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Abstract: - Enzymes are important for various biochemical reactions in living cells. In drug discovery and drug design, identifying small 

molecule binding residues in enzymes is a crucial step. Although, identifying ligand-binding residues using computational techniques are 

improving, accurate prediction remains difficult. Therefore, to address this problem, we used the sequence local information, i.e., sequence 

neighbors around the target residue, and transformed it into two ways. First, into a Chaos Game Representation (CGR) to form a feature 

vector and train with an Extreme Gradient Boosting classifier (XGB) and second into a non-numeric feature space and apply the conditional 

probabilistic based approach. Our results suggest that local protein sequence information along with global information can help to develop 

precise predictors for small molecule binding residues. We hope our observations could facilitate the researchers to investigate more into 

enzyme-ligand interaction and drug discovery. 
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1 Introduction 

Identifying protein binding residue is important to understand the biological functions of proteins, drug discovery, 

drug design, virtual screening, and for binding affinity prediction. Enzymes function as biological catalysts, 

accelerating chemical reactions by lowering activation energy within cells, among other important roles they 

perform within organisms [1]. Catalysis is important for all the metabolic processes in the living cells to sustain 

life and are popularly known to be important in the process of fermentation, medical diagnosis, and treatment and 

has many industrial applications in the biofuel industry, brewing, paper, starch industry, dairy, detergents, food 

processing, personal care products, and, in molecular biology [1] as well. Identification of these enzyme-ligand 

binding interactions is of highest importance in the drug development process since they belong to the most 

significant group of therapeutic targets [2]. 

 Researchers have made continuous effort to analyze and predict protein-ligand complexes using evolutionary 

information, physicochemical properties or properties related to structural information. Some of them are enzyme 

specific, or ligand specific approaches, but still precise prediction is challenging due to multiple factors [3-17]. 

Developing a suitable predictor needs meticulous understanding of numerous fundamental assumptions with 

respect to varied functional architecture for their usage [18]. 

 Since the binding sites serve a crucial biochemical role, identifying the enzyme interactions via template-based 

or other alternative methods is typically challenging. According to the [19], binding sites are hidden inside deep 

protein cavities, although not all ligand binding sites are buried in deep pockets. Binding sites are frequently found 

in the protein's largest and deepest pocket, however other investigations have revealed that ligands can also 

interact with small clefts and exposed surfaces. Residues involved in enzyme-ligand interactions are responsible 

for various biochemical processes and tethering. Therefore, identifying these functional residues are crucial for 

understanding the molecular interactions and to conduct further experiments [20, 21].  

       The aim of this work is to determine how protein sequence local information—that is, the sequence 

information that surround the target residue—affects the prediction of enzyme-ligand binding residues. We 

utilized two ways to transform such information.  First, into a Chaos Game Representation (CGR) [22] to form a 

feature vector and trained with an Extreme Gradient Boosting classifier (XGB) [23] and, second, into a non-

numeric feature space and apply conditional probabilistic based approach [24]. Further, we have explored the 
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scope of combining predictions based on local protein sequence information and evolutionary based information 

to develop precise predictors for small molecule binding residues. 

2 Materials and methods 

Two distinct methodologies were employed in our investigations to predict the residues of enzyme-ligand 

interaction: (i) by using Chaos Game Representation (CGR) to encode sequence order information, and then 

providing this set of features to a machine learning algorithm; and 

(ii) by using a conditional probabilistic approach that relies on the precise presence of amino acid residues in the 

binding area in a non-numeric feature space. 

2.1 Datasets 

In this study, we considered the biochemically diverse enzymes which interact with small molecules such as drugs 

and drug-like molecules. We selected the non-redundant dataset investigated and studied by [17]. It contains 311 

protein chains, 8682 of which are interacting residues, and 87430 are non-interacting. 6512 interacting residues 

are chosen at random for training set (Dset233) and 2170 are used for testing set (Dtestset78) in a 75:25 split. For 

evaluation purposes, we also considered the independent dataset (Dtestset17). There are 17 enzymes in Dtestset17 

testing dataset, with 587 interacting residues and 4343 non-interacting residues. Work discussed [17] outlines the 

process for creating detailed non-redundant datasets. 

2.1.1 k-mer frequencies using Chaos Game Representation (CGR) 

In this work, we used a method called Chaos Game Representation (CGR) to encode the enzyme sequences. First, 

we used Table 1 to perform a reverse translation of the amino acid sequence into DNA [25], which we then used 

to produce the CGR for the protein sequence fragment. The following steps can be used to obtain the CGR-plot.  

(1) Each square corner is labelled with a letter representing one of the four nucleotides that make up DNA (A, C, 

G, T). 

(2) then, apply the algorithm to the entire sequence of interest (for e.g. TGCAC) with each consecutive base 

determining the direction of motion, Figure 1. 

(3) in order to get the next point, begin at the square's centre and travel roughly halfway between it and the vertex 

that represents the nucleotide sequence's first letter.,  

(4) insert the jth point half the way in between (j-1)th point and the vertex pertaining to the jth letter, and iterate 

until the nucleotide sequence is completed. 

In order to generate a CGR, the k-mers/oligomers in the sequence are counted, which aids in identifying specific 

regions and specifying the discrete probability distributions of the number of likely groups. It denotes the number 

of times a nucleotide occurs. For a given sequence, the probability of k-mer occurrences is then computed. As a 

result, the k-mer table is obtained, which contains information about k-mer and its abundance. 

 

Table 1. Explored strategies to reduce 20D to 4D for CGR. 

Protein to DNA (P2D) Reduced amino acid alphabet 1 

(RA1) 

Reduced amino acid alphabet 2 

(RA2) 

A=GCT G=GGT M=ATG 

S=TCA 

C=TGC H=CAC N=AAC 

T=ACT 

D=GAC I=ATT P=CCA 

V=GTG 

E=GAG K=AAG Q=CAG 

W=TGG 

F=TTC L=CTA R=CGA 

Y=TAC 

ALVIFWMP; DE; STYCNGQ; 

KRH 

FWY; AHPRT; DEGKNQS; 

CILMV 

 



J. Electrical Systems 20-7s (2024): 1330-1339 

1332 
 

 
Figure 1. Underlying idea of CGR 

 

For each residue, j in the sequence, the association of the neighborhood residues for a given window size (2n+1) 

is also considered i.e., ),,,,( +−= nnj rjrjrjx 
 
 , where }10,8,6{n  is the neighboring residues on either side of 

the center residue, rj which makes window size equals to 13, 17 and 21. The entire length of k-mer is 4k bits. We 

set the k to be 2 for CGR2 and 3 for CGR3. Hence, we derive a feature vector of 16D and 64D, respectively. 

2.2 Extreme Gradient Boosting (XGB) classifier and performance assessment 

We proposed a method for predicting and identifying interacting binding residues by making use of random 

undersampling and an Extreme Gradient Boosting (XGB) classifier for the purpose of improving prediction 

efficiency. XGB is an improved version of the gradient boosting algorithm that creates a strong learner from weak 

learners, usually decision trees, and was proposed by Chen Tianqi and Carlos Guestrin [23]. 

This study addresses a binary classification problem termed binding residue prediction.  For a given dataset, the 

input feature vector },,,{ 21 ni xxxX = , where i ranges from 1 to N. XGB is utilized to estimate the class label, 

where 1 indicates the binding residue and 0 represents the non-binding residue. The XGB training uses the additive 

function to build the model and predict the output as in (1) 

Ffxfy k

K

k

iki =
=

   ,)(ˆ
1

  (1) 

where,  is the binding residue data sample, fk is the leaf score of the independent tree function, and F is the tree 

ensemble consisting of each function of tree. The regularized objective function must be minimized, and it is 

defined as follows in (2) 
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where, 2
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)(  += Tf , the actual class label yi.  and the prediction likelihood are determined by the 

differentiable convex loss function, l. As a result, the smaller the value of l, the greater the algorithm's 

performance. The second term  , addresses the issue of overfitting and penalizes model complexity by adding 

the fk
th tree to improve the tree ensemble model, T represents the number of trees and   is the weight or score 

assigned to each leaf, respectively.   and are constants, that represent the regularization coefficients. Unlike 

the gradient boosting algorithm, to optimize the loss function, the XGB algorithm uses the second-order derivative 

of the Taylor expansion [26] after applying m iterations as in (3), 
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 is the second-order 

derivative respectively as the loss function depends on the 1st and the 2nd order derivative of each sample data-

point. Besides Ω, to avoid overfitting, the XGB algorithm employs shrinkage and column subsampling techniques 

[27,28]. 

This work utilized a 5-fold cross-validation (CV). The protein chains from the training dataset, Dataset233, were 

randomly partitioned into 5 folds, with each fold including balanced data samples of binding and non-binding 

residues. One-fold functioned as the test set in the 5-fold CV procedure, while the other four folds served as the 

training set. This procedure was carried out for each of the five folds for (K=1, 2, ..., 5), and each time one of the 

ix
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five folds was treated as a test set. The result was then averaged across all test results. The metrics used in this 

investigation to assess the model's performance are as follows from (4)-(9). 

100
FN)(TP
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+
=   (4) 

100
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where, TP denotes true positive (binding residues whose binding predictions were correct), FN denotes false 

negative (binding residues predicted to be non-binding), FP denotes false positive (non-binding residues predicted 

by the classifier to be binding), and TN denotes true negative (residues that bind were accurately predicted to be 

non-binding). SN/RC is the proportion of known binding residues that are correctly predicted to be binding 

residues. The proportion of known non-binding residues that were accurately predicted to be non-binding residues 

is represented by SP. PR denotes the proportion of predicted binding residues that are interacting residues. AC 

represents the ratio of actual binding and non-binding residues correctly predicted by the classifier, FM stands for 

the harmonic mean of precision and recall, and it is used to evaluate the model's generalization performance. The 

higher the FM value, the more accurate the model. MCC considers the model's specificity and sensitivity 

simultaneously, i.e., it measures the degree of correlation between the real and predicted classes. When the MCC 

value is 1, it implies that the predictions were accurate, but when it is -1, it shows that none of the residues were 

identified correctly. For each prediction, these statistical indicators were calculated. 

To achieve efficient results, it is a good practice to hyper-tune the parameter of XGB classifier before training the 

model. A randomizedsearchCV was used to search for the optimal parameters based on 5-fold cross validation. 

After finding the optimal parameters, these parameters were utilized to train the model using all training datasets. 

The best MCC was selected as the best model. This model was than employed for predicting the user query 

proteins chain-wise. The optimized hyper tuned parameters were subsample = 0.8, n_estimators= 300, 

min_child_weight= 3, max_depth=9, learning_rate= 0.001, colsample_bytree= 0.8. 

Besides this, in this study we have also explored reduced amino acid alphabets (RA1 [29], RA2 [30]) to reduce 

20D to 4D for CGR, Table 1. 

2.3 Conditional Probabilistic approach 

The second method in our study is based on the Conditional probabilistic approach. The goal is to predict whether 

the target residues to be binding residues or not and to achieve this we utilized the Bayes Theorem. The conditional 

probability, or the chance that an event will occur given previous knowledge of conditions that may be associated 

to the event, is computed by the Bayes theorem. 

A data point is denoted by a feature vector, x. In this study, we considered a protein fragment, which has the 

residue of interest and an identical immediate adjoining residue in the protein sequence. We estimate the posterior 

probability of the hypothesis, h. The hypothesis is simply a mathematical model that produces output indicating 

whether x is binding or not. In this study, the feature vector, x, indicates the occurrence of amino acids in a specific 

position in a given fragment. Consider the fragment length (the window size) as lw. The feature vector, x is now 

formulated as },,,,,{ 21 wtr xxxxx = , where xtr is the target residue, 2)1( += lwtr  and each amino acid 

residue in the protein fragment at position i  is ),,,2,1( lwtrixi = , and xi is one of the twenty naturally occurring 

amino acids. 

Now, estimate two different probabilities i.e., one for )|( queryxbindinghP =  and 

)|( queryxbindingnonhP −= .These two probabilities are calculated as in (10 and 11), 
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Estimating probabilities is a simple task from a known dataset of fragments, as it is the fraction of occurrence of 

amino acids over set of all known samples given whether the given fragment is binding or not. This is how a 

Naïve Bayes model work. The conditional probabilities are stored in the matrices known as Conditional 

Probability Table (CPT) for each position of amino acids xi. We used a window of size 21 amino acids to generate 

CPT for binding and non-binding residues. Overlapping sequence fragment within and across the groups were 

removed. 

3. Results and Discussion 

3.1 Prediction performance based on local sequence order information with XGB (P2D) 

In this work, the feature vectors (k-mer frequencies using CGR) were generated and trained on Dset233 using 

XGB classifier and results are tabulated in Table 2. To avoid class bias, a random under sampling strategy was 

used during the training process to balance interacting and non-interacting samples, and the experiment was 

repeated three times to check for selection bias, if any. 

In general, for different window size amino acid encoding performed better than reduced amino acid alphabets, 

shown in Table 2. The model was generated using P2D and CGR3 with XGB classifier (window size = 21 amino 

acid) was selected as the best model (the best model had F-measure = 76.3% and MCC = 0.524) for further studies. 

Selected model was then used to predict Dtestset78 and Dtestset17 and chain-wise performance was evaluated 

(refer Table 3, Supplementary Material). For Dtestset78, average sensitivity = 51.2% and precision = 14.2%; and 

for Dtestset17, average sensitivity = 55.2% and precision = 16.1% was achieved. The obtained results suggest that 

single sequence fragment-based feature extraction could be one of the key factors for high false positive rates. 

 

Table 2. Training performance of n-peptide features with XGBoost classifier on Dset233. 

Window size 

(amino acid) 

Performance (FM (%) | MCC; averaged over three repetition) 

CGR2 CGR3 

P2D RA1 RA2 P2D RA1 RA2 

13 63.8 | 0.256 60.3 | 0.224 58.5 | 0.190 71.1 | 0.415 60.3 | 0.223 57.0 | 0.152 

17 60.1 | 0.302 57.8 | 0.179 59.4 | 0.188 72.3 | 0.444 62.3 | 0.238 63.0 | 0.276 

21 61.3 | 0.215 61.5 | 0.231 57.9 | 0.143 76.3 | 0.524 63.9 | 0.268 63.5 | 0.382 

3.2 Exploring the neighboring residues using conditional probabilistic approach (PSPE) 

CPTs for interacting and non-interacting fragments with window size = 21 amino acid were generated based on 

Dset233. Results based on PSPE predictions are tabulated in Table 3 (details in Supplementary Material). For 

Dtestset78, we obtained chain-wise average F-measure = 25.2%, MCC = 0.152 and for Dtestset17, average F-

measure = 25.1%, MCC = 0.124 was obtained. It was observed that, PSPE based prediction performance is better 

than P2D with XGB classifier-based performance. Here we are using sequence local information from multiple 

protein sequences, which could be one of the reasons for better performance. 

 

Table 3. Prediction performance of different approaches on Dtestset78 and Dtestset17. 

Approach Performancea 

SN (%) PR (%) SP (%) AC (%) MCC FM (%) 

Dtestset78 

P2Db 51.2 14.2 61.1 59.9 0.078 20.3 

PSPEc 53.7 18.1 69.6 67.6 0.152 25.2 

ROBBYw21d 65.6 29.2 79.5 77.3 0.315 36.8 

P2D_PSPE 35.9 19.5 80.9 75.8 0.130 22.4 

P2D_ROBBYw21 37.4 30.3 88.5 82.5 0.225 28.3 

 Dtestset17 

P2Db 55.2 16.1 56.2 54.8 0.061 21.7 
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PSPEc 52.3 20.3 66.7 63.4 0.124 25.1 

ROBBYw21d 64.7 30.5 77.6 74.2 0.292 36.9 

P2D_PSPE 37.3 19.1 76.7 69.8 0.091 20.3 

P2D_ROBBYw21 36.7 27.0 86.6 78.3 0.182 26.3 
a Protein chain-wise average performance.  
b Model generated using P2D and CGR3 with XGB classifier (window size = 21 amino acid). 
c Conditional probability-based approach averaged over three repetitions. 
d ROBBY base classifiers for window size = 21 amino acid. 

3.3 Combination predictions: advantage and limitations 

We wanted to check if we could accurately predict enzyme-ligand binding residues solely on the protein surface. 

Since we are using protein sequence as input, we used NetsurfP-2.0 available at 

“http://www.cbs.dtu.dk/services/NetSurfP/” for predicting potential surface residues in our analyzed datasets. 

These results are tabulated in Table 4. The findings suggest that more than 30% interacting residues are buried 

with cut-off pRSA (predicted relative solvent accessibility) < 10% and ~ 50% interacting residues are buried with 

cut-off pRSA < 20% which means we cannot use pRSA as filter for reducing false positive. 

To understand further insights of the chosen feature space, the performance predictions were explored for a 

combination of local information combined with evolutionary information and with probabilistic approach. 

 

Table 4. Distribution of predicted protein surface residues. 

pRSAa (%) Dset233b Dtestset78b Dtestset17b 

00.0 – 10.0 34.1 | 29.0 33.9 | 29.2 30.9 | 27.8 

10.1 – 20.0 21.6 | 13.7 23.0 | 13.7 18.3 | 13.9 

20.1 – 30.0 14.1 | 11.7 15.2 | 11.5 15.2 | 11.4 

30.1 – 40.0 11.1 | 11.2 9.4 | 11.5 14.2 | 11.3 

40.1 – 50.0 8.5 | 11.6 8.6 | 11.2 7.6 | 11.1 

50.1 – 60.0 5.2 | 10.0 5.5 | 10.0 5.8 | 10.2 

60.1 – 70.0 3.1 | 6.9 2.7 | 7.1 5.3 | 8.1 

70.1 – 80.0 1.8 | 4.2 1.5 | 4.1 3.0 | 4.4 

80.1 – 90.0 0.3 | 1.4 0.2 | 1.4 0.7 | 1.8 

90.1 – 100.0 0.0 | 0.2 0.0 | 0.2 0.0 | 0.2 

  a pRSA: predicted relative solvent accessibility. 
    b interacting residues (%) | non-interacting residues (%). 

We investigated the combination strategy to address the amount of non-interacting residues that were wrongly 

predicted as interacting residues (false positive). This experiment was performed to understand the effect of 

combining the outputs of both the predictors i.e., the predictions performed by CGR+XGB predictor (P2D) and 

predictions performed by ROBBYw21 (window size = 21 amino acid) predictor [17], we named it as 

P2D_ROBBYw21. If a targeted residue in an enzyme predicted as interacting by both predictors, then final 

prediction was considered as ‘interacting' otherwise 'non-interacting'. Similarly, a residue in an enzyme was 

considered interacting if and only if both P2D and probabilistic approach (PSPE), i.e., P2D_PSPE, predictors 

predicted as 'interacting' otherwise 'non-interacting’. The results for Dtestset78 and Dtestset17 are summarized in 

the Table 3. 

We compared our methods with reported work [17] as we have utilized the same dataset for our study. The 

reported work has encoded the protein feature vector with PSSM and trained the models with SVM ensemble 

architecture over three sets of balanced datasets and different window size. It is observed that training the models 

based on P2D and PSPE alone do not produce that significant result as the precision obtained for these two 

methods is very low. From the predictive performance of P2D, it is also observed that predicting binding residue 

only with the sequence order information is not sufficient. As a result, we combined the global information with 

the neighboring information surrounding the target residue to enhance the predictive performance of the model. 

It showed that, the combinations of these methods i.e., P2D combined with ROBBYw21 (window size = 21 amino 

acid) i.e., (P2D_ROBBYw21) and P2D combined with PSPE (P2D_PSPE) resulted in a better performance (in- 

detailed results provided in Supplementary Material S5, S6 for P2D_ROBBYw21 and S7, S8 for P2D_PSPE). It 
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was observed that, CGR based predictor when combined with evolutionary feature-based predictor 

(P2D_ROBBYw21) could identify 37.4% binding residues with 30.3% precision, overall accuracy obtained 

82.5%, MCC of 0.225 and F-measure obtained was 28.3% for Dtestset78. However, combined method could not 

identify a single positive binding residue of protein chains 1w9aA, 2c3tA, 3ek6A and 3erfA in Dtestset78 and 

4o4bB in Dtestset17. 

With P2D_PSPE, our method achieved the precision of 35.9%, accuracy of 75.8%, MCC = 0.130 and F-measure 

= 22.4% for Dtestset78. On Dtestset17, the accuracy with which binding residues are predicted is 69.8% with 

19.1% precision, 37.3% recall, 0.091 MCC and 20.3% F-measure. However, our method could not identify a 

single positive binding residue of protein chains 1mmiA, 1opyA, and 2ecrA in Dtestset78 and 4o4bB in 

Dtestset17. The average results are reported in Table 3, Supplementary Material S9 and S10. 

We compared differences in false positives when independent datasets (Dtestset78 and Dtestset17) predicted using 

different approaches (Table 3, Table 5). The obtained results suggest that local information can reduce false 

positives in multiple chains, though one needs to explore appropriate combinations (features and classifiers) to 

predict precise enzyme-ligand binding residues. 

4 Case Study 

For demonstrating and highlighting the advantage of local sequence information-based predictions, we chose two 

enzymes which have therapeutic value shown in Figure. 2 and Figure. 3. 

In Figure. 2c, values of FP and TP for P2D (CGR), PSPE and ROBBYw21 are comparable. P2D_PSPE (CGR + 

PSPE) can reduce FP significantly at the cost of TP. Similarly, in Figure. 3c, PSPE could be able to predict 11 

more TP in comparison with ROBBYw21 but with 5 extra FP. 

 

Table 5. Distribution of differences in false positives when independent datasets (Dtestset78 and Dtestset17) 

predicted using different approachesa. 

Range ∆FP1b ∆FP2c 

-80 to -70 0 1 

-71 to -60 0 2 

-61 to -50 0 0 

-51 to -40 0 1 

-41 to -30 0 4 

-31 to -20 0 5 

-21 to -10 0 9 

-11 to 0 1 21 

1 to 10 22 19 

11 to 20 25 9 

21 to 30 22 8 

31 to 40 7 10 

41 to 50 7 1 

51 to 60 6 3 

61 to 70 3 1 

71 to 80 2 1 
a As described in Table 3 
b ∆FP1: <number of FP in ROBBYw21> - <number of FP in ROBBYw21 + CGR> 
c ∆FP2: <number of FP in ROBBYw21> - <number of FP in CGR + PSPE> 
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Figure. 2 The biotin carboxylase (BC) domain of human Acetyl-CoA Carboxylase 2 (AAC2, PDB ID: 3GLK 

chain A). (a) Ribbon representation of the BC domain of AAC2, colored as blue (N-terminal) to red (C-terminal). 

Figure was generated using PyMOL available at https://pymol.org. (b) Sequence of BC domain experimentally 

observed interacting residues are highlighted in bold and capital letters. (c) Prediction performances by different 

approaches (for details read main text). 

 

 
Figure. 3 Human Caspase 3 (PDB ID: 4DCJ chain A). (a) Ribbon representation of human Caspase 3, colored 

chain-wise. Figure was generated using PyMOL available at https://pymol.org. (b) Sequence of caspase 3, 

experimentally observed interacting residues are highlighted in bold and capital letters. (c) Prediction 

performances by different approaches (for details read main text). 

5 Conclusion 

Enzyme ligand complexes data is growing rapidly over time and so also their importance in the drug discovery 

process. Various computational techniques have been utilized to identify their interaction mechanism ranging 

from similarity-based to de novo methods. Binding site identification and prediction using mere protein sequence 

information is a challenging task since existing methods may be relying on certain assumptions which may not be 

true for the vast family of enzymes. In this study, we have demonstrated the impact of sequence local information 

for predicting enzyme-ligand binding residue prediction. Our findings suggest that the combination of sequence 

order information along with evolutionary information can be useful to identify binding residues precisely. We 

hope our observations could facilitate the researchers to investigate more into enzyme-ligand interaction and drug 

discovery. 
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