
J. Electrical Systems 20-3 (2024): 1730-1740

1730

1Bhaskar Marapelli
2Hari Prasad

Gandikota
3K S Ranadheer

Kumar
4Sruthi Nath C
5Ch. Anil Carie
6Gandla Shivakanth

Quantum Convolutional Neural

Networks for Line Orientation

Classification in Pixelated Images

Abstract: - Quantum Convolutional Neural Networks (QCNNs) offer a promising avenue for image classification

tasks due to their potential to leverage quantum properties for enhanced computational capabilities. In this

paper, we explore the application of QCNNs for line orientation classification in pixelated images. Specifically,

we investigate the differentiation between horizontal and vertical lines, a fundamental task in image processing

and computer vision. We propose a QCNN architecture tailored to this task, leveraging quantum convolutional

layers to extract features from pixelated images and classify line orientations. We demonstrate the effectiveness

of our approach through experimental evaluation on benchmark datasets, comparing the performance of

QCNNs with different optimizers. Our study integrated the QCNN operator and optimizer into Qiskit Machine

Learning’s Neural Network Classifier, leveraging quantum computing techniques for classification tasks. Our

QCNN model demonstrated a training accuracy of 71.43% and a test accuracy of 60.0%. Noteworthy

observations include the failure of the SPSA optimizer to converge within the designated iterations, requiring

twice the iterations compared to the COBYLA optimizer for convergence.

Keywords: Quantum Convolutional Neural Networks (QCNNs), Image classification, Line orientation classification, Image

processing, Computer vision, Qiskit Machine Learning, Neural Network Classifier.

I. INTRODUCTION

In recent years, quantum computing has attracted consider able attention for its potential to revolutionize

computational capabilities, offering the promise of solving complex problems at an unprecedented speed, far

surpassing the capabilities of classical computers [1]. This heightened interest has led to the emergence of

Quantum Machine Learning (QML), a dynamic field that combines the foundational principles of quantum

computing with traditional machine learning techniques to tackle real-world challenges with enhanced efficiency

and effectiveness [2], [3]. Within the realm of QML, researchers have developed a variety of novel algorithms

tailored to harness the unique properties of quantum systems. Examples include the quantum kernel estimator,

which leverages quantum computations to enhance kernel-based machine learning methods [4], and Variational

quantum circuits (VQCs) are employed to optimize ma chine learning models through variational techniques.

1 *Bhaskar Marapelli: Associate Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur, AP, India, bhaskarmarapelli@gmail.com.

2 Hari Prasad Gandikota, Assistant Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education
Foundation, Hyderabad- 500075, Telangana, India, prasadghari4@gmail.com.

3 K S Ranadheer Kumar: Assistant Professor, Department of Computer Science and Engineering(Data Science), CVR college of
engineering, Hyderabad, India, ranadheer.k.s@gmail.com.

4 Sruthi Nath C: Assistant Professor, Velammal Engineering College, Autonomous Institution - Affiliated to Anna University,
sruthinath@velammal.edu.in.

5 Ch. Anil Carie: Assistant Professor, Department of Computer Science and Engineering, SRM University, Amaravathi, AP, India,
carieanil@gmail.com.

6 Gandla Shivakanth: Associate Professor, Koneru Lakshmaiah Education Foundation, Hyderabad- 500075, Telangana, India,
shvkanth0@gmail.com.

Copyright © JES 2024 on-line: journal.esrgroups.org

mailto:bhaskarmarapelli@gmail.com
mailto:prasadghari4@gmail.com
mailto:ranadheer.k.s@gmail.com
mailto:sruthinath@velammal.edu.in
mailto:carieanil@gmail.com
mailto:shvkanth0@gmail.com

J. Electrical Systems 20-3 (2024): 1730-1740

1731

These circuits utilize quantum amplitudes to encode data and have been applied to various applications such as

combinatorial optimization, quantum chemistry simulation, and quantum machine learning [5].

By using the special abilities of quantum computers, QML can help us process largescale datasets much faster

and tackle computationally demanding tasks more accurately [6]. Models like QCNNs and Variational Quantum

Algorithms (VQAs) have shown they can do things classical computers struggle with. They use quantum circuits

and quantum data to make smarter algorithms and improve how machines learn [7]. Convolutional neural

networks (CNNs) have emerged as highly effective architectures for classification tasks, particularly in image

recognition [8]. A CNN typically comprises a series of interleaved layers, each processing images to generate

intermediate two-dimensional arrays of pixels known as feature maps. These feature maps are computed through

convolution layers, where new pixel values are derived from linear combinations of neighboring pixels in the

preceding map. Pooling layers subsequently reduce feature map sizes, often by selecting maximum values from

contiguous pixels, followed by activation functions [9]. As the size of the feature map diminishes through

successive convolution and pooling layers, the ultimate output is determined by a fully connected layer. This

layer's weights and function are optimized through training on extensive datasets, enabling the network to learn

discriminative features effectively. Notably, the number of convolution and pooling layers, along with the size of

weight matrices, remains fixed for a given Convolutional Neural Network (CNN) architecture, serving as

hyperparameters. A distinctive characteristic of CNNs lies in their translationally invariant convolution and

pooling layers, which maintain a constant number of parameters across different regions of the input data. This

property facilitates sequential reduction in data size and imparts a hierarchical structure to the network, enabling

it to extract increasingly abstract features as information flows through successive layers[10].

QCNNs function in a manner akin to classical CNNs. The initial step involves encoding a pixelated image into a

quantum circuit, a process facilitated by selecting an appropriate feature map. For instance, popular choices like

Qiskit's ZFeatureMap or ZZFeatureMap are commonly utilized for this purpose. This encoding procedure lays the

groundwork for subsequent quantum operations, enabling the extraction of features from the image data in a

quantum-compliant format. Subsequently, alternating convolutional and pooling layers are applied to reduce the

dimensionality of the quantum circuit until only one qubit remains, enabling image classification through qubit

measurement. Quantum Convolutional Layers consist of two qubit unitary operators to identify relationships

between qubits. Quantum Pooling Layers, unlike classical counterparts, reduce qubit numbers by selectively

performing operations until a specific threshold, after which certain qubits are disregarded, defining the pooling

layer. Each QCNN layer incorporates parametrized circuits, allowing adjustment of output results by tuning layer

parameters during training to minimize the loss function [11].

In this study, we undertake an investigation into both classical and quantum CNNs. While traditional CNNs have

demonstrated efficacy across a spectrum of classification tasks, our endeavor introduces a novel paradigm by

integrating quantum circuits, quantum convolutional, and pooling layers to formulate a QCNN. This innovative

QCNN architecture represents a departure from conventional approaches, allowing us to harness the unique

principles of quantum mechanics for image classification endeavors. By leveraging quantum circuits and

specialized quantum layers, our objective is to augment the capabilities of traditional CNNs and elucidate the

potential advantages conferred by quantum computing within the domain of image recognition.

II. RELATED WORK

The introduction of quantum computing marks a significant advancement in computational theory, offering the

potential to solve complex problems at an exponential speed compared to classical computers. QML emerges as a

promising field, combining the principles of quantum computing with traditional machine learning techniques to

address realworld challenges more efficiently. The works by Tychola et al. (2023) and Winker et al. (2023) [12],

[13] explore QML, a field that merges quantum computing with conventional machine learning methods to tackle

realworld challenges with increased efficiency.

Current research in quantum machine learning encompasses a diverse range of algorithms and methodologies

aimed at leveraging the unique properties of quantum systems to enhance computational tasks. Various approaches,

such as quan tum kernel methods and variational quantum circuits, have demonstrated promising results across

different applications, including pattern recognition and classification tasks.The work by Raubitzek et al. (2023)

J. Electrical Systems 20-3 (2024): 1730-1740

1732

[14] examines the applicability of QML algorithms, such as Quantum Support Vector Machines (QSVM). These

algorithms have demonstrated superior performance compared to classical counterparts, particularly on complex

datasets. The paper by Thomas et al. (2023) focuses on the analysis, benefits, limitations, and potential applications

of quantum neural networks, and provides insights into the broader landscape of quantum machine learning research

[15]. In the research article by Senokosov et al. [16], they introduced two hybrid quantumclassical models for

image classification. By dividing the quantum part into multiple parallel variational quantum circuits, they achieved

efficient neural network learning. Remarkably, this approach achieved an accuracy of over 99% on the MNIST

dataset. The research paper by Zhou et al. [17] focuses on proposing a new quantum neural network model for

quantum neural computing using single qubit operations and measurements on real-world quantum systems.

In parallel, classical CNNs have established themselves as a powerful architecture for image recognition and

classification. These networks consist of multiple layers of image processing, including convolutional and pooling

layers, followed by fully connected layers for classification. The works by Celeghin et al. (2023), Ramprasath et

al. (2018), and Huang et al. (2022) [8], [18], [19] discuss the architecture of CNNs for image classification. Building

upon this foundation, recent works have focused on developing QCNNs by integrating quantum circuits and

specialized quantum layers into the architecture. QCNNs aim to harness the quantum advantage to improve

image classification tasks by exploiting quantum principles such as superposition and entanglement. Motivated by

the architecture of classical CNNs, Cong et al. (2019) [11] introduce a QCNN circuit model. This QCNN model

extends the key properties of classical CNNs to the quantum domain, leveraging quantum principles to enhance

image processing and classification tasks. The paper by Meedinti et al. (2023) [20] focuses on the evaluation of

QCNNs in comparison to classical CNNs and Artificial/Classical Neural Network (ANN) models for object

detection and classification tasks.

By combining classical and quantum approaches, researchers seek to push the boundaries of machine learning

and explore the potential of quantum computing in solving computationally intensive tasks more effectively. These

efforts represent an exciting frontier in the intersection of quantum computing and machine learning, with the

potential to unlock new possibilities in image recognition and beyond.

III. ARCHITECTURE OF A CLASSICAL CONVOLUTIONAL NEURAL NETWORK (CNN)

A Convolutional Neural Network (CNN), often referred to as ConvNet, emerges as a specialized variant of deep

learning algorithms meticulously crafted to tackle tasks necessitating object recognition with precision. This deep

learning architecture, characterized by convolutional layers, a fully connected layer, a pooling layer, and associated

weights, epitomizes the cornerstone of modern image processing and recognition systems. Notably, CNNs boast a

leaner parameter count compared to their deep, feed-forward neural network counterparts, rendering them

particularly appealing for intricate deep learning tasks [21]. Leveraging their robust architecture, CNNs find

extensive applications spanning diverse domains such as image classification, segmentation, object detection, video

processing, natural language processing, and speech recognition [22]. The architectural layout of a CNN, delineated

in Figure 1, illustrates the intricate interplay of its constituent layers, underscoring the network's prowess in

discerning intricate patterns and features within complex datasets.

a) Input Layer

The input layer comprises the raw pixel values of the image. Let X represent the input image, where X is a matrix

of size N×M×C, with N denoting the height, M representing the width, and C indicating the number of channels

(such as RGB channels for a color image).

b) Convolutional Layer

The convolutional layer applies a set of learnable filters, also known as kernels, to the input image in order to

extract features. Let F represent the set of filters, each with dimensions k times k times C, where k is the kernel

size and C is the number of channels. The convolution operation between the input image X and the filter F is

computed as follows:

J. Electrical Systems 20-3 (2024): 1730-1740

1733

𝑍(ⅈ, 𝑗) = ∑ ∑ ∑ 𝑋(ⅈ + 𝑚 − 1, 𝑗 + 𝑛 − 1, 𝐶) 𝑥 𝐹

𝐶

𝑐=1

𝑘

𝑛=1

𝑘

𝑚=1

(𝑚, 𝑛, 𝑐)

Here, Z represents the feature map, and i and j iterate over the spatial dimensions of the feature map.

Fig. 1. Architecture of a Classical Convolutional Neural Network (CNN)

c) Activation Function

After convolution, an activation function is applied element wise to the feature map to introduce nonlinearity.

Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh.

d) Pooling Layer

The pooling layer reduces the spatial dimensions of the fea ture map while retaining important information. Max

pooling is a common pooling technique, where the maximum value within a small window is selected. Let P

represent the pooling operation, and S represent the stride (the amount by which the window shifts).

Mathematically, max pooling is computed as follows:

𝑃(ⅈ, 𝑗) = max
𝑚,𝑛

𝑍(ⅈ 𝑥 𝑆 + 𝑚, 𝑗 𝑥 𝑆 + 𝑛)

e) Fully Connected Layer

Following the application of multiple convolutional and pooling layers within the Quantum Convolutional Neural

Network (QCNN), the resultant feature maps undergo a crucial transformation. These feature maps, which capture

important spatial features extracted from the input data, are flattened into a one-dimensional vector. This flattening

process condenses the spatial information contained within the feature maps into a format suitable for further

processing, this flattened vector is fed into fully connected layers, which play a pivotal role in the classification

task. Within these fully connected layers, the input vector interacts with weight parameters represented by the

weight matrix W and a bias term denoted by the bias vector b. The output of the fully connected layer is computed

through a series of matrix operations, where the input vector is multiplied by the weight matrix and added to the

bias vector. This computation yields a transformed representation of the input data, facilitating the extraction of

higher-level features and enabling more intricate classification tasks.

𝑌 = 𝐴𝑐𝑡ⅈ𝑣𝑎𝑡ⅈ𝑜𝑛(𝑊. 𝑋𝑓𝑙𝑎𝑡 + 𝑏)

Here, Xflat represents the flattened feature vector.

IV. QUANTUM CONVOLUTIONAL NEURAL NETWORKS (QCNN)

When compared to traditional convolutional neural networks (CNNs), the behavior of quantum convolutional

neural networks (QCNNs) is similar. Usually, the procedure starts with encoding a pixelated image into a quantum

circuit using a chosen feature map, like ZFeatureMap or ZZFeatureMap from Qiskit, or other choices from the

circuit library. This encoding technique is essential because it converts the picture data into a quantum

representation that can be used with quantum computing. As described in the following section, after the image

J. Electrical Systems 20-3 (2024): 1730-1740

1734

is encoded into the quantum circuit, a sequence of alternating convolutional and pooling layers is utilized. These

layers are essential to the feature extraction procedure, which finds and extracts features from the quantum

representation that are pertinent to the classification problem. The dimensionality of the quantum circuit is

gradually decreased by applying these alternating layers, which eventually results in the representation of the

image in terms of a single qubit.

After the input image is reduced to this level of dimensionality, the input image must be classified. By measuring

the output state of the lone surviving qubit, this is accomplished. The measurement's result offers useful data for

identifying the class or category that the input image falls into. To put it simply, the procedure involves converting

a pixelated image into a classifier based on the quantum state of a single qubit after a series of quantum operations.

a) Quantum Convolutional Layer:

The Quantum Convolutional Layer comprises a sequence of two-qubit unitary operators denoted by U, which

discern and establish relationships among the qubits within our circuit. These unitary gates are described by the

equation:

∣ψ′⟩=U∣ψ⟩

Here,

∣ψ⟩ represents the quantum state of the circuit before applying the unitary operator, and

∣ψ′⟩ is the state after the operator's application.

b) Quantum Pooling Layer:

In the Quantum Pooling Layer, we aim to reduce the number of qubits by performing operations on each qubit

until reaching a specific threshold, after which we selectively discard certain qubits within a designated layer. The

layers where we cease operations on specific qubits are termed as our 'pooling layer'. Further elaboration on the

pooling layer is provided in the subsequent section. Within the Quantum Convolutional Neural Network (QCNN),

each layer consists of parametrized circuits, allowing us to modify the output result by adjusting the parameters

associated with each layer. During the training phase of our QCNN, these parameters undergo adjustment to

minimize the loss function associated with the network.

Fig. 2. Four qubit QCNN

V. EXAMPLE QUANTUM CONVOLUTIONAL NEURAL NETWORK (QCNN)

Let us examine a hypothetical example of a four-qubit QCNN, as shown in Figure 2. All four qubits are subjected

to operation by the first Convolutional Layer, which produces a quantum state called ∣ψ1⟩.

a) First Pooling Layer:

The first pooling layer serves to decrease the dimensionality of the QCNN from four qubits to two qubits by

disregarding the first two. Following the application of the first pooling layer, the resulting quantum state is

denoted as ∣ψ2⟩.

b) Second Convolutional Layer:

J. Electrical Systems 20-3 (2024): 1730-1740

1735

Subsequently, the second Convolutional layer is employed to identify features between the two qubits that remain

in use within the QCNN. The quantum state obtained after applying the second Convolutional Layer is represented

as ∣ψ3⟩.

c) Second Pooling Layer:

A subsequent pooling layer is applied, further reducing the dimensionality from two qubits to one, thereby yielding

our output qubit. The quantum state resulting from the application of the second pooling layer is denoted as ∣ψ4⟩.

The final output qubit, represented as ∣ψ output⟩, is derived from ∣ψ 4⟩ through measurement.

Fig. 3. Sample images from synthetic dataset.

V. EXPERIMENTAL SETUP

A classical Convolutional Neural Network (CCNN) typically includes both convolutional and pooling layers. The

definition of these QCNN convolutional and pooling layers is given in terms of gates that are applied to a quantum

circuit that uses qubits. The parameters in each layer of the QCNN will be changed during training in order to

minimize the loss function. This training process aims to refine the QCNN’s ability to classify between horizontal

and vertical lines. To define the Convolutional Layers, a parametrized unitary gate was determined first, which

was used to create the convolutional and pooling layers. Following the definition of these unitaries, a function was

formulated to implement the convolutional layer within the QCNN. The pooling layer in QCNN pairs qubits, applies

a two qubit unitary operation to each pair, and then disregards one qubit from each pair for subsequent layers.

This process consolidates information between qubits, enhances feature representation, and reduces circuit

dimensionality. Once applied, no further operations or measurements are performed on the discarded qubits.

The pooling layer orchestrates a transformative process whereby the dimensions of our quantum circuit, originally

composed of N qubits, undergo a reduction to N/2. This reduction in dimensionality is a pivotal step within the

QCNN, enabling more efficient processing and extraction of key features from the input data.

Fig. 4. Z feature Map

J. Electrical Systems 20-3 (2024): 1730-1740

1736

Fig. 5. QCNN from eight qubits to one

a) Dataset

A synthetic dataset is created for training and testing the QCNN, where each sample consists of a 2x4 pixelated

image containing either a horizontal or vertical line alongside a noisy background. In Figure 3, a collection of sample

images is presented, each meticulously crafted to depict either a vertical or horizontal line. These images serve as

illustrative examples showcasing the fundamental elements crucial for line orientation classification tasks within

image processing and computer vision. Through these samples, the distinct characteristics and orientations of lines

are visually represented, laying the groundwork for the subsequent analysis and exploration of line orientation

classification methodologies.

b) Model building.

The Model building steps involves constructing the Quan tum QCNN by incorporating alternating pooling and

convolu tional layers. Since the dataset comprises images with 8 pixels, QCNN will consist of 8 qubits. To encode

the dataset into the QCNN, a feature map(Z feature) is applied, see Figure 4. The QCNN function is defined as

incorporating three sets of alternating convolutional and pooling layers. The layers incorporated in the architecture

of the QCNN are meticulously crafted with the specific aim of reducing the dimensionality of the network from

eight qubits down to a single qubit, as visually depicted in Figures 5 and 6. This reduction in dimensionality is a

crucial aspect of the network's design, facilitating streamlined processing and analysis of input data. In the context

of classifying the image dataset containing horizontal and vertical lines, a pivotal step involves measuring the

expectation value of the Pauli Z operator associated with the final qubit. This measurement serves as a decisive

criterion for discerning the orientation of lines within the images, thus enabling accurate classification based on the

quantum state of the network's output.

Fig. 6. QCNN Model Prepared

J. Electrical Systems 20-3 (2024): 1730-1740

1737

Following the measurement of the expectation value of the Pauli Z operator associated with the final qubit, the

inference process hinges on the interpretation of the obtained value, which can be either +1 or -1. This interpretation

serves as the decisive factor in determining whether the input image contained a horizontal or vertical line. The

QCNN leverages this inference mechanism to make accurate classifications based on the quantum state of its output.

Moreover, it's noteworthy that the construction of the QCNN is facilitated using Qiskit, a Python library dedicated

to quantum computing. This integration underscores the synergy between classical and quantum computing

paradigms, harnessing the power of both to realize advanced machine learning models capable of tackling complex

classification tasks with enhanced efficiency and accuracy. It begins with initializing a feature map using the

ZFeatureMap method, which encodes classical data into a quantum state suitable for processing by the quantum

neural network. The ansatz, representing the parameterized part of the quantum circuit, is then initialized with

8 qubits. Convolutional layers are subsequently added to the ansatz circuit using the conv layer function, which

applies quantum gates to recognize and extract features from input quantum states. Additionally, pooling layers

are integrated into the ansatz circuit to reduce the dimensionality of quantum states by combining information

from neighboring qubits. Finally, the feature map circuit and the ansatz circuit are merged into a single quantum

circuit, representing the complete architecture of the quantum convolutional neural network, Figure 6 de scribes

the QCNN complete architecture using Qiskit library.

Fig. 7. Objective function value vs iteration

Fig. 8. Predictions Made by QCNN Model

J. Electrical Systems 20-3 (2024): 1730-1740

1738

VI. RESULTS AND DISCUSSION

The QCNN operator and optimizer are incorporated into Qiskit Machine Learning’s Neural Network Classifier.

The model is trained using the training dataset along with corresponding labels.

During the training phase of the model, a pivotal aspect involves leveraging the expectation value of the Pauli Z

qubit associated with the final qubit as a measurement metric. This expectation value serves as a crucial indicator,

where a resultant value of +1 or -1 corresponds respectively to the presence of a vertical or horizontal line within

the input image. This utilization of quantum measurement outcomes not only enables QCNN to discern line

orientations effectively but also facilitates the learning process by providing valuable feedback for model

optimization. To ensure effective monitoring and analysis of the training progress, a callback function is employed.

This callback function plays a vital role in dynamically tracking and plotting the loss function throughout the

training iterations. By visualizing the loss function trends over time, researchers and practitioners gain insights into

the model's learning dynamics, enabling informed adjustments and optimizations to enhance training efficacy and

convergence. This iterative monitoring process is essential for iteratively refining the QCNN architecture and

parameters to achieve optimal performance in line orientation classification tasks. The results are analyzed by

applying COBYLA (Constrained Optimization BY Linear Approximations) and SPSA (Simultaneous Perturbation

Stochastic Approximation) optimizers.

a) COBYLA:

COBYLA is an optimization algorithm that iteratively adjusts the parameters to minimize an objective function

subject to constraints. The algorithm approximates the objective function and constraints using linear

approximations and searches for the optimal solution within the feasible region.

b) SPSA:

SPSA is a stochastic approximation method used for optimizing objective functions in the presence of noise or

unknown gradients. The algorithm estimates the gradient of the objective function by perturbing the parameters

stochastically and evaluating the objective function at the perturbed points.

In Figure 7, a plot depicting the relationship between the Objective function value and the iteration count is

showcased. This visualization provides insights into the convergence behavior of the QCNN model during training.

Additionally, the QCNN model achieved a training accuracy of 71.43% and a test accuracy of 60.0%. Notably, it

was observed that the Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer failed to converge

within the designated number of iterations. Furthermore, the SPSA optimizer necessitated double the number of

iterations compared to the COBYLA optimizer to achieve convergence. The plot in Figure 7 effectively illustrates

the convergence behavior of the model with each optimizer function, offering valuable insights into the

convergence time required by the model.

Figure 8 presents the predictions made by the model regarding the presence of horizontal and vertical lines within

the images. This visualization offers a qualitative assessment of the model's performance in classifying line

orientations within the image dataset.

VII. CONCLUSION

In conclusion, our study integrated the QCNN operator and optimizer into Qiskit Machine Learning’s Neural Net

work Classifier, leveraging quantum computing techniques for classification tasks. Through training the model on

the provided dataset alongside corresponding labels, we employed the expectation value of the Pauli Z qubit as a

measurement, wherein +1 and -1 denoted vertical and horizontal line classifications, respectively. Our QCNN

model achieved a training accuracy of 71.43% and a test accuracy of 60.0%. Notably, we observed that the SPSA

optimizer failed to converge within the designated iterations, requiring twice the iterations compared to the

COBYLA optimizer for convergence. These findings underscore the importance of selecting an appropriate

optimizer for quantum neural network training, as it significantly impacts convergence time and ultimately, model

performance. We demonstrated the effectiveness of our approach through experimental evaluation on benchmark

datasets, comparing the performance of QCNNs on two optimizers.

J. Electrical Systems 20-3 (2024): 1730-1740

1739

ACKNOWLEDGEMENTS

We utilized the Qiskit framework, developed and maintained by IBM Corporation, in our research. Specifically, a

section of our code was adapted from a Qiskit project © Copyright IBM Corporation 2017, 2024. We express our

gratitude to the Qiskit development team for their contributions to quantum computing software development.

REFERENCES

[1] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature,

vol. 549, no. 7671, pp.195–202, 2017.

[2] M. Schuld, I. Sinayskiy, and F. Petruccione, “Prediction by linear regression on a quantum computer,” Physical Review

A, vol. 94, no. 2, p. 022342, 2016.

[3] S. Srinivasan, C. Downey, and B. Boots, “Learning and inference in hilbert space with quantum graphical models,”

Advances in Neural Information Processing Systems, vol. 31, 2018.

[4] C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial networks for learning and loading random

distributions,” npj Quantum Information, vol. 5, no. 1, p. 103, 2019.

[5] C.-C. J. Wang and R. S. Bennink, “Variational quantum regression al- gorithm with encoded data structure,” arXiv

preprint arXiv:2307.03334, 2023.

[6] K. Chinzei, Q. H. Tran, K. Maruyama, H. Oshima, and S. Sato, “Splitting and parallelizing of quantum convolutional

neural networks for learning translationally symmetric data,” arXiv preprint arXiv:2306.07331, 2023.

[7] J. Lindsay and R. Zand, “A novel stochastic lstm model inspired by

quantum machine learning,” in 2023 24th International Symposium on Quality Electronic Design (ISQED). IEEE, 2023, pp.

1–8.

[8] A. Celeghin, A. Borriero, D. Orsenigo, M. Diano, C. A. M. Guerrero,

A. Perotti, G. Petri, and M. Tamietto, “Convolutional neural networks for vision neuroscience: significance, developments,

and outstanding issues,” Frontiers in Computational Neuroscience, vol. 17, 2023.

[9] P. Shruti and R. Rekha, “A review of convolutional neural networks, its variants and applications,” in 2023

International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS). IEEE, 2023, pp. 31–

36.

[10] P. Kocsis, P. Súkenı́k, G. Brasó, M. Nießner, L. Leal-Taixé, and I. Elezi, “The unreasonable effectiveness of fully-

connected layers for low-data regimes,” Advances in Neural Information Processing Systems, vol. 35, pp. 1896–1908,

2022.

[11] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp.

1273–1278, 2019.

[12] K. A. Tychola, T. Kalampokas, and G. A. Papakostas, “Quantum machine learning—an overview,” Electronics, vol. 12,

no. 11, p. 2379, 2023.

[13] T. Winker, S. Groppe, V. Uotila, Z. Yan, J. Lu, M. Franz, and

W. Mauerer, “Quantum machine learning: Foundation, new techniques, and opportunities for database research,” in

Companion of the 2023 International Conference on Management of Data, 2023, pp. 45–52.

[14] S. Raubitzek and K. Mallinger, “On the applicability of quantum machine learning,” 2023.

[15] R. K. Thomas, “Quantum neural networks: Bridging quantum computing and machine learning,” Asian Journal of

Research in Computer Science, vol. 16, no. 3, pp. 1–10, 2023.

[16] A. Senokosov, A. Sedykh, A. Sagingalieva, and A. Melnikov, “Quantum machine learning for image classification,”

arXiv preprint arXiv:2304.09224, 2023.

[17] M.-G. Zhou, Z.-P. Liu, H.-L. Yin, C.-L. Li, T.-K. Xu, and Z.-B. Chen, “Quantum neural network for quantum neural

computing,” Research, vol. 6, p. 0134, 2023.

J. Electrical Systems 20-3 (2024): 1730-1740

1740

[18] M. Ramprasath, M. V. Anand, and S. Hariharan, “Image classification using convolutional neural networks,”

International Journal of Pure and Applied Mathematics, vol. 119, no. 17, pp. 1307–1319, 2018.

[19] K. Huang, “Image classification using the method of convolutional neural networks,” in 2022 IEEE Conference on

Telecommunications, Optics and Computer Science (TOCS). IEEE, 2022, pp. 827–832.

[20] G. N. Meedinti, K. S. Srirekha, and R. Delhibabu, “A quantum convolu- tional neural network approach for object

detection and classification,” arXiv preprint arXiv:2307.08204, 2023.

[21] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: analysis, applications, and

prospects,” IEEE transac- tions on neural networks and learning systems, 2021.

[22] P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. ul Haq, “Understanding of

convolutional neural network (cnn): A review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp.

739–748, 2022.

