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Abstract: - Quantum Convolutional Neural Networks (QCNNs) offer a promising avenue for image classification 

tasks due to their potential to leverage quantum properties for enhanced computational capabilities. In this 

paper, we explore the application of QCNNs for line orientation classification in pixelated images. Specifically, 

we investigate the differentiation between horizontal and vertical lines, a fundamental task in image processing 

and computer vision. We propose a QCNN architecture tailored to this task, leveraging quantum convolutional 

layers to extract features from pixelated images and classify line orientations. We demonstrate the effectiveness 

of our approach through experimental evaluation on benchmark datasets, comparing the performance of 

QCNNs with different optimizers. Our study integrated the QCNN operator and optimizer into Qiskit Machine 

Learning’s Neural Network Classifier, leveraging quantum computing techniques for classification tasks. Our 

QCNN model demonstrated a training accuracy of 71.43% and a test accuracy of 60.0%. Noteworthy 

observations include the failure of the SPSA optimizer to converge within the designated iterations, requiring 

twice the iterations compared to the COBYLA optimizer for convergence. 

Keywords: Quantum Convolutional Neural Networks (QCNNs), Image classification, Line orientation classification, Image 

processing, Computer vision, Qiskit Machine Learning, Neural Network Classifier. 

I. INTRODUCTION 

In recent years, quantum computing has attracted consider able attention for its potential to revolutionize 

computational capabilities, offering the promise of solving complex problems at an unprecedented speed, far 

surpassing the capabilities of classical computers [1]. This heightened interest has led to the emergence of 

Quantum Machine Learning (QML), a dynamic field that combines the foundational principles of quantum 

computing with traditional machine learning techniques to tackle real-world challenges with enhanced efficiency 

and effectiveness [2], [3]. Within the realm of QML, researchers have developed a variety of novel algorithms 

tailored to harness the unique properties of quantum systems. Examples include the quantum kernel estimator, 

which leverages quantum computations to enhance kernel-based machine learning methods [4], and Variational 

quantum circuits (VQCs) are employed to optimize ma chine learning models through variational techniques. 
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These circuits utilize quantum amplitudes to encode data and have been applied to various applications such as 

combinatorial optimization, quantum chemistry simulation, and quantum machine learning [5]. 

By using the special abilities of quantum computers, QML can help us process largescale datasets much faster 

and tackle computationally demanding tasks more accurately [6]. Models like QCNNs and Variational Quantum 

Algorithms (VQAs) have shown they can do things classical computers struggle with. They use quantum circuits 

and quantum data to make smarter algorithms and improve how machines learn [7]. Convolutional neural 

networks (CNNs) have emerged as highly effective architectures for classification tasks, particularly in image 

recognition [8]. A CNN typically comprises a series of interleaved layers, each processing images to generate 

intermediate two-dimensional arrays of pixels known as feature maps. These feature maps are computed through 

convolution layers, where new pixel values are derived from linear combinations of neighboring pixels in the 

preceding map. Pooling layers subsequently reduce feature map sizes, often by selecting maximum values from 

contiguous pixels, followed by activation functions [9]. As the size of the feature map diminishes through 

successive convolution and pooling layers, the ultimate output is determined by a fully connected layer. This 

layer's weights and function are optimized through training on extensive datasets, enabling the network to learn 

discriminative features effectively. Notably, the number of convolution and pooling layers, along with the size of 

weight matrices, remains fixed for a given Convolutional Neural Network (CNN) architecture, serving as 

hyperparameters. A distinctive characteristic of CNNs lies in their translationally invariant convolution and 

pooling layers, which maintain a constant number of parameters across different regions of the input data. This 

property facilitates sequential reduction in data size and imparts a hierarchical structure to the network, enabling 

it to extract increasingly abstract features as information flows through successive layers[10]. 

QCNNs function in a manner akin to classical CNNs. The initial step involves encoding a pixelated image into a 

quantum circuit, a process facilitated by selecting an appropriate feature map. For instance, popular choices like 

Qiskit's ZFeatureMap or ZZFeatureMap are commonly utilized for this purpose. This encoding procedure lays the 

groundwork for subsequent quantum operations, enabling the extraction of features from the image data in a 

quantum-compliant format. Subsequently, alternating convolutional and pooling layers are applied to reduce the 

dimensionality of the quantum circuit until only one qubit remains, enabling image classification through qubit 

measurement. Quantum Convolutional Layers consist of two qubit unitary operators to identify relationships 

between qubits. Quantum Pooling Layers, unlike classical counterparts, reduce qubit numbers by selectively 

performing operations until a specific threshold, after which certain qubits are disregarded, defining the pooling 

layer. Each QCNN layer incorporates parametrized circuits, allowing adjustment of output results by tuning layer 

parameters during training to minimize the loss function [11]. 

In this study, we undertake an investigation into both classical and quantum CNNs. While traditional CNNs have 

demonstrated efficacy across a spectrum of classification tasks, our endeavor introduces a novel paradigm by 

integrating quantum circuits, quantum convolutional, and pooling layers to formulate a QCNN. This innovative 

QCNN architecture represents a departure from conventional approaches, allowing us to harness the unique 

principles of quantum mechanics for image classification endeavors. By leveraging quantum circuits and 

specialized quantum layers, our objective is to augment the capabilities of traditional CNNs and elucidate the 

potential advantages conferred by quantum computing within the domain of image recognition. 

II. RELATED WORK 

The introduction of quantum computing marks a significant advancement in computational theory, offering the 

potential to solve complex problems at an exponential speed compared to classical computers. QML emerges as a 

promising field, combining the principles of quantum computing with traditional machine learning techniques to 

address realworld challenges more efficiently. The works by Tychola et al. (2023) and Winker et al. (2023) [12], 

[13] explore QML, a field that merges quantum computing with conventional machine learning methods to tackle 

realworld challenges with increased efficiency. 

Current research in quantum machine learning encompasses a diverse range of algorithms and methodologies 

aimed at leveraging the unique properties of quantum systems to enhance computational tasks. Various approaches, 

such as quan tum kernel methods and variational quantum circuits, have demonstrated promising results across 

different applications, including pattern recognition and classification tasks.The work by Raubitzek et al. (2023) 
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[14] examines the applicability of QML algorithms, such as Quantum Support Vector Machines (QSVM). These 

algorithms have demonstrated superior performance compared to classical counterparts, particularly on complex 

datasets. The paper by Thomas et al. (2023) focuses on the analysis, benefits, limitations, and potential applications 

of quantum neural networks, and provides insights into the broader landscape of quantum machine learning research 

[15]. In the research article by Senokosov et al. [16], they introduced two hybrid quantumclassical models for 

image classification. By dividing the quantum part into multiple parallel variational quantum circuits, they achieved 

efficient neural network learning. Remarkably, this approach achieved an accuracy of over 99% on the MNIST 

dataset. The research paper by Zhou et al. [17] focuses on proposing a new quantum neural network model for 

quantum neural computing using single qubit operations and measurements on real-world            quantum systems. 

In parallel, classical CNNs have established themselves as a powerful architecture for image recognition and 

classification. These networks consist of multiple layers of image processing, including convolutional and pooling 

layers, followed by fully connected layers for classification. The works by Celeghin et al. (2023), Ramprasath et 

al. (2018), and Huang et al. (2022) [8], [18], [19] discuss the architecture of CNNs for image classification. Building 

upon this foundation, recent works have focused on developing QCNNs by integrating quantum circuits and 

specialized quantum layers into the architecture. QCNNs aim to harness the quantum advantage to improve 

image classification tasks by exploiting quantum principles such as superposition and entanglement. Motivated by 

the architecture of classical CNNs, Cong et al. (2019) [11] introduce a QCNN circuit model. This QCNN model 

extends the key properties of classical CNNs to the quantum domain, leveraging quantum principles to enhance 

image processing and classification tasks. The paper by Meedinti et al. (2023) [20] focuses on the evaluation of 

QCNNs in comparison to classical CNNs and Artificial/Classical Neural Network (ANN) models for object 

detection and classification tasks. 

By combining classical and quantum approaches, researchers seek to push the boundaries of machine learning 

and explore the potential of quantum computing in solving computationally intensive tasks more effectively. These 

efforts represent an exciting frontier in the intersection of quantum computing and machine learning, with the 

potential to unlock new possibilities in image recognition and beyond. 

III. ARCHITECTURE OF A CLASSICAL CONVOLUTIONAL NEURAL NETWORK (CNN) 

A Convolutional Neural Network (CNN), often referred to as ConvNet, emerges as a specialized variant of deep 

learning algorithms meticulously crafted to tackle tasks necessitating object recognition with precision. This deep 

learning architecture, characterized by convolutional layers, a fully connected layer, a pooling layer, and associated 

weights, epitomizes the cornerstone of modern image processing and recognition systems. Notably, CNNs boast a 

leaner parameter count compared to their deep, feed-forward neural network counterparts, rendering them 

particularly appealing for intricate deep learning tasks [21]. Leveraging their robust architecture, CNNs find 

extensive applications spanning diverse domains such as image classification, segmentation, object detection, video 

processing, natural language processing, and speech recognition [22]. The architectural layout of a CNN, delineated 

in Figure 1, illustrates the intricate interplay of its constituent layers, underscoring the network's prowess in 

discerning intricate patterns and features within complex datasets. 

a) Input Layer 

The input layer comprises the raw pixel values of the image. Let X represent the input image, where X is a matrix 

of size N×M×C, with N denoting the height, M representing the width, and C indicating the number of channels 

(such as RGB channels for a color image). 

b) Convolutional Layer 

The convolutional layer applies a set of learnable filters, also known as kernels, to the input image in order to 

extract features. Let F represent the set of filters, each with dimensions k times k times C, where k is the kernel 

size and C is the number of channels. The convolution operation between the input image X and the filter F is 

computed as follows: 
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𝑍(ⅈ, 𝑗) = ∑ ∑ ∑ 𝑋(ⅈ + 𝑚 − 1, 𝑗 + 𝑛 − 1, 𝐶) 𝑥 𝐹

𝐶

𝑐=1

𝑘

𝑛=1

𝑘

𝑚=1

(𝑚, 𝑛, 𝑐) 

Here, Z represents the feature map, and i and j iterate over the spatial dimensions of the feature map. 

 

 

Fig. 1. Architecture of a Classical Convolutional Neural Network (CNN) 

c) Activation Function 

After convolution, an activation function is applied element wise to the feature map to introduce nonlinearity. 

Common activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh. 

d) Pooling Layer 

The pooling layer reduces the spatial dimensions of the fea ture map while retaining important information. Max 

pooling is a common pooling technique, where the maximum value within a small window is selected. Let P 

represent the pooling operation, and S represent the stride (the amount by which the window shifts). 

Mathematically, max pooling is computed as follows: 

𝑃(ⅈ, 𝑗) = max
𝑚,𝑛

𝑍(ⅈ 𝑥 𝑆 +  𝑚, 𝑗 𝑥 𝑆 + 𝑛) 

e) Fully Connected Layer 

Following the application of multiple convolutional and pooling layers within the Quantum Convolutional Neural 

Network (QCNN), the resultant feature maps undergo a crucial transformation. These feature maps, which capture 

important spatial features extracted from the input data, are flattened into a one-dimensional vector. This flattening 

process condenses the spatial information contained within the feature maps into a format suitable for further 

processing, this flattened vector is fed into fully connected layers, which play a pivotal role in the classification 

task. Within these fully connected layers, the input vector interacts with weight parameters represented by the 

weight matrix W and a bias term denoted by the bias vector b. The output of the fully connected layer is computed 

through a series of matrix operations, where the input vector is multiplied by the weight matrix and added to the 

bias vector. This computation yields a transformed representation of the input data, facilitating the extraction of 

higher-level features and enabling more intricate classification tasks. 

𝑌 = 𝐴𝑐𝑡ⅈ𝑣𝑎𝑡ⅈ𝑜𝑛(𝑊. 𝑋𝑓𝑙𝑎𝑡 + 𝑏) 

Here, Xflat represents the flattened feature vector. 

IV. QUANTUM CONVOLUTIONAL NEURAL NETWORKS (QCNN) 

When compared to traditional convolutional neural networks (CNNs), the behavior of quantum convolutional 

neural networks (QCNNs) is similar. Usually, the procedure starts with encoding a pixelated image into a quantum 

circuit using a chosen feature map, like ZFeatureMap or ZZFeatureMap from Qiskit, or other choices from the 

circuit library. This encoding technique is essential because it converts the picture data into a quantum 

representation that can be used with quantum computing.  As described in the following section, after the image 
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is encoded into the quantum circuit, a sequence of alternating convolutional and pooling layers is utilized. These 

layers are essential to the feature extraction procedure, which finds and extracts features from the quantum 

representation that are pertinent to the classification problem. The dimensionality of the quantum circuit is 

gradually decreased by applying these alternating layers, which eventually results in the representation of the 

image in terms of a single qubit. 

After the input image is reduced to this level of dimensionality, the input image must be classified. By measuring 

the output state of the lone surviving qubit, this is accomplished. The measurement's result offers useful data for 

identifying the class or category that the input image falls into. To put it simply, the procedure involves converting 

a pixelated image into a classifier based on the quantum state of a single qubit after a series of quantum operations. 

a) Quantum Convolutional Layer: 

The Quantum Convolutional Layer comprises a sequence of two-qubit unitary operators denoted by U, which 

discern and establish relationships among the qubits within our circuit. These unitary gates are described by the 

equation: 

∣ψ′⟩=U∣ψ⟩ 

Here, 

∣ψ⟩ represents the quantum state of the circuit before applying the unitary operator, and 

∣ψ′⟩ is the state after the operator's application. 

b)  Quantum Pooling Layer: 

In the Quantum Pooling Layer, we aim to reduce the number of qubits by performing operations on each qubit 

until reaching a specific threshold, after which we selectively discard certain qubits within a designated layer. The 

layers where we cease operations on specific qubits are termed as our 'pooling layer'. Further elaboration on the 

pooling layer is provided in the subsequent section. Within the Quantum Convolutional Neural Network (QCNN), 

each layer consists of parametrized circuits, allowing us to modify the output result by adjusting the parameters 

associated with each layer. During the training phase of our QCNN, these parameters undergo adjustment to 

minimize the loss function associated with the network. 

Fig. 2. Four qubit QCNN 

 

V. EXAMPLE QUANTUM CONVOLUTIONAL NEURAL NETWORK (QCNN) 

Let us examine a hypothetical example of a four-qubit QCNN, as shown in Figure 2. All four qubits are subjected 

to operation by the first Convolutional Layer, which produces a quantum state called ∣ψ1⟩. 

a)  First Pooling Layer: 

The first pooling layer serves to decrease the dimensionality of the QCNN from four qubits to two qubits by 

disregarding the first two. Following the application of the first pooling layer, the resulting quantum state is 

denoted as ∣ψ2⟩. 

b) Second Convolutional Layer: 



J. Electrical Systems 20-3 (2024): 1730-1740 

 

1735 

Subsequently, the second Convolutional layer is employed to identify features between the two qubits that remain 

in use within the QCNN. The quantum state obtained after applying the second Convolutional Layer is represented 

as ∣ψ3⟩. 

c) Second Pooling Layer: 

A subsequent pooling layer is applied, further reducing the dimensionality from two qubits to one, thereby yielding 

our output qubit. The quantum state resulting from the application of the second pooling layer is denoted as ∣ψ4⟩. 

The final output qubit, represented as ∣ψ output⟩, is derived from ∣ψ 4⟩ through measurement. 

 

Fig. 3. Sample images from synthetic dataset. 

V. EXPERIMENTAL SETUP 

A classical Convolutional Neural Network (CCNN) typically includes both convolutional and pooling layers. The 

definition of these QCNN convolutional and pooling layers is given in terms of gates that are applied to a quantum 

circuit that uses qubits. The parameters in each layer of the QCNN will be changed during training in order to 

minimize the loss function. This training process aims to refine the QCNN’s ability to classify between horizontal 

and vertical lines.  To define the Convolutional Layers, a parametrized unitary gate was determined first, which 

was used to create the convolutional and pooling layers. Following the definition of these unitaries, a function was 

formulated to implement the convolutional layer within the QCNN. The pooling layer in QCNN pairs qubits, applies 

a two qubit unitary operation to each pair, and then disregards one qubit from each pair for subsequent layers. 

This process consolidates information between qubits, enhances feature representation, and reduces circuit 

dimensionality. Once applied, no further operations or measurements are performed on the discarded qubits. 

The pooling layer orchestrates a transformative process whereby the dimensions of our quantum circuit, originally 

composed of N qubits, undergo a reduction to N/2. This reduction in dimensionality is a pivotal step within the 

QCNN, enabling more efficient processing and extraction of key features from the input data. 

 

Fig. 4. Z feature Map 
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Fig. 5. QCNN from eight qubits to one 

a) Dataset 

A synthetic dataset is created for training and testing the QCNN, where each sample consists of a 2x4 pixelated 

image containing either a horizontal or vertical line alongside a noisy background. In Figure 3, a collection of sample 

images is presented, each meticulously crafted to depict either a vertical or horizontal line. These images serve as 

illustrative examples showcasing the fundamental elements crucial for line orientation classification tasks within 

image processing and computer vision. Through these samples, the distinct characteristics and orientations of lines 

are visually represented, laying the groundwork for the subsequent analysis and exploration of line orientation 

classification methodologies. 

b) Model building. 

The Model building steps involves constructing the Quan tum QCNN by incorporating alternating pooling and 

convolu tional layers. Since the dataset comprises images with 8 pixels, QCNN will consist of 8 qubits. To encode 

the dataset into the QCNN, a feature map(Z feature) is applied, see Figure 4. The QCNN function is defined as 

incorporating three sets of alternating convolutional and pooling layers. The layers incorporated in the architecture 

of the QCNN are meticulously crafted with the specific aim of reducing the dimensionality of the network from 

eight qubits down to a single qubit, as visually depicted in Figures 5 and 6. This reduction in dimensionality is a 

crucial aspect of the network's design, facilitating streamlined processing and analysis of input data. In the context 

of classifying the image dataset containing horizontal and vertical lines, a pivotal step involves measuring the 

expectation value of the Pauli Z operator associated with the final qubit. This measurement serves as a decisive 

criterion for discerning the orientation of lines within the images, thus enabling accurate classification based on the 

quantum state of the network's output. 

 

Fig. 6. QCNN Model Prepared 
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Following the measurement of the expectation value of the Pauli Z operator associated with the final qubit, the 

inference process hinges on the interpretation of the obtained value, which can be either +1 or -1. This interpretation 

serves as the decisive factor in determining whether the input image contained a horizontal or vertical line. The 

QCNN leverages this inference mechanism to make accurate classifications based on the quantum state of its output. 

Moreover, it's noteworthy that the construction of the QCNN is facilitated using Qiskit, a Python library dedicated 

to quantum computing. This integration underscores the synergy between classical and quantum computing 

paradigms, harnessing the power of both to realize advanced machine learning models capable of tackling complex 

classification tasks with enhanced efficiency and accuracy. It begins with initializing a feature map using the 

ZFeatureMap method, which encodes classical data into a quantum state suitable for processing by the quantum 

neural network. The ansatz, representing the parameterized part of the quantum circuit, is then initialized with 

8 qubits. Convolutional layers are subsequently added to the ansatz circuit using the conv layer function, which 

applies quantum gates to recognize and extract features from input quantum states. Additionally, pooling layers 

are integrated into the ansatz circuit to reduce the dimensionality of quantum states by combining information 

from neighboring qubits. Finally, the feature map circuit and the ansatz circuit are merged into a single quantum 

circuit, representing the complete architecture of the quantum convolutional neural network, Figure 6 de scribes 

the QCNN complete architecture using Qiskit library. 

 

Fig. 7. Objective function value vs iteration 

 

 

Fig. 8. Predictions Made by QCNN Model 
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VI. RESULTS AND DISCUSSION 

The QCNN operator and optimizer are incorporated into Qiskit Machine Learning’s Neural Network Classifier. 

The model is trained using the training dataset along with corresponding labels.  

During the training phase of the model, a pivotal aspect involves leveraging the expectation value of the Pauli Z 

qubit associated with the final qubit as a measurement metric. This expectation value serves as a crucial indicator, 

where a resultant value of +1 or -1 corresponds respectively to the presence of a vertical or horizontal line within 

the input image. This utilization of quantum measurement outcomes not only enables QCNN to discern line 

orientations effectively but also facilitates the learning process by providing valuable feedback for model 

optimization. To ensure effective monitoring and analysis of the training progress, a callback function is employed. 

This callback function plays a vital role in dynamically tracking and plotting the loss function throughout the 

training iterations. By visualizing the loss function trends over time, researchers and practitioners gain insights into 

the model's learning dynamics, enabling informed adjustments and optimizations to enhance training efficacy and 

convergence. This iterative monitoring process is essential for iteratively refining the QCNN architecture and 

parameters to achieve optimal performance in line orientation classification tasks. The results are analyzed by 

applying COBYLA (Constrained Optimization BY Linear Approximations) and SPSA (Simultaneous Perturbation 

Stochastic Approximation) optimizers. 

a) COBYLA:  

COBYLA is an optimization algorithm that iteratively adjusts the parameters to minimize an objective function 

subject to constraints. The algorithm approximates the objective function and constraints using linear 

approximations and searches for the optimal solution within the feasible region. 

b) SPSA: 

SPSA is a stochastic approximation method used for optimizing objective functions in the presence of noise or 

unknown gradients. The algorithm estimates the gradient of the objective function by perturbing the parameters 

stochastically and evaluating the objective function at the perturbed points. 

In Figure 7, a plot depicting the relationship between the Objective function value and the iteration count is 

showcased. This visualization provides insights into the convergence behavior of the QCNN model during training. 

Additionally, the QCNN model achieved a training accuracy of 71.43% and a test accuracy of 60.0%. Notably, it 

was observed that the Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer failed to converge 

within the designated number of iterations. Furthermore, the SPSA optimizer necessitated double the number of 

iterations compared to the COBYLA optimizer to achieve convergence. The plot in Figure 7 effectively illustrates 

the convergence behavior of the model with each optimizer function, offering valuable insights into the 

convergence time required by the model. 

Figure 8 presents the predictions made by the model regarding the presence of horizontal and vertical lines within 

the images. This visualization offers a qualitative assessment of the model's performance in classifying line 

orientations within the image dataset.  

VII. CONCLUSION 

In conclusion, our study integrated the QCNN operator and optimizer into Qiskit Machine Learning’s Neural Net 

work Classifier, leveraging quantum computing techniques for classification tasks. Through training the model on 

the provided dataset alongside corresponding labels, we employed the expectation value of the Pauli Z qubit as a 

measurement, wherein +1 and -1 denoted vertical and horizontal line classifications, respectively. Our QCNN 

model achieved a training accuracy of 71.43% and a test accuracy of 60.0%. Notably, we observed that the SPSA 

optimizer failed to converge within the designated iterations, requiring twice the iterations compared to the 

COBYLA optimizer for convergence. These findings underscore the importance of selecting an appropriate 

optimizer for quantum neural network training, as it significantly impacts convergence time and ultimately, model 

performance. We demonstrated the effectiveness of our approach through experimental evaluation on benchmark 

datasets, comparing the performance of QCNNs on two optimizers. 
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