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Abstract: - Distribution System has given renewable-based DGs like Solar PV and Wind turbines a lot of attention because of growing 

worries about global warming and the depletion of fossil fuels. This work proposes a unique hybridized optimization technique for a 

distribution system expansion plan utilizing an innovative theoretical framework. Two stages are used to tackle the issue with the 

distribution system expansion plan: master optimization and sub-optimization for every state of the system. The developed Aquila based 

Sand Cat Swarm (Aq-SCS) optimization method considers the distribution system factors, like DG type, size/capacity, location, PQ 

power, fixed capacitor, switchable capacitor, and the SPV/wind capacity with load demand uncertainties. The sub-algorithm is employed 

in conjunction with the DG allocation strategy produced by the master algorithm to deduce the state-dependent operating tactics for each 

individual DG unit with respect to active and reactive power. The suggested Aq-SCS optimization approach is created by combining the 

properties of the SCSO with the AOA models. The main objective of achieving the minimal possible cost for the DSEP is verified, and 

the cycle continues unless the best outcome (least cost) is reached. The analysis of the suggested approach is carried out in 4 cases, such 

as (i) Without DG and capacitor (ii) With capacitor and no DG (iii) With DG and no capacitor (iv) With both capacitor and DG. The 

analysis is made in IEEE 33 bus system. The Aq-SCS approach outperforms the conservative approaches SSI-CS, WHO, AQO, and 

SCSO, according to the analysis conducted in MATLAB/Simulink utilizing an IEEE-33 bus system with five system states. 

Keywords: Distribution Generation systems; Distribution System Expansion Planning; Master Optimization; Sub-

Optimization; Algorithms 

 

 

I.  INTRODUCTION 

With dispatchable and non dispatchable generating patterns, renewable DG systems offer techno-economic 

advantages to many shareholders. The incorporation of dispatchable renewable DG units like biomass generators, 

into the grid has been viewed as an appealing solution to satisfy the rising needs for load, while also lowering total 

emissions and greatly enhancing customer reliability. A growing number of intermittently generating renewable 

DG units have been linked to the distribution grid in recent years. Because of power supply concerns, the 

incorporation of non dispatchable renewable DG units is unable to assure stable power output. As a result, it's 

critical to evaluate and measure the system performance in relation to the integration of non dispatchable renewable 

distributed generation units. Several approaches have been examined in the literature while examining the 

distributed network’s DG units. 

Thus, to meet the increasing demand in a centralized structure, Distribution System Expansion Planning (DSEP) 

systems have historically been utilized for estimating the type, capacity, positioning, and the timing of the installed 

new equipment [1]. The DSEP issue is a non-convex Mixed integer non -linear programming(MINLP) from a 

mathematical perspective three types of optimization systems are accessible in the DSEP literature, such as the 

mixed strategy, the heuristic technique, as well as the mathematical modeling approach. Several publications 

contain studies on the DSEP difficulties with various RES. For instance, a multistage DSEP model that takes into 

account both distributed and centralized Energy Storage Devices (ESD) was created in [2] and a MILP model was 
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used to formulate this issue. An enhanced harmony search method was used to solve a DSEP model that took into 

account the unpredictability of the load, energy price, and pollution of DGs as given in [3] 

To reduce the expenditures associated with DG incorporation, a heuristic strategy inspired by cost-benefit modeling 

has been developed in [4], which considers variations in the market price of energy as well as varied load levels. 

To optimize the overall cost throughout a scheduling period, a model of optimization for DSEP with DG is provided 

in [5]. The effects of growing DG saturation losses have been examined for various production sources. In [6], a 

technique for analysis is created to minimize the loss of energy in a distributed system by placing DG at the best 

possible location. In case of system restrictions including voltage constraints, DG penetration, and dependability, a 

GA-based technique is described in [7] to reduce system losses. To determine the finest location for DG units in 

distributed systems, an iterative approach that utilizes the system's voltage stability assessment is presented in [8]. 

In [9], the effects of deferral network investments on DG expansion are examined by taking into account DG at 

many potential sites. In order to reduce the overall system cost while taking system improvements into account, a 

sequential two-stage optimization method is devised in [10] along with a full scheme for DSP with the inclusion of 

DG units. In [11], an ordinal optimization (OO) method is utilized to maximize incentives related to DG links and 

losses with the objective to determine a perfect solution with least computing overhead. A PSO was suggested in 

[12], to distribute generation systems powered by biomass in DNs while considering the best possible capital 

expenses and advantages. 

The following is an outline of the proposed study's principal contributions: 

• Develops an innovative hybridized approach to determine the optimal DSEP by modifying parameters 

that include generator type, fixed capacitor, switchable capacitor, size/capacity, location, PQ power, SPV/wind 

capabilities with variable load demand. 

• Presents a meta-heuristic strategy named Aq-SCS approach that effectively resolves optimization issues. 

• The performance of the projected technique is examined and compared across many standardized 

schemes, demonstrating its superiority over traditional methods. 

The article is structured in the following manner: Observations of the methods presently in operation are given in 

Section II. In Section III, Modeling on DG Capability and system Concerns is explained; Section IV portrays the 

parameter tuning process using the hybridized Aq-SCS technique. Section V provides an explanation of the system's 

outcomes while Section VI concludes the article. 

II. LITERATURE REVIEW 

A. Related Works 

 A co-optimization framework for the active DSEP system was established in 2020 by Shiwei Xie et al. [13]. It 

concurrently optimizes the methods of operation for dynamic network administration along with all constituent 

choices regarding investments. A two-stage strategy was created to crack the system optimally, and the mixed-

integer nonlinear programming issue was relaxed using a second-order programming method in order to arrive at 

the final solution. Ultimately, an analysis of the case studies was conducted to showcase the efficacy of the 

suggested methodology. 

A multiple stage, multi-scenario scheduling strategy for ADN with co-optimized investment decision-making and 

operation methods was suggested by Changsen Feng et al. [14] in 2018. The suggested model completely optimizes 

the following options: assigning VRs and/or SVGs, building the cable circuit, boosting substation capacity, and 

selecting DG connection sites. The ideal ADN design and the active management of DGs are generated together 

with the operating plan for each situation. Using an off-the-shelf solver, a MIQCP model is built to ensure the 

convergence to optimal performance. Research findings show that taking into account the DNP algorithm's various 

possibilities provides the best possible set of investment choices and operational tactics that can be put into practice 

at the lowest possible cost. 

A novel multi-stage approach was created in 2020 by Majid Abdi-Siab et al. [15] utilizing bi-level optimization to 

extend the DN while accounting for plug-in electric automobiles. The investment and utilization choice factors can 

be determined at the upper level, where the intended functionality is the overall yearly investment cost plus the 

yearly projected manufacturing and service cost. This bilevel optimization was recast as a MILP issue employing 

primal-dual formulation, which may be solved with commercial solvers. The effectiveness, tractability, and 

financial benefits of the suggested technique were demonstrated using a 24-node network for distribution. The 
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findings suggest that the DEP implementing the smart charging technique will conclude in lower investment costs 

in contrast to the scenario where the ineffective charged approach is employed. 

The PDS was created in 2020 by M D Shahin Alam et al. [16], who also investigated the impact of several DERs 

on pollutants, transmission losses, operating costs, and the success of EM. The impact of combining EVs, ESSs, 

and RSs on system operational efficiency was also investigated. A novel dependability factor called RISR and 

Sensitivity assessments were also included. The numerical analyses were performed with a novel hybrid PSO-TS 

optimization technique on the widely used PG&E 69-bus system. 

ToU-based DR was developed in 2019 by Reza Gholizadeh-Roshanagh and Kazem Zare [17], and it was integrated 

into electricity DEP together with cost elasticity of demand. The MILP approach was used to model the multi-stage 

DEP problem. The suggested method was used on a main distribution network with 18 nodes. The findings 

demonstrated that taking demand's cost elasticity into account can have a big impact on the overall cost of 

investments. Thus, the presented approach shows the accuracy of the demand model corresponded to DSEP 

outcomes. 

In 2020, Saheed Lekan Gbadamosi et al.[18] conducted an assessment of the possible effects of RES and DR on 

the GTEP issue. To fulfill the intended energy demand, GTEP and demand response is taken into consideration and 

ultimately accomplish an ideal expansion strategy for power systems. To estimate the effect of DR penetration on 

system performance, the suggested model takes into account many tiers of penetration in the planning system. As 

a MIQP difficulty, a multi-period multi-objective GTEP approach was presented and developed. Analysis based on 

sensitivity was done and the findings show that a higher penetration of DR reduces power generation, emissions, 

and system costs by enhancing the availability of RES in the electrical system. 

Employing DC, improved DC, and AC modeling techniques, Saheed Lekan Gbadamosi et al. [19] in 2021 addressed 

multi-objective optimization issues with regard to calculating power losses and their effects on the expansion 

planning process in a precise and effective manner. The CONOPT and CPLEX solvers, which are integrated within 

the Algebraic Modelling Language, were used to solve the MINLP problem in this study. Three scenarios are used 

to assess and validate the suggested techniques: an actual Nigeria Power System, the IEEE 24 bus test system, and 

the IEEE Garver's 6 bus system. The AC response technique, as opposed to the improved DC technique, provides 

a reliable estimation of power losses and an effective optimum plan tactics, according to a comparison of the three 

modeling strategies. 

In 2022, Saheed Lekan Gbadamosi et al. [20] presented an expansion planning approach that integrates large-scale 

RES while considering harmonic emission regulations into account. This methodology minimizes the entire cost, 

active power loss and harmonic energy losses by merging the multi-objective optimization problems using a 

weighted sum approach. A systematic approach was used to compute and enumerate the harmonic pollutants from 

the RES elements. The developed AC mixed-integer nonlinear programming problem was addressed employing a 

mathematical model. The sensitivity evaluation findings determine the most significant way to minimize harmonic 

emissions from RES incorporation into the grid and ripple torque by utilizing ANFIS control, which helps determine 

the optimal drive location and forecasts the non-matching pulses. 

B. Review 

The features and limitations of several DSEP optimization techniques are illustrated in Table 1. To lower the cost 

of the distribution system while enhancing stabilization achievement, an iterative load shedding scheme was created 

in [13] But the limitations on reactive power are not taken into account. An MIQCP model was introduced in [14], 

which is better because of its increased precision and DNP's long-term characteristics. A major drawback is its 

uncertainty. Moreover, a bi-level optimization strategy was established in [15], which provides less computational 

complexity. However, ESS investment and DR are not considered here. According to [16], operational efficiency 

restrictions were not focused when creating the PSO-TS algorithm-based expansion plan. MILP technique was 

presented in [17], which provide more accurate load models. But planning techniques for expansion did not take 

load profile into account. A multi-period multi-objective GTEP model was presented in [18], which improves RES 

utilization and reduces generation and transmission investment. Nevertheless, it increases the GTEP problem's 

computational intractability and difficulty. MILP and MINLP methods were recommended in [19] which offer 

precise calculation of power losses and effective, ideal planning approach. However, it has to focus more on RERs 

and load demand uncertainties. A weighted sum approach was developed in [20] that regulate PQ properly and 

sustain oscillations within the selected bounds. However, small range of power loss has a large impact on the 

objective function.  
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The table 1 provides the feature and challenges of various DSEP plan optimization strategies. 

 

Table 1. Features and challenges of existing DSEP optimization approaches 

 

Author Adopted              Strategy Advantages Limitations 

S. Xie et al. [13] Iterative method 

❖ Enhance the system 

steadiness 
❖ The optimal direction of 

load shedding can yield the highest 

possible margin. 

❖ Does not consider 

reactive steadiness power. 

C.Feng et al. [14] MIQCP model 

❖ It is more desirable 

regarding the long-term properties of 
DNP and its superior precision level. 

❖ A major drawback is its 

uncertainty. 

M. Abdi-Siab et al. [15] bi-level optimization strategy 
❖ Computational 

complexity is minimum. 

❖ However, ESS 
investment and DR are not 

considered here. 

M.S.Alam et al. [16] 
RISR + hybrid PSO-TS 

 

❖ EMSR is much improved 

with regard to operating costs, loss 

avoidance, and decreases in 
emissions. 

❖ An inability to take into 

account a number of operational 

and planned performance 

requirements, including system 

resilience. 

R.Gholizadeh-

Roshanagh and K.Zare 

[17], 

MILP technique 
❖ Produce more accurate 
load models. 

❖ Load profiles were not 

considered by expansion planning 

techniques. 

S.L. Gbadamosi et 

al.[18] 

multi-period multi-objective 

GTEP model 

❖ Improves utilization of 
RES. 

❖ Reduce generation and 

transmission investment. 

❖ Nevertheless, it 
increases the GTEP problem's 

computational intractability and 

difficulty. 

S.L. Gbadamosi et al. 

[19] 
MILP and MINLP methods 

❖ Precise calculation of 

power losses and effective, ideal 

planning approach 

❖ Have to focus more on 

RERs and load demand 
uncertainties. 

S.L. Gbadamosi et al. 
[20] 

weighted sum 

❖ Control power quality 

appropriately and keep oscillations 
within permitted bounds. 

❖ Minimal quantities of 

power loss have a significant 
impact on achieving the objective 

function. 

 

III. MODELLING OF  DG CAPABILITY AND SYSTEM UNCERTAINTIES  

Numerous benefits come with adding various DG units to the electric grid, which includes support for voltage and 

increased reliableness. Though, the economic concerns are as significant when considering long-term planning. 

According to this investigation, the purpose of DG planning is to lower a utility's total cost once the planning time 

finishes. Figure 1 suggests that the total cost of a suggested allocation for energy-controlled DG units may be 

estimated using the capital cost of DG units along with additional variable costs that relate to DG functions coupled 

to appropriate network modes. Thus, an optimal planning throughout the prediction period may be evaluated by 

creating a master optimization along with sub-optimization. 

 
Figure 1. Assessed cost of a DG distributed system 
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A. Complications based on Master Optimization 

By minimizing the overall cost throughout the course of the planning stage, the master optimizing issue determine 

the best distribution of DG units with regards to DG capacity, types, and positions. As stated in Equation (1), the 

total of the related state-dependent expenses and the DG capital expenses may be used to create the desired 

functionality for the master optimization dilemma. According to [21], the sub-optimization may yield the state-

dependent expenses for the entire system state. The sub-optimization can harvest the state dependent cost for every 

state of the system. 

 𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ (𝐶𝑐𝑝𝑡𝑦
𝑤𝑑 𝑈𝑁

𝑤𝑑 + 𝐶𝑐𝑝𝑡𝑦
𝑆𝑃𝑉 𝑈𝑁

𝑆𝑃𝑉 + 𝐶𝑐𝑝𝑡𝑦

𝐵𝑔
𝑈𝑁

𝐵𝑔
)

𝑁𝑠
𝑁=1 + ∑ 𝐶𝑠

𝑠𝑡𝑠𝑡𝑎𝑡𝑒
𝑠=1

  

 

(1) 

Where,  𝑁𝑠  indicates the entire nodes of the system, 𝐶𝑐𝑝𝑡𝑦
𝑤𝑑 , 𝐶𝑐𝑝𝑡𝑦

𝑆𝑃𝑉 , 𝐶𝑐𝑝𝑡𝑦

𝐵𝑔
 denotes the wind, SPV and biomass 

generator price factors that are utilized for determining the capital costs. In this study, the capitalized cost of 𝐶𝑐𝑝𝑡𝑦
𝑤𝑑 , 

𝐶𝑐𝑝𝑡𝑦
𝑆𝑃𝑉 , and 𝐶𝑐𝑝𝑡𝑦

𝐵𝑔
 is kept as $1882/KVA, $4004/KVA and $2293/KVA.  Similarly, the wind capacity (𝑈𝑁

𝑤𝑑), PV 

capacity (𝑈𝑁
𝑆𝑃𝑉)  and bio mass capacity  (𝑈𝑁

𝐵𝑔
)  varies from 0 to 1500 KVA at node  𝑁 , correspondingly. 

Furthermore, the recently established Aq-SCS optimization yields the ideal capacity values for PV, wind, and 

biomass output. 

1) Saturated bounds for DG Units 

In accordance with the capacity factor and the peak load demand, DG saturation limit may be stated as: 

 ∑ (𝐶𝑓𝑁
𝑆𝑃𝑉𝑄𝑁

𝑆𝑃𝑉𝑟 + 𝐶𝑓𝑁
𝑤𝑑𝑟𝑄𝑁

𝑤𝑑𝑟 + 𝑄𝑁
𝐵𝑔𝑟)

𝑁𝑠

𝑁=1
≤ 𝐸lim𝑖𝑡𝑄𝑝

𝐿𝑑    

 (2) 

Where, 𝐶𝑓𝑁
𝑤𝑑 and 𝐶𝑓𝑁

𝑆𝑃𝑉embodies the wind/SPV capacity factors;  𝑄𝑁
𝑆𝑃𝑉𝑟 , 𝑄𝑁

𝑤𝑑𝑟 and 𝑄𝑁
𝐵𝑔𝑟signifies the rated real 

power of SPV/WT/biomass generator. Likewise, 𝐸lim𝑖𝑡 and 𝑃𝑤𝑟𝑝
𝐿𝐷 denotes the saturated bound and peak load 

demand, respectively. 

2) Overall DG Capacity installed at every node 

The maximal permitted DG capacity on server capacity owing to land space along with network restrictions can 

restrict the total installation DG or hosting capacity at all system nodes𝑈𝑁
max. 

 (𝑈𝑁
𝑤𝑑 + 𝑈𝑁

𝑆𝑃𝑉 + 𝑈𝑁
𝐵𝑔

) ≤ 𝑈𝑁
max   

 (3) 

3) Suboptimizing Scenario 

To reduce the state-dependent expenses 𝐶𝑠
𝑠𝑡, the optimal PQ power from DG units must be obtained in the sub- 

optimization scenario. 

 𝐶𝑠
𝑠𝑡 = 𝐶𝑠

𝑂𝑀 + 𝐶𝑠
𝑓𝑢𝑒𝑙

+ 𝐶𝑠
𝑝𝑢

+ 𝐶𝑠
𝑒 + 𝐶𝑠

𝑟   

 (4) 

The total amount of active energy generated by the DG units may be used to calculate the DG O&M costs 𝐶𝑠
𝑂𝑀 

Which is specified as, 

 ( )( ), , , ,

1 1

sNP
OM pvm SPV wdm wd bgm Bg

s Pl Pl s Pl N s Pl N s Pl N s

Pl N

C W T C Q C Q C Q
= =

= + +   

 (5) 

Here, 𝑃𝑙 signifies the total scheduling for 5 years, 𝑊𝑃𝑙  denotes current value cost feature, 𝑇𝑃𝑙,𝑠 indicates the entire 

system state hours for a scheduled year; 𝐶𝑃𝑙
𝑤𝑑𝑚, 𝐶𝑃𝑙

𝑝𝑣𝑚
, 𝐶𝑃𝑙

𝑏𝑔𝑚
 declares the predictable O&M cost factors (in $/kWh) 

that for wind is $0.01/Kwh , SPV is $0.01/Kwh and biomass generator is $0.012/Kwh, correspondingly. The terms 

𝑄𝑁,𝑠
𝑆𝑃𝑉 , 𝑄𝑁,𝑠

𝑊𝑑and 𝑄𝑁,𝑠
𝐵𝑔

 portrays the PV, wind and biomass capacity that will be generated via the proposed Aq-SCS 
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optimization model. Therefore, it is possible to assess the entire fuel costs 𝐶𝑠
𝑓𝑢𝑒𝑙

of biomass generators and the 

overall energy cost produced over a planned horizon.  

 𝐶𝑠
𝑓𝑢𝑒𝑙

= ∑ ∑ 𝐶𝑃𝑙
𝑓𝑢𝑒𝑙𝑁𝑠

𝑁=1
𝑃
𝑃𝑙=1 (𝑊𝑃𝑙𝑇𝑃𝑙,𝑠𝑄𝑁,𝑠

𝐵𝑔
)   

 (6) 

Where, 𝐶𝑃𝑙
𝑓𝑢𝑒𝑙

represents the predicted fuel cost aspect. 

It is possible to determine the energy cost obtained from the grid in terms of the active power lost, injected active 

power by DG units along with the utilized active power loads as stated in, 

( ) ( )

,

1

2

, , , , ,

1

s

fB B

P
pu pu

s Pl Pl Pl s

Pl

N
f Ld wd SPV Bg

B s B N s N s N s N s

N

c c

C C W T

I r Q Q Q Q

F S



=

=

=

 
 + − − − 
 
 

+ +



 

   (7) 

where, 𝐶𝑃𝑙
𝑝𝑢

determines the evaluated price factor of purchased energy cost from grid; 𝐵𝑓be the feeder set, 𝐼𝐵,𝑠signify 

the current of the branch; 𝑟𝐵  
𝑓

denotes the feeder resistivity, 𝑄𝑁,𝑠 
𝐿𝑑 implies the load demand; 𝐹𝑐 and 𝑆𝑐  be the fixed as 

well as switchable capacitor cost.  

The entire amount of energy received from the electrical grid as well as the energy generated by biomass-based 

generators may be used to assess the cost of emissions 𝐶𝑠
𝑒, as shown in Equation (8), 

 𝐶𝑠
𝑒 = ∑ 𝐶𝑃𝑙

𝑒𝑝
𝑃𝑙=1 𝑊𝑃𝑙𝑇𝑃𝑙,𝑠(𝐸𝑓𝐶𝑝𝑢

−1𝐶𝑠
𝑝𝑢

+ 𝐸𝑓𝑢𝑒𝑙 ∑ 𝑄𝑁,𝑠
𝐵𝑔𝑁𝑠

𝑁=1 )  

 (8) 

Where, 𝐶𝑃𝑙
𝑒  represent the evaluated cost factor of the emission ($/kg), 𝐸𝑓and 𝐸𝑓𝑢𝑒𝑙indicates the emission factors 

(kg/kWh) that are related with consumed real energy and total energy provided by the biomass generator.  

System dependability costs 𝐶𝑠
𝑟  are assessed using the energy not supplied (ENS) cost, which is computed as,

 

( )

( ) ( )

,

,

,

1

, ,

, , , ,

f

m
B s

r a
B B s

P
r r

s Pl Pl B Pl s

Pl B B

m Ld

B s N s

N N

r Ld a Ld

B s N s B s N s

N N N N

C C W

t Q

t Q t Q

 
= 



 

=







+ + 




 



 
  

 (9) 

Where, 𝐶𝑃𝑙
𝑟 represents the reliability cost factor; 𝛿𝐵 implies the feeder failure rate; 𝜇𝑃𝑙,𝑠be the system probability 

rate; 𝑁𝐵,𝑠
𝑎 , 𝑁𝐵,𝑠

𝑚 and 𝑁𝐵,𝑠
𝑟 signifies the system nodes that are restored after automatic, manual and repair switching, 

respectively. Likewise, 𝑡𝐵,𝑠
𝑎 , 𝑡𝑏,𝑠𝑡𝑎𝑡𝑒

𝑚𝑎𝑛𝑢𝑎𝑙 and 𝑡𝑏,𝑠𝑡𝑎𝑡𝑒
𝑟𝑒𝑝𝑎𝑖𝑟

 represents the time of automatic switching, manual switching and 

repair time accordingly.  

B. Proposed Methodology of optimal Expansion Planning 

The primary objective of the suggested investigation is the development of an innovative mathematical framework 

for the distributed framework's expansion planning through the implementation of an integrated optimization 

method. Two stages, like master optimization and sub-optimization are used to address the distributed system 

planning challenge across every state of the system [13]. The suggested Aq-SCS optimization algorithm uses the 

distribution system input variables, such as fixed and switchable capacitors, DG type, size and capacity, position, 

PQ power that are produced by system uncertainties, like load demand, solar, and wind power uncertainties.  

The distributed system’s expansion planning challenge is first defined as a MINLP issue that is addressed by 

employing the Master optimization technique. Sub-optimization for every state of the system is included in the 

master optimization process. The presented scheme employs the master technique to derive potential DG allocation 

schemes for fixed and switchable capacitors, as well as the sizes, types, and positions of DG units. The sub-
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algorithm is employed in concurrence with the DG allocation scheme produced by the master technique to extract 

the state-dependent operating techniques for PQ power from each separate DG unit. 

The combination of AOA [22] and SCSO [23] algorithms' distinguishing traits are combined to create the suggested 

Aq-SCS optimization strategy. The suggested approach is used to attain the goals of adjusting the variables, 

including fixed capacitors, switchable capacitors, DG type, size/capacity, position, PQ power. The process is 

terminated after confirming that the DSEP strategy's basic goal of obtaining the least feasible cost is met, otherwise 

the process continues unless the best result (least cost) is reached.  Figure 2 displays the flow chart depiction of the 

suggested Distribution system Expansion plan model. 

 

 
 

 Figure 2. Schematic diagram of DSEP scheme 

 

IV. PARAMETER TUNING BY HYBRIDIZED AQ-SCS TECHNIQUE 

A. Objective Model 

The primary goal of the research is to create an integrated methodology for optimum expansion planning for the 

distributed system by adjusting the factors, including DG type, size/capacity, fixed capacitor, switchable capacitor, 

position, PQ power, and the distribution system's wind/solar capacities. In the same way, maximizing the load that 

may be increased in a distribution system reduces costs. Here, 0 and 7 are taken to be the lowest and higher bounds 

for the type and position of wind turbines, SPV and biomass in which their capacity limits are maintained at 0 to 

1500.   

B. Aquila based Sand Cat Algorithm( Aq-SCS) 

AQO an innovative population-based optimization approach [22] inspired by the Aquila’s' instinctive hunting and 

feeding activities. 

1) Aquila’s fishing attitude and techniques:  

 Aquilas that move quickly are characterized by their powerful feet and long, sharp talons that they use to catch 

prey. This will defend its domain to an extent of 200km2. The Aquila mainly uses four foraging strategies, which 

it applied based on the circumstances: "stepping and seizing the prey," "poor soar with continuous descent attack," 

"contour flying with brief glide assault," and "high soar with a vertical stoop." The mathematically simulated 

hunting behavior of Aquila is briefly explained here. 

2) Initialization 
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In simple terms, Aquila is a population-based methodology, where a list of population ( )J , which are generated 

arbitrarily within the space of search are displayed as in Equation (10), 

 

 

1,1 1, 1,dim 1 1,dim

2,1 2, 2,dim

,

1,1 1, 1,dim

1 , ,dim 1 ,dim

...
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... ... ... ...

: : : : :

.... ....

....

q

q

p q

N N q N

N N q N N

J J J J

J J J

J
J

J J J

J J J J

−

− − −

− −

 
 
 
 

=  
 
 
 
     

 (10) 

 

The ideal outcome is determined by selecting the best outcome from each iteration. 𝐽 indicates the contemporary 

developed individual random solution as per eqn. (11), 𝐽𝑝characterize the 𝑝𝑡ℎsolution. 𝑁 refers the overall count, 

and dim refers the dimensional size. 

 
, ( )

1,2,... ; 1,2....

p q q q qJ r U L L

p N q d

=  − +

= =
  

 

(11) 

Where, 𝑟defines the randomness count, 𝐿𝑞and 𝑈𝑞stipulates the bottom and uppermost limits of 𝑞. 

C. Mathematical Modelling 

The AO technique may use different behaviours to transition from the exploratory levels to the exploiting steps 

according to this situation. If 𝑡𝑝 ≤ (
2

3
) ∗ 𝑖𝑡max   condition is met, then the exploratory level will be stimulated; or 

else, the exploited steps will be accomplished. Likewise, the presented approach depending on the four chasing 

stages of AQO is enlightened in the subsequent segments. 

Step I: Prolonged exploring phase (𝐽1):  

 The finest location for hunting is designated by the Aquila by using a high soar with a vertical stoop to identify the 

food source area. In addition, the AO seeks a greater area, descends vertically, and investigates from a high altitude 

in order to locate the prey. In order to regulate the new optimal position in the searching area, SCSO is inhibited 

into the AQO optimization because SCSO is inexpensive to operate in an effective manner. 

 𝐽𝑛𝑒𝑤 = 𝑆𝑟𝑎𝑛𝑔𝑒 ∗ 𝑃𝑜𝑠𝑏𝑐(𝑝) − 𝑟𝑛𝑑(0,1) ∗ 𝐽(𝑝)  

  (12) 

 𝑆𝑟𝑎𝑛𝑔𝑒 = 𝑟𝑛𝑑 ∗ 𝐺𝑠     

  (13) 

 𝐺𝑠 = 𝑆 − (
2∗𝑆∗𝑡𝑝

𝑖𝑡𝑚𝑎𝑥
())    

  (14) 

Where, 𝑃𝑜𝑠𝑏𝑐  defines the optimal candidate position. 𝑆𝑟𝑎𝑛𝑔𝑒  States the sensitive ranging; 𝐺𝑠be the generalized 

sensitive limit minimized from 2 to 0. 

Step II: Narrowed exploration (𝐽2): 

 While hitting the victim's body, the Aquila extensively investigates the target solution space in this part utilizing a 

variety of speeds and directions. The technique is identified as quick glide attack during contour flying. In this 

instance, in order to be ready for an assault, AO prudently investigates the chosen region of the intended prey and 

is expressed as, 
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 𝐽2 = 𝐽𝑏𝑒𝑠𝑡 × 𝐿𝑣𝑦(𝑑) + 𝐽𝑟 + (𝑢 − 𝑣) ∗ 𝑟𝑛𝑑   

 (15) 

 𝐿𝑣𝑦(𝑑) = 𝑎 ∗
𝑥∗𝜌

𝑦1/𝛼    

 (16) 

where, 𝐽2 implies the subsequent iterated value; 𝐿𝑣𝑦(𝑑)indicates the levy distributed flight; 𝐽𝑟defines the arbitrary 

populace of Aquila; 𝑟𝑛𝑑2stipulates the randomized solution within [1,N]; 𝑎 denotes the fixed constant equal to 

0.01; x and 
y

be the arbitrary counts in [0,1]; 𝛼 be a constant equal to 1.5 and is calculated as, 
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Where, 𝑅1 ranges between 1 and 20 for constant search count; dim is a integer count between 1 and dimensional 

searching space,    𝜆 = 0.005. 

Step III: Prolonged exploiting level (𝑀3):  

 While the hunting site is being selected and the area to be struck has been carefully defined, the Aquila approaches 

vertically with a preemptive strike to gauge the prey's reaction before landing and engaging in battle. As a result, 

the phrase low flight with a slow descent attack is used. Equation (8) gives the position update of each sand cat and 

is given by 

 𝐽𝑛𝑒𝑤 = 𝐽𝑏𝑒𝑠𝑡(𝑝) − 𝑆𝑟𝑎𝑛𝑔𝑒 ∗ 𝑃𝑜𝑠𝑟𝑛𝑑 ∗ 𝑐𝑜𝑠( 𝛿)   

 (19) 

 Where, be the roulette wheel selection; 𝑃𝑜𝑠𝑟𝑛𝑑states the gap amongst the Aquila and the prey, and is given by 

 𝑃𝑜𝑠𝑟𝑛𝑑 = |𝑟𝑛𝑑(0,1) ∗ 𝐽𝑏𝑒𝑠𝑡 − 𝐽|   

 (20) 

Equations (12), (17) and (18) update each sand cat position in the explored and exploited stages and hence it is 

named as Aquila based Sand Cat Optimization (Aq-SCS) Algorithm. 

Step IV: Narrated exploitation (𝐽4): 

Finally, in this method, the Aquila follows the victim while paying attention to its chaotic escape path and then 

attacks it on the ground. This scientific behavior is specified by,

  

 
( )4 1 2 1* * * * ( ) *f bestJ Q J E J rnd E Lvy d rnd E= − − +

  
 (21) 

 

( ) 2
max(2* 1 /(1 )rnd it

f pQ t
− −

=
     

 (22) 

 1 2* 1E rnd= −
    

  (23) 
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2

max

2* 1
pt

E
it

 
= − 

      
 (24) 

Where, 𝑄𝑓 represents the functional quality that is utilized to adjust the searching strategy. 𝐸1 Corresponds to an 

integer value within -1 and 1 that represents the prey's tracking behavior; 𝐸2displays the AO's flight slope surface 

that is decreased from 2 to 0. Algorithm 1 describes the proposed Aq-SCS pseudocode. Figure 3 depicts the Aq-

SCS flowchart representation. 

 

Algorithm 1: Pseudo code of Aq-SCS Model 

Aq-SCSModel 

Set populace J and its variables 

while do 

Assess the fitness functionality values  

for ( )1, 2,....,p N=  do 

Upgrade 
1 2, , , , ( )u v E E Lvy d and so on 

if
max

2

3
pt it

 
  
 

 then 

 If 0.5rnd   then 

             Step 1: Enhanced Exploring phase ( )1J  

              Upgrade the present resolutionby Equation (12) 

           If 
( )( ) ( )( )1 1p pFit J t Fit J t+ 

then 

( ) ( )1 1p pJ t J t= +
 

if 
( )( ) ( )( )1 1p best pFit J t Fit J t+ 

 

( ) ( )1 1best p pJ t J t= +
 

              end if 

            end if 

        else 

             Step 2: Narrated exploring phase ( )2J  

Utilizing Equation (13), adjust the present value 

           If ( )( ) ( )( )2 1p pFit J t Fit J t+  then 

( ) ( )2 1p pJ t J t= +  

if ( )( ) ( )( )2 1p best pFit J t Fit J t+   

( ) ( )2 1best p pJ t J t= +  

                  end if 

            end if 

        end if 

 else 

 If 0.5rnd   then 

              Step 3: Prolonged exploiting phase ( )3J  

Adjust the Current value by means of Equation (17) 

           If ( )( ) ( )( )3 1p pFit J t Fit J t+  then 

( ) ( )3 1p pJ t J t= +  

if ( )( ) ( )( )3 1p best pFit J t Fit J t+   

( ) ( )3 1best p pJ t J t= +  

                  end if 

            end if 

else 
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             Step 4: Narrated exploiting stage ( )4J  

Update new value by employing Equation (19) 

           If ( )( ) ( )( )4 1p pFit J t Fit J t+  then 

( ) ( )4 1p pJ t J t= +  

if ( )( ) ( )( )4 1p best pFit J t Fit J t+ 
 

( ) ( )4 1best p pJ t J t= +  

                  end if 

            end if 

     end if 

   end if 

  end for 

end while 

Return the optimal value ( )bestJ . 

 

 

Figure 3. Aq-SCS flowchart representation 
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V. RESULTS AND DISCUSSIONS 

A. Simulation Procedure 

 The empirical study was carried out utilizing the offered Aq-SCS technique for distributive 

system planning, which accounts for the uncertainties in the system and the reactive capabilities of numerous DG 

systems, with the aid of MATLAB/Simulink. Information on load demand is gathered from the "Hourly Load 

Data" dataset, which is utilized for the examination in this study [24]. The following comparison shows how the 

suggested approach for every instance of testing reduces total cost, capital cost, O&M cost, fuel cost, purchased 

cost, emission cost, reliability cost, fixed capacitor cost, and switchable capacitor cost in comparison to the typical 

techniques, like SSI-CS [25,26], WHO [27], AQO [20], and SCSO [21] respectively. 

B. Capital Cost 

 The suggested over typical techniques' capital costs for optimum DG allocation systems are displayed in Figure 

4. Therefore, in contrast with additional standard procedures, the suggested Aq-SCS approach achieves a low-cost 

value. 

 

Figure 4: Analysis based on capital cost 

    

C. Analysis based on Puchased Energy Cost 

 The ideal DG allocation techniques for the suggested against conventional approaches are shown by their 

purchased energy cost in Figure 5. Therefore, compared to current procedures, the suggested Aq-SCS method 

achieves a lower cost. 

 

Figure 5: Purchased energy cost analysis 

    

D. Evaluation based on Fuel Cost 

The suggested Aq-SCS technique is contrasted with standard models, like SSI-CS, WHO, AQO, and SCSO 

depending on evaluation of fuel cost, as seen in Figure 6. As such, the suggested Aq-SCS approach achieves the 

lowest possible cost with regard to standard tactics. 
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Figure 6: Comparative study based on fuel cost 

 

E. Evaluation based on Emission Cost 

Figure 7 displays the emission cost assessment, whereby the suggested Aq-SCS approach is compared to SSI-CS, 

WHO, AQO, and SCSO strategies. Therefore, in relation with different conventional models, the suggested AQ-

SCS method achieves a lower cost. 

.  

Figure 7: Comparative study based on emission cost  

    

F. Evaluation based on O&M Cost 

The suggested Aq-SCS approach is used to compare the operating and maintenance costs of several prevalent 

methods, including SSI-CS, WHO, AQO, and SCSO, as seen in Figure 8. As such, the suggested Aq-SCS 

approach achieves the lowest possible cost in comparison with existing strategies. 
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 Figure 8: Comparative study based on O&M cost 

   

G. Analysis based on Reliability Cost 

The reliability cost evaluation of the suggested Aq-SCS approach was shown in Figure 9, with various other 

current methods, including SSI-CS, WHO, AQO, and SCSO, respectively. Consequently, as contrasted with 

traditional strategies, the suggested Aq-SCS approach achieves a minimal cost. 

 

Figure 9: Comparative study based on reliability cost 

 

H. Analysis based on Total Cost 

The performance of Aq-SCS in comparison to current techniques is shown in Figure 10 based on the entire cost. 

In light of this, the suggested Aq-SCS approach achieves the lowest cost in contrast to traditional methods. 

 
Figure10: Comparative study based on total cost 

I. Analysis based on fixed capacitor cost 

The reliability cost estimation of the suggested Aq-SCS approach is illustrated in Figure 11, along with various 

other conventional approaches, such as WHO, AQO, and SCSO accordingly. Consequently, as contrasted with 

traditional methods, the suggested Aq-SCS approach achieves reduced expense. 
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Figure 11: Comparative study based on fixed capacitor cost 

 

J. Analysis based on Switchable Capacitor Cost  

 The suggested Aq-SCS method's switchable capacitor cost analysis was shown in Figure 12, along with various 

other prevailing approaches, including WHO, AQO, and SCSO models. Hence, in comparison to traditional 

methods, the suggested Aq-SCS approach achieves a minimum cost. 

 

Figure 12: Comparative study on switchable capacitor cost 

 

The expense associated with allocating DG optimally for the proposed techniques are compared to those of other 

standard approaches and depicted in Table 2. 

 

Table 2. Comparative Analysis of Cost for the Ideal DG Allocation 

 
  SSI-CS WHO AQO SCSO Proposed 

Total cost 5.11E+07 1.36E+08 3.32E+07 1.88E+07 1.78E+07 

Capital 

cost 3.60E+07 1.14E+08 1.76E+07 1.14E+06 8.95E+05 

O&M cost 1.57E+06 8.09E+05 39310 1.18E+05 7.71E+04 

Fuel cost  51855 23056 1176.3 6182.4 4049.1 

Purchased 

cost 7.72E+06 1.42E+07 9.27E+06 1.06E+07 9.94E+06 

Emission 
cost 5.21E+05 1.09E+06 1.52E+06 1.30E+06 1.27E+06 

Reliability 

cost 5.25E+06 5.13E+06 4.83E+06 5.61E+06 5.60E+06 
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Fixed 

capacitor 

cost 

- 

7.386 6.659 5.728 6.883 

Switchable 

capacitor 
cost 

- 

25.467 19.899 17.184 20.133 

 

K. Evaluation based on Convergence 

Figure 13 illustrates an iterative and entire cost comparison between the proposed technique and standard 

approaches. Investigation is done in this instance for a large range of iterations, involving 0, 5, 10, 15, 20, 25, and 

30. It is evident that throughout the iterations, the suggested Aq-SCS design has consistently produced low-cost 

values as compared to the standard methods. 

 

 

Figure 13: Convergence analysis 

 

From the outcomes, it is revealed that Aq-SCS attains lowest cost in contrast with typical approaches, like WHO, 

AQO and SCS correspondingly.   

Table 3, 4 and 5 shows the DG allocation schemes using wind turbine, PV and biomass based on size and location. 

Table 6 illustrates the optimal fixed and switchable capacitor types of the proposed Aq-SCS method over typical 

WHO, AQO and SCSO optimization techniques. Moreover, the computation time achieved Table 6 select the 

corresponding range of capacitors from Table 7 and 8 [28]. 

Table 3: DG Allocated Wind Turbine Model 

WHO AQO SCSO PROPOSED 

WT 

spot 
WT size WT Spot WT size 

WT 

Spot 

WT size WT 

Spot 
WT size 

1 670.34 2 64.069 1 200.12 2 8.1583 

2 894.67 4 63.622 2 207.6 4 117.44 

3 853.28 6 64.555 3 210.04 5 21.847 

9 605 7 64.458 4 207.21 6 4.4773 

10 1000 9 63.158 5 216.46 7 58.04 

15 126.05 12 66.829 6 238.81 8 37.688 

20 216.63 13 64.181 7 214.85 9 87.762 

23 352.72 14 67.151 8 220.73 10 1.9255 

24 529.68 15 64.988 9 229.14 12 14.467 
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25 327.99 17 63.137 10 209.84 14 101.31 

30 444.86 21 67.133 11 207.82 15 39.433 

32 1 23 63.686 12 209.99 17 4.9875 

  25 65.479 13 204.59 20 31.026 

  28 67.21 14 252.93 21 64.959 

  29 63.233 15 217.48 23 63.567 

    
16 217.92 25 132.72 

    
17 220.93 26 418.61 

    
18 221.99 27 23.934 

    
19 218.34 28 10.798 

    
20 187.82 29 36.989 

    
21 234.88 30 129.26 

    
22 212.99 32 28.829 

    
23 219.81 33 4.7175 

    
24 233.48 

  

    
25 220.52 

  

    
26 198.05 

  

    
27 220.69 

  

    
28 178.06 

  

    
29 227.31 

  

    
30 224.22 

  

    
31 224.6 

  

    
32 201 

  

    
33 222.41 

  

 

Table 4: DG Allocated PV Model 

WHO AQO SCSO PROPOSED 

PV spot PV size PV spot PV size PV spot PV size PV spot PV size 

2 627.91 1 65.144 1 205.18 1 588.82 

5 210.9 2 67.029 2 220.88 2 63.899 

10 1 3 65.592 3 210.27 3 11.701 

11 918.27 6 64.157 4 209.97 4 795.19 

18 937.28 7 66.663 5 223.74 7 4.2482 

22 793.3 9 64.706 6 398.95 8 10.428 

23 231.2 12 66.564 7 204.07 9 465.75 

24 871.03 13 64.248 8 203.92 11 6.0825 

26 464.65 14 64.147 9 214.91 13 877 

30 787.28 15 65.445 10 322.96 14 1.8269 

32 421.52 19 63.992 11 231.94 16 53.361 

    22 63.154 12 204.74 17 8.5336 

    25 66.805 13 220.23 18 21.253 

    26 63.566 14 209.23 19 755.45 
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    27 64.088 15 211.23 21 187.42 

    28 65.102 16 220.66 24 167.3 

    29 64.132 17 228.45 27 32.083 

    30 63.896 18 212.19 30 969.71 

    31 63.48 19 233.7 31 494.44 

        20 210.34 32 643.76 

        21 211.79 33 2.1275 

        22 224.2     

        23 214.37     

        24 201.65     

        25 207.54     

        26 216.81     

        27 198.92     

        28 192.05     

        29 201.63     

        30 219.53     

        31 222.93     

        32 200.14     

        33 209.37     

 

Table 5: DG Allocated Biomass Model 

WHO AQO SCSO PROPOSED 

Biomass 

Spot 

Biomass 

size 

Biomass 

Spot 

Biomass 

size 

Biomass 

Spot 

Biomass 

size 

Biomass 

Spot 

Biomass 

size 

2 734.87 2 63.569 1 205.12 1 47.012 

5 1000 3 65.746 2 200.49 2 9.1167 

10 685.71 4 65.998 3 200.36 12 72.794 

14 1 8 65.838 4 209.1 15 9.1257 

18 703.78 10 64.729 5 202.73 16 50.01 

22 638.49 11 66.06 6 212.96 22 55.946 

26 1 12 64.475 7 218.69 23 96.038 

30 1 16 64.172 8 256.94 30 121.13 

31 244.36 17 67.042 9 215.77 31 10.311 

32 426.4 18 64.038 10 218.74 32 9.0052 

  19 63.953 11 223.31 33 14.721 

  20 64.85 12 220.87   

  23 63.358 13 223.24   

  24 65.993 14 204.5   

  30 64.834 15 212.69   

  32 64.336 16 205.38   

  33 66.933 17 220.88 
  

    18 222.68 
  

    19 281.42 
  

    20 220.93 
  

    21 213.29 
  

    22 221.13 
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    23 277.6 
  

    24 212.44 
  

    25 225.49 
  

    26 216.51 
  

    27 211.02 
  

    28 220.23 
  

    29 194.34 
  

    30 216.58 
  

    31 219.43 
  

    32 220.83 
  

    33 211.95   

 

Table 6: Optimal Fixed and Switchable Capacitor Type 

Fixed Capacitor Switchable Capacitor 

WHO AQO SCSO PROP WHO AQO SCSO PROP 

27 11 4 4 1 13 4 4 

8 8 7 4 9 15 2 3 

5 13 3 7 27 13 4 6 

22 13 1 4 7 2 2 3 

27 12 5 3 1 8 6 4 

24 8 7 3 24 6 3 4 

13 12 5 1 1 21 6 2 

20 20 2 2 27 27 6 2 

1 6 2 2 1 22 7 4 

6 24 2 1 1 26 3 4 

24 10 5 5 12 4 2 7 

15 12 5 3 19 6 3 2 

2 7 2 4 2 24 3 5 

15 11 5 3 1 21 5 3 

27 15 5 5 8 7 5 2 

1 22 3 3 18 6 4 1 

6 17 7 3 12 11 5 3 

5 14 7 1 27 12 7 4 

27 8 1 2 13 9 5 3 

1 17 2 4 1 11 6 2 

27 21 2 1 2 13 2 2 

27 3 6 5 27 26 6 2 

27 13 4 5 5 24 5 2 

14 14 2 3 1 18 6 2 

2 21 5 1 27 25 3 3 

9 10 5 1 14 22 4 3 

6 13 3 4 1 17 1 4 

27 17 5 4 27 8 3 3 

10 18 1 4 11 20 6 3 

12 25 6 2 1 12 7 2 

27 15 2 1 17 14 2 4 

1 2 2 5 11 2 7 2 

21 17 1 2 24 3 5 5 
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Table 7: Annual Fixed Capacitor Cost 

Capacitor 

size 
(KVAR) 

150 

 

300 450 600 750 900 1050 1200 1350 1500 1650 

Capacitor 

cost 
($/yr) 

0.5 0.35 0.253 0.22 0.276 0.183 0.228 0.17 0.207 0.201 0.193 

Capacitor 

size 

(KVAR) 

1800 1950 2100 2250 2400 2550 2700 2850 3000 3150 3300 

Capacitor 

cost 

($/yr) 

0.187 0.211 0.176 0.197 0.17 0.189 0.187 0.183 0.18 0.195 0.174 

Capacitor 
size 

(KVAR) 

3450 3600 3750 3900 4050       

Capacitor 
cost 

($/yr) 

0.188 0.17 0.183 0.182 0.179       

 

 

Table 8: Annual Cost of Switchable Capacitor 

Capacitor size 
(KVAR) 

135-165 270-330 405-495 540-660 675-825 810-990 945-1155 

Capacitor cost 

($/yr) 

1.5 1.05 0.759 0.66 0.828 0.549 0.684 

Capacitor size 

(KVAR) 

1080-1320 1215-1485 1350-1650 1485-1815 1620-1980 1755-2145 1890-2310 

Capacitor cost 

($/yr) 

0.51 0.621 0.603 0.579 0.561 0.633 0.528 

Capacitor size 
(KVAR) 

2025-2475 2160-2640 2295-2805 2430-2970 2565-3135 2700-3300 2835-3465 

Capacitor cost 
($/yr) 

0.591 0.51 0.567 0.561 0.549 0.54 0.585 

Capacitor size 

(KVAR) 

2970-3630 3105-3795 3240-3960 3375-4125 3510-4290 3645-4455  

Capacitor cost 

($/yr) 

0.522 0.564 0.51 0.549 0.546 0.537  

 

L. Analysis under 4 cases 

The analysis of the suggested approach is carried out under 4 cases. The analysis is made in IEEE 33 bus 

distribution network as depicted in Figure 14. 

 

 

Figure 14: IEEE 33 bus distribution Network 
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The four cases under consideration are 

(i) Without DG and capacitor 

(ii) With capacitor and no DG 

(iii) With DG and no capacitor 

(iv) With both capacitor and DG 

(i)  Case 1: Without DG and capacitor 

This is the base case load tested through the load flow method as stated below. In this case, there is no use of DG 

and capacitor. Table 9 depicts the line flow and losses without DG and capacitor. 

 

 

Table 9: Analysis of Line Flow and Losses 

Line Power at bus &line flow Line loss 

from to kW kVAR kW kVAR 

1 2 1954.7065 28.7598 100.8940 1.4845 

 
2 

1 -1853.812 -27.275 100.8940 1.4845 

3 833.558 31.0579 43.0856 1.6053 

19 324.047 8.2429 5.9400 0.1511 

 

3 

2 -790.4732 -29.4526 43.0856 1.6053 

4 469.5057 124.1295 1.6989 0.4492 

23 324.8714 14.9721 7.2292 0.3332 

4 3 -467.8068 -123.6804 1.6989 0.4492 

5 -188.9624 -11.8587 1.1411 0.0716 

5 4 190.1034 11.9303 1.1411 0.0716 

6 193.5974 60.0805 0.9519 0.2954 

6 5 -192.6455 -59.7851 0.9519 0.2954 

7 59.8823 9.2248 0.1514 0.0233 

26 -503.5779 -14.9618 9.0712 0.2695 

7 6 -59.7309 -9.2015 0.1514 0.0233 

8 -101.9682 -6.0398 0.4275 0.0253 

8 7 102.3957 6.0651 0.4275 0.0253 

9 -86.3253 -9.8047 0.5034 0.0572 

9 8 86.8287 9.8619 0.5034 0.0572 

10 -74.9986 -13.2428 0.2459 0.0434 

10 9 75.2446 13.2862 0.2459 0.0434 

11 -168.9293 -7.6917 0.4103 0.0187 

11 10 169.3396 7.7104 0.4103 0.0187 

12 -61.5174 -13.0853 0.0230 0.0049 

12 11 61.5404 13.0902 0.0230 0.0049 

13 -87.0982 -13.7068 0.5703 0.0897 

13 12 87.6685 13.7965 0.5703 0.0897 

14 -29.6441 -8.3341 0.0237 0.0067 

14 13 29.6678 8.3408 0.0237 0.0067 

15 -36.8189 -5.2986 0.0498 0.0072 

15 14 36.8688 5.3058 0.0498 0.0072 

16 8.5970 3.2926 0.0012 0.0005 

16 15 -8.5959 -3.2921 0.0012 0.0005 

17 3.4070 1.3296 0.0006 0.0002 

17 16 -3.4064 -1.3294 0.0006 0.0002 

18 -15.9346 -3.6800 0.0065 0.0015 

18 17 15.9411 3.6815 0.0065 0.0015 

19 2 -318.1071 -8.0918 5.9400 0.1511 

20 265.0413 116.6574 2.4622 1.0837 

20 19 -262.5791 -115.5737 2.4622 1.0837 

21 165.6995 18.5277 1.1555 0.1292 

21 20 -164.5441 -18.3985 1.1555 0.1292 



J. Electrical Systems 20-7s (2024): 1346-1369 

 

1367 

22 72.3268 67.0583 0.0969 0.0898 

22 21 -72.2299 -66.9685 0.0969 0.0898 

23 3 -317.6422 -14.6390 7.2292 0.3332 

24 572.0586 377.1005 5.3973 3.5579 

24 23 -566.6613 -373.5426 5.3973 3.5579 

25 128.1627 12.0456 1.3464 0.1265 

25 24 -126.8162 -11.9191 1.3464 0.1265 

26 6 512.6492 15.2313 9.0712 0.2695 

27 -186.2944 -65.2790 0.1595 0.0559 

27 26 186.4538 65.3349 0.1595 0.0559 

28 -459.5716 -68.1065 13.4527 1.9936 

28 27 473.0243 70.1001 13.4527 1.9936 

29 -573.8950 -66.3353 18.8895 2.1834 

29 28 592.7845 68.5187 18.8895 2.1834 

30 -269.6490 -126.9502 0.4269 0.2010 

30 29 270.0758 127.1511 0.4269 0.2010 

31 -20.3022 -5.3493 0.0141 0.0037 

31 30 20.3162 5.3530 0.0141 0.0037 

32 -7.2801 -2.2724 0.0006 0.0002 

32 31 7.2807 2.2726 0.0006 0.0002 

33 -1.0040 -0.4540 0.0000 0.0000 

33 32 1.0041 0.4540 0.0000 0.0000 

Total cost 215.8269 14.3633 

 

(ii)  Case 2: With Capacitor and no DG 

In this case, the analysis is tested through IEEE 33 bus system considering capacitor and there is no DG. The 

results as shown in table 10 illustrate the minimal purchased cost obtained by the proposed technique over standard 

WHO, AQO and SCSO models. Figure 15 depicts the comparison of the developed over typical techniques based 

on purchased energy cost and table 10 tabulates the corresponding values. 

 

 

Figure 15:  Comparative analysis based on purchased energy cost 

 

Table 10: Purchased Energy Cost 

 WHO AQO SCSO PROP 

purchased 

cost 

20356 19417 18407 15991 

 

 

  



J. Electrical Systems 20-7s (2024): 1346-1369 

 

1368 

(iii)  Case 3: With DG and no Capacitor 

Here, the analysis is carried out by considering only DG and there is no use of capacitor. The results as described 

in table 11 depicts the corresponding total cost, capital cost, O&M cost, fuel cost, purchased cost, emission cost 

and reliability cost as stated in SSI-CS [23,24]. 

Table 11: Cost analysis 

Total cost 5.11E+07 

Capital cost 3.60E+07 

O&M cost 1.57E+06 

Fuel cost  51855 

Purchased cost 7.72E+06 

Emission cost 5.21E+05 

Reliability cost 5.25E+06 

 

 

(iv)  Case 4: With both capacitor and DG 

In this case, the analysis is tested through IEEE 33 bus system considering both capacitor and DG as mentioned 

in our proposed methodology. 

 

 

VI. CONCLUSION 

A novel optimization methodology that takes system uncertainties and DG reactive capabilities into account for 

distribution system planning has been introduced in this research. When planning the development of the 

distributed network, the reactive capacities of renewable DG technologies, such as the SM-based biomass 

generator, the DFIG-based wind unit, and the VSI-based SPV unit were taken into consideration. Moreover, this 

research presented a newly integrated optimization technique termed as Aquila based sand Cat Swarm (Aq-SCS) 

Optimization that hybrid the standard AOA and SCSO algorithms for optimal tuning of DSEP. The recommended 

optimizing strategy is to lower the total system cost, which involves the cost of fuel, dependability, emissions, 

purchased energy, fixed and switchable capacitors, capital costs, and operations and maintenance. In order to 

assess where the DGs should be placed, this cost has been decreased. The results of the simulation also 

demonstrated that a reduction in total cost was achieved when the reactive abilities of distributed generation were 

included during the planning stage. Furthermore, it was found that the solar PV and wind-connected DG systems' 

reactive capacities enable them to equalize against the biomass-based generator. It is important to highlight that 

the framework for planning may easily be updated to include enhanced network management plans using the 

suggested technique. The advantages of load shedding in the best direction further demonstrate the value of our 

research, which closes the gap in research and merits more investigation in the future. 
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