimates proportions of negative, given in equation (23), 

FNTN

TP
yspecificit

+
=                                          (23) 

Here, TPrepresent true positive, TN denotes true negative and FN  indicates false negative. 
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7) Population diversification 

Population diversification in optimization algorithms seeks to explore a wide range of locations in the search 

space to increase the likelihood of discovering optimum or innovative solutions. Stronger exploration is often 

associated with higher population diversity. 

8) Randomness 

Randomness in the context of algorithms and formulae usually means adding unpredictability or variability. 

This may be accomplished by adding aspects of chance or indeterminacy using a random number generator. It is 

shown in equation (24), 

NFVRandomness +=                                                                                  (24) 

Here, V denotes the base value, F  denotes the random factor and N  denotes the random number. 

B. Performance analysis 

Figure 3 to 10 depicts the simulation results of proposed ENEF-OA-ADMT method proposed. Proposed 

ENEF-OA-ADMT method is analysed with existing techniques SOT-MDA-GLP, LD-MN-NAS and IDDS-

DLMSA-DUA. 

 
Figure 3: Accuracy analysis 

Figure 3 depicts accuracy analysis. Here, ENEF-OA-ADMT technique attains 34.56%, 28.63% and 21.89% 

higher accuracy for enhances the architectural structural form design; as analysed with existing SOT-MDA-

GLP, LD-MN-NAS and IDDS-DLMSA-DUA methods respectively. 

 
Figure 4: Precision analysis 

 

Figure 4 depicts precision analysis. Here, ENEF-OA-ADMT technique attains 34.97%, 32.13% and 21.89% 

higher precision for enhances the architectural structural form design; as analysed with existing techniques likes 

SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. 
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Figure 5: F1-score analysis 

 

Figure 5 depicts F1-score analysis. Here, proposed ENEF-OA-ADMT technique attains 19.45%, 30.72% 

and 23.72% higher F1-score for enhances the architectural structural form design; as analysed with existing 

techniques likes SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. 

 
Figure 6: Computation time analysis 

 

Figure 6 depicts computational time analysis. Here, ENEF-OA-ADMT technique attains 33.93%, 22.54% 

and 27.19% lower computational time for enhances the architectural structural form design; as analysed with 

existing techniques likes SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. 

 
Figure 7: Recall analysis 
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Figure 7 depicts recall analysis. Here, ENEF-OA-ADMT technique attains 34.75%, 25.41% and 17.63% 

higher recall for enhances the architectural structural form design; as analysed with existing techniques likes 

SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. 

 
Figure 8: Specificity analysis 

 

Figure 8 depicts specificity analysis. Here, ENEF-OA-ADMT technique attains 21.82%, 31.91% and 

16.78% higher specificity for enhances the architectural structural form design; as analysed with existing 

techniques likes SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. 

 
Figure 9: Population diversification analysis 

 

Figure 9 depicts population diversification analysis. Here, ENEF-OA-ADMT technique attains 23.55%, 

15.97% and 33.69% higher population diversification for enhances the architectural structural form design; as 

compared to the existing SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA methods respectively. 
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Figure 10: Randomness analysis 

 

Figure 10 depicts randomness analysis. Here, ENEF-OA-ADMT technique attains 34.68%, 20.84% and 

29.76% higher randomness for enhances the architecture structural form design; as analysed with existing 

techniques likes SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. 

C. Discussion 

The Exploration of Natural Element Form Optimization Algorithm using STMSA-GNN in Architectural 

Design Based on Morphological Theory technique is proposed. The proposed ENEF-OA-ADMT technique 

introduces an architectural design based exploration of optimization algorithm of Natural form element. This 

proposed method using the ST-MSA-GNN for architectural structural form design and Chaotic Coyote 

Algorithm (CCA) for optimizing the ST-MSA-GNN. The efficient use of this novel methodology will rely on 

the particular features of the algorithms, how they are parameterized, and how effectively they work in tandem 

to accomplish the objectives of architectural design optimization. The proposed ENEF-OA-ADMT approach is 

compared to the existing SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA techniques. According to 

the finding analysis the proposed system method outperformed the others. In terms of results, the approach’s 

average highest outcomes were compared to the average highest outcomes of existing techniques such as SOT-

MDA-GLP, LD-MN-NAS and IDDS-DLMSA-DUA. The accuracy values of SOT-MDA-GLP, LD-MN-NAS 

and IDDS-DLMSA-DUA are lower than proposed method. The proposed framework achieves an average 

accuracy of 99.93% compared to 92.62% for the comparison approaches. Similar to this, the precision of 

proposed method is 98.67% analyzed with average precision of comparison techniques of 94.12%. The 

proposed method ENEF-OA-ADMT has high accuracy and precision evaluation metrics than existing methods. 

Therefore, comparative methods are expensive than the proposed technique. As a result, the proposed technique 

improves enhances the architectural design based exploration of optimization algorithm of Natural form 

element. 

V. CONCLUSION 

In this section, Exploration of Natural Element Form Optimization Algorithm using Spatial-Temporal 

Multi-Scale Alignment Graph Neural Network in Architectural Design Based on Morphological Theory was 

successfully implemented. This proposed method using Spatial-Temporal Multi-Scale Alignment Graph Neural 

Network and Chaotic Coyote Algorithm to represents a substantial breakthrough in architectural structural 

design based on morphological theory. This innovative method enhances the architectural structural form 

design. When compared to existing approaches such as SOT-MDA-GLP, LD-MN-NAS and IDDS-DLMSA-

DUA, the proposed ENEF-OA-ADMT model outperform them. Notably, it increases specificity by 21.82%, 

31.91% and 16.78%, while increasing population diversification by 23.55%, 15.97% and 33.69%. Furthermore, 

when compared to its equivalents, the ENEF-OA-ADMT strategy achieves a significant decrease in computing 

time, boasting 33.93%, 22.54% and 27.19% reduced processing times. This validates its effectiveness in 

enhances the architectural design based exploration of optimization algorithm of Natural form element. 
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