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Abstract: - Distribution systems have a lot of obstacles to deal with, like increasing load demands, environmental issues, operating limits, 

and infrastructure development limitations. On the other hand, the number of plug-in hybrid electric vehicles (PHEVs) has grown 

significantly in recent years and is likely to continue due to concerns over the environment and fossil fuel shortages. Due to the increasing 

use of PHEVs, distribution systems were not built to accept them, requiring planners to create parking lots that support PHEV charging. 

To address these issues, in this study, optimal planning of distributed generation (DG) and electric vehicle charging stations (EVCS) in 

radial distribution systems by the maiden application of a novel Pareto-based multi-objective artificial hummingbird optimization 

(MOAHO) algorithm is addressed. Three technical aspects of the distribution system are improved by optimal planning of various types 

of DGs and EVCSs: active power loss reduction, total voltage deviation minimization, and voltage stability improvement. The Pareto-

based MOAHO is employed to generate the optimal front between the three competing objectives and later TOPSIS method is employed 

for selecting the most compromised solution from the optimal front. The proposed methodology is tested on IEEE-33, IEEE-69  bus radial 

distribution test systems. To validate the efficacy of the MOAHO algorithm, the simulation outcomes of the proposed methodology are 

generated using a multi-objective non-dominated sorting genetic algorithm (NSGA2), particle swarm optimization algorithm (PSO), grey 

wolf optimization algorithm (GWO) and compared with the outcomes of the MOAHO algorithm. 

 

Keywords: Multi-objective artificial hummingbird optimization (MOAHO) algorithm, Distributed Generation (DG), 

Electric vehicle charging station (EVCS), plug-in hybrid electric vehicles (PHEV), Distributed STATCOM (DSTACOM) 

 

 

I. INTRODUCTION  

The traditional power generation system comprises large-scale generation units and a wide interconnected 

transmission & distribution network that transmits and distributes electricity to household, commercial & 

industrial customers. Nowadays, transmission & distribution networks are under stress due to rising load needs, 

limited expansion choices, high I2R losses in transmission & distribution networks, poor voltage profile, 

competitive power markets, depletion of fossil fuels and environmental issues. The increase in the usage of electric 

vehicles (EVs) would worsen the aforementioned issues. Therefore, to address the depletion of fossil fuel and 

environmental issues, renewable energy sources like Photo-Voltaic & Wind-Turbine units are highly integrated 

with the transmission networks & distribution networks. 

Distributed generation units (DGs), which are alternatively referred to as decentralized generation, embedded 

generation, or dispersed generation, are generating units with few kW to 100’s of MW that are either directly 

connected to the distribution network or installed at the metering site of the consumer. DG technologies include 

Photo-Voltaic (PV) units, Wind-Turbine (WT) units, Biomass units, Micro-Turbine, Fuel-cell, Battery energy 

storage system (BESS), Diesel generators, Synchronous condenser etc. DG technologies are grouped into four 

categories based on their capacity to support both active and reactive power. Fuel cells and microturbines are 

examples of Type-1 DGs that only support active power, whereas Synchronous compensators are examples of 

Type-2 DGs that only support reactive power. Real and reactive power are supported by Type-3 DGs, which 

include biomass generators based on synchronous generators, wind turbines (WT) with doubly fed induction 

generators, and photovoltaic (PV) systems with voltage source inverters. Wind turbines with induction generators 

are an example of Type-4 DGs that support both active and reactive power, but they consume reactive power. The 
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advantages like the requirement of small areas to install due to their compact size, technological advancements, 

less time for installation and the aforementioned issues associated with centralized generation have trigged the 

extensive usage of DGs in transmission & power distribution networks, and nearby load centres. And, 

Improvements in technical metrics like I2R loss reduction, voltage profile, reliability, voltage stability, loadability 

are attained due to the connection of DGs in the distribution system. However improper placement of DGs with 

improper size in the distribution system could have worsened the technical metrics instead of improving them. 

Therefore, finding the optimal number, optimal location, and optimal size of DGs in the distribution system is 

coined as the optimal planning of DGs (OPDG) problem.  

In [1]–[4], the authors presented a detailed review of the OPDG problem in the distribution system using several 

analytical techniques, and meta-heuristic optimization algorithms. The authors of [5] introduced an analytical 

method that utilizes an exact loss formula to determine the most effective capacity and placement of a distributed 

generator (DG) while reducing power losses in the system. However, it was limited to a single DG unit allocation 

and required bus impedance matrix calculation, resulting in computation inefficiencies in large-scale distribution 

networks. The authors improved an earlier method [5] to develop analytical expressions for optimal DG placement 

in [6], which was confined to units with active power generation. The research presented in [7] used analytical 

formulas based on [6] to calculate the optimal size, location, and power factor for dispatchable and non-

dispatchable DGs, taking into account demand and renewable generation uncertainty. The authors of [8] suggested 

a multi-objective index-based analytical method to calculate the appropriate capacity of PV-based DG units. An 

analytical technique based on the branch current formula was devised in [9] to minimize loss for allocating 

numerous DG units. An equivalent current injection method was described in [10] to identify the ideal DG size 

and position while minimizing power losses. Most research focuses on optimizing DG planning using analytical 

techniques for power loss mitigation and voltage profile improvement.  

PSO is used to solve optimal DG deployment problem in distribution systems with changing power loads and non-

unity power factors [11].  An enhanced PSO is suggested for optimal placement of DGs that inject real power 

and/or absorb reactive power [12]. To minimize power loss, firefly and backtracking search algorithms are used 

to optimize multi-DG unit planning, including determining optimal DG locations, sizes, and power factors [13]. 

In [14], authors used UVDA-based heuristics to optimize Type-3 DG allocation and power factor to reduce 

network active power loss. The HPSO method was used to optimize the system's maximum loadability [15]. In 

[16], the authors employed a hybrid genetic dragonfly optimization technique to minimize the distribution system's 

EENS reliability index by optimizing DG sizes and locations. The authors of [17] used the Harmony search 

optimization algorithm (HSA) to minimize network power loss, and total harmonic distortion, improve system 

voltage profile, and enhance security. The authors of [18] employed a TLBO-GWO optimization technique to 

allocate Type-1 and Type-3 DGs with optimal power factors to the distribution network to lower I2R loss and 

boost reliability. In [19], authors explored a weighted-based hybrid SFLA and DE algorithm for optimal placement 

of DGs in distribution systems for reducing power loss, operational expenses, and emission costs. To minimize 

active power loss, improve the voltage profile, and strengthen the voltage stability of the system, the authors in 

[20] used a weighted factor multi-objective approach to solve the OPDG problem. In [21] , multi-objective Max-

Min & epsilon approach are put out to reduce I2R loss and maximize network loadability. Pareto-based Harris 

hawk optimization is used in [22] to enhance system technical parameters. 

Concerns surrounding the exhaustion of fossil fuels, CO2 emissions, and the greenhouse effect have led to a trend 

towards emissions-free plug-in battery-fuelled electric vehicles (PHEVs), which are expected to play a key part 

in the road transportation system. A comprehensive review of electric vehicle technologies and the effect of plug-

in hybrid electric vehicle demand on load profile may be found in [23], [24]. Numerous researchers have 

concentrated on DG planning in distribution systems to mitigate the effects of PHEV load demand and to improve 

system performance. The authors [25] used the HPSO-GWO algorithm to determine the optimal location for 

EVCS and RDGs in the distribution system. A study on EVCS placement aims to minimize power loss and 

maximize distribution system stability, using APSO is discussed in [26]. In, [27] the fuzzy-based multi-objective 

grasshopper optimization method is used for RDG and EVCS optimal planning to improve the distribution 

system's technical metrics. The optimum approach to integrate RDG, EVCS, and BESS to enhance the technical 

distribution systems was investigated by authors in [28] using a Pareto-based WOAGA algorithm. In [29-35] 

authors proposed different single and multi-optimization algorithms to minimize different power system 

optimization parameters.  
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  From the literature review, it is evident that various types of DGs are rarely explored in existing literature. This 

study encompasses diverse DG technologies in conjunction with the simultaneous planning of EVCS Furthermore, 

the majority of studies utilize single-objective optimization algorithms such as PSO, GWO, DE, SLFA and TLBO 

to address the DG deployment problem. However, these single-objective optimizers lack the capability to handle 

multiple objectives concurrently. Consequently, authors frequently resort to employing a weighted-sum approach 

[43] to transform the multi-objective problem into a single-objective one. Despite its simplicity in implementation, 

this approach suffers from the drawback that decision-making precedes the optimization process, potentially 

leading to suboptimal solutions that may not align with the conflicting objective preferences of decision-makers 

[44]. To mitigate these limitations, this study adopts a Pareto-based multi-objective AHO (MOAHO) algorithm, 

which can optimize multiple objectives simultaneously. The MOAHO algorithm generates a set of solutions 

known as Pareto optimal solutions. The technique for order of preference by similarity to ideal solution (TOPSIS) 

is then employed to identify the most compromised solution from the Pareto optimal solution frontier. The 

contributions of this study are outlined as follows: 

1) Presenting a comprehensive approach that simultaneously plans DGs and EVCS, considering diverse DG types 

and operating power factors. 

2) Adopting the Pareto-based MOAHO to minimize real power loss, total voltage deviation and voltage stability 

index is improved in distribution systems. This algorithm facilitates the simultaneous optimal planning of multiple 

DG technologies and EVCSs. 

3) Utilizing TOPSIS to select the most balanced solution from the Pareto front generated by the MOAHO 

algorithm. Moreover, exploring TOPSIS capabilities to suggest solutions accommodating diverse decision-makers 

objective preferences. 

4) Conducting a comparative analysis between the MOAHO algorithm and established algorithms such as NSGA-

II, MOPSO, and MOGWO. This analysis encompasses standard IEEE-33 bus, IEEE-69 bus systems, incorporating 

various scenarios and cases for comprehensive evaluation. 

The remaining part of the article is articulated as follows, Section 2 discusses the objective functions and operating 

constraints. Section 3 presents the AHO algorithm, Pareto-based MOAHO algorithm, TOPSIS method and 

detailed implementation aspects of the algorithm. The proposed methodology and simulation outcomes are 

discussed in section 4 and the conclusion & future aspects of the work are given in section 5. 

 

II. PROBLEM FORMULATION 

This section presents the modelling of DGs, DSTACOMs & EVCSs, objective functions and operating constraints 

associated with the efficient planning of DGs and EVCSs in radial distribution networks. 

A. Modelling of DGs and EVCSs 

Figure1 depicts the simple distribution with DGs, DSTACOMs and EVCSs. The introduction of DGs, 

DSTATCOMs and EVCSs turns the passive radial distribution system into an active one due to bidirectional flows 

in the system. 

 
Figure 1 simple distribution system with DGs, DSTATCOMS and EVCSs 
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For load flow analysis, DGs are modelled using a negative PQ type of load model. About the above-cited method, 

the net power demand at the bus in the distribution system is the difference of conventional load demand & DG 

power. The power due to EVCSs will aid the conventional load demand. Therefore, the net load demand for a bus 

in the distribution system is given by 

                       𝑃𝑛,𝑛𝑒𝑡 = 𝑃𝑛,𝐿 + 𝑃𝐸𝑉𝐶𝑆 − 𝑃𝐷𝐺                                             

(1) 

                      𝑄𝑛,𝑛𝑒𝑡 = 𝑄𝑛,𝐿 + 𝑄𝐸𝑉𝐶𝑆 − 𝑄𝐷𝐺 − 𝑄𝐷𝑆𝑇𝐴𝑇𝐶𝑂𝑀                                                            

(2) 

 

B. Objective Functions  

In this study, the enhancement of three technical metrics of the distribution system by optimal planning of DGs 

and EVCSs is considered. The mathematical formulations of the metrics are given below.      

1  Real Power loss 

The real power loss (𝑅𝑃𝑙𝑜𝑠𝑠) of the distribution system ought to be reduced as much as possible to improve the 

efficiency of the distribution system. 

                𝐹1 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑅𝑃𝑙𝑜𝑠𝑠)                                             

(3) 

                𝑅𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑘
2 ∗ 𝑅𝑘

𝑛𝑜𝑏𝑟
𝑘=1                                              

(4) 

where, 𝐼𝑘 is the kth branch current, 𝑅𝑘 is the resistance of the kth branch and nobr represents the total number of 

branches  

              2    Total Voltage Deviation 

To maintain the bus voltages of the distribution system as much as close to the reference value, Total Voltage 

Deviation (𝑇𝑉𝐷) of the system has to be minimized 

              𝐹2 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇𝑉𝐷)                               

(5) 

               𝑇𝑉𝐷 =  ∑ (|1 − 𝑉𝑛|)2𝑛𝑜𝑏𝑢𝑠
𝑛=1                                                           

(6) 

where, 𝑉𝑛 is the nth bus voltage and 𝑛𝑜𝑏𝑢𝑠 represents the total number of buses.  

            3   Voltage Stability Index 

 

Voltage stability of the system should be maximized to maintain the overall stability of the system [38]. 

              𝐹3 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑉𝑆𝐼)                                            

(7) 

                𝑣𝑠𝑖𝑛 = 𝑉𝑛
4 − 4 (𝑃𝑛𝑅𝑚𝑛 − 𝑄𝑛𝑋𝑚𝑛)2 − 4 𝑉𝑛

2(𝑃𝑛𝑋𝑚𝑛 + 𝑄𝑛𝑅𝑚𝑛)                                                        

(8) 

                 𝑉𝑆𝐼 = min (𝑣𝑠𝑖𝑛)                                                         

(9) 

C. Operating Constraint’s 

The optimal planning of DGs and EVCSs problem in distribution systems are subjected to the following 

operational constraints 

 1   The magnitude of the voltage on each bus ought to fall between the bounds of the lowest and maximum 

values.          

  |𝑉𝑚𝑖𝑛| < |𝑉𝑛| < |𝑉𝑚𝑎𝑥|          𝑛 = 1,2… . . 𝑛𝑜𝑏𝑢𝑠                                                   (10) 
    2   The current via each branch should be less than its rating. 

                      𝐼𝑘 ≤  𝐼𝑘
𝑚𝑎𝑥                          𝑘 = 1,2… … . 𝑛𝑜𝑏𝑟                                                                  

(11) 
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    3   Real and reactive power injected by DGs (𝑃𝑗,𝐷𝐺) ought to fall between the bounds of the lowest and maximum 

values.          

         𝑃𝑗,𝐷𝐺
𝑚𝑖𝑛 , 𝑄𝑗,𝐷𝐺

𝑚𝑖𝑛 ≤ 𝑃𝑗,𝐷𝐺 , 𝑄𝑗,𝐷𝐺 ≤ 𝑃𝑗,𝐷𝐺
𝑚𝑎𝑥 , 𝑄𝑗,𝐷𝐺

𝑚𝑎𝑥                      𝑗 = 1, . ,3, … . 𝑛𝑜𝑑𝑔                                                 

(12) 

where, nodg is the total number of DGs connected in the distribution system. 

     4      Operating power factor of DGs ought to fall between minimum (𝑝𝑓𝑗
𝑚𝑖𝑛) and unity power factor limits. 

               𝑝𝑓𝑗
𝑚𝑖𝑛 ≤ 𝑝𝑓𝑗 ≤ 1                                          

(13) 

Total real power (𝑃𝑇𝑜𝑡,𝐷𝐺) and reactive power generated (𝑄𝑇𝑜𝑡,𝐷𝐺) by DGs should be less than the real active and 

reactive power load of the system (both conventional & EVCSs load demands) respectively. 

∑ 𝑃𝑗,𝐷𝐺
𝑛𝑜𝑑𝑔
𝑗=1 = 𝑃𝑇𝑜𝑡,𝐷𝐺 ≤ 𝑃𝑐𝑙𝑜𝑎𝑑 + 𝑃𝐸𝑉𝐶𝑆                                                    (14) 

∑ 𝑄𝑗,𝐷𝐺
𝑛𝑜𝑑𝑔
𝑗=1 = 𝑄𝑇𝑜𝑡,𝐷𝐺 ≤ 𝑄𝑐𝑙𝑜𝑎𝑑 + 𝑄𝐸𝑉𝐶𝑆                                                      

(15) 

      5   Real Power and Reactive power balance constraints. 

               𝑃𝑠𝑙𝑎𝑐𝑘 + 𝑃𝑇𝑜𝑡,𝐷𝐺 = 𝑃𝑐𝑙𝑜𝑎𝑑 + 𝑃𝐸𝑉𝐶𝑆 + 𝑃𝑙𝑜𝑠𝑠                                                      

(16)  

               𝑄𝑠𝑙𝑎𝑐𝑘 + 𝑄𝑇𝑜𝑡,𝐷𝐺 = 𝑃𝑐𝑙𝑜𝑎𝑑 + 𝑃𝐸𝑉𝐶𝑆 + 𝑄𝑙𝑜𝑠𝑠                                                      

(17)  

III. OPTIMIZATION ALGORITHM 

     A Artificial Humming bird optimization (AHO) algorithm 

 

AHO is an optimization method developed based on bioinspired metaheuristics [39]. This algorithm is inspired 

by the social behaviour of hummingbirds, including their clever foraging strategies and extraordinary flying 

abilities. In basic terms, AHO mimics directed foraging, territorial foraging, and migrating foraging in addition to 

three distinct search strategies, including omnidirectional, axial, and diagonal flights. 

The Pseudo Code of the overall general architecture of AHO is depicted in Figure 2   

 
Figure 2 Pseudo Code of the overall general architecture of AHO 

 

The mathematical equations for position update equations of AHO during each are given below. 

     B  Initialization 

The first set of solutions between the minimum and maximum boundary values are generated in this step. 

𝑥𝑖
𝑗
= 𝐿𝐵𝑖

𝑗
+ (𝑈𝐵𝑖

𝑗
− 𝐿𝐵𝑖

𝑗
) ∗ 𝑟𝑎𝑛𝑑  𝑖 = 1…𝑁, 𝑗 = 1… . . 𝑑𝑖𝑚                                                                     

(18) 

where  𝑥𝑖
𝑗
 represents the jth dimension of ith agent or hummingbirds, N represents the number of agents, dim 

represents the dimension. 

Apart from the initialization of the initial set of solutions, a visit table is formed in this step. 
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                         𝑉𝑇𝑖
𝑗
= {

0  𝑖𝑓 𝑖 ≠  𝑗
𝑛𝑢𝑙𝑙   𝑖𝑓 𝑖 = 𝑗

                                                                                                           

(19)                 

 C Guided  foraging 

The following represents the mathematical equations for incorporating the guided foraging behaviour for updating 

hummingbird position towards potential or global food sources as follows 

𝑣𝑖
𝑑𝑖𝑚(𝑡 + 1) = 𝑥𝑡𝑎𝑟

𝑑𝑖𝑚(𝑡) + rand ∗ D ∗ (𝑥𝑖
𝑑𝑖𝑚(𝑡) − 𝑥𝑡𝑎𝑟

𝑑𝑖𝑚(𝑡))                                                           

(20) 

Where 𝑥𝑡𝑎𝑟
𝑑𝑖𝑚(𝑡) represents the position of the target/potential/global best food force, rand is the random number 

between 0 & 1, D represents the introduction of axial flight [39] searching pattern during the direct foraging search 

phase. 

𝑥𝑖(𝑡 + 1) = {
𝑣𝑖(𝑡 + 1)    𝑖𝑓 𝑓(𝑣𝑖(𝑡 + 1) < 𝑓𝑥𝑖(𝑡)) 

𝑥𝑖(𝑡)  𝑖𝑓 𝑓(𝑣𝑖(𝑡 + 1) > 𝑓 𝑥𝑖(𝑡))
                                                                                                                (21) 

 

  D Territorial foraging 

To find an additional source of food, the hummingbird can thus travel to the adjacent area inside its domain. The 

local food search and territorial foraging strategy's mathematical expressions are given below 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑 ∗ 𝐷 ∗ 𝑥𝑖(𝑡)                                                                        

(22) 

E Migrating foraging 

When the hummingbirds' normal food source isn't available in their area, they move to areas with more food 

sources. The mathematical equation for a hummingbird's migrating foraging travel is given below 

𝑥𝑖
𝑗
(𝑡 + 1) = 𝐿𝐵𝑖

𝑗
+ (𝑈𝐵𝑖

𝑗
− 𝐿𝐵𝑖

𝑗
) ∗ 𝑟𝑎𝑛𝑑  𝑖 = 1… 𝑁, 𝑗 = 1… . . 𝑑𝑖𝑚                                                                    

(23)                

The comprehensive pseudocode for the AHO optimization method can be found in [39] 

  F Pareto-based MOAHO 

A Pareto-based multi-objective technique [40] is an optimization strategy that is based on Pareto optimality and 

seeks to manage several competing objectives at once. The primary characteristic of Pareto-based techniques is 

their capacity to produce a collection of solutions, as opposed to a single ideal one, that show trade-offs between 

conflicting goals. This technique aims to identify solutions that are not superior (or) dominated to any other 

solution across all the objectives that are taken into consideration. These non-dominated solutions collectively 

form the Pareto front, representing the optimal trade-offs among conflicting objectives. This multi-objective 

technique can be expressed mathematically as  

solution-p (𝑠𝑜𝑙𝑝)  dominates solution-q (𝑠𝑜𝑙𝑞), if the following condition is met  

                  ∀n ∈  {1, . .3, . . . , nobj} → 𝐹𝑛(𝑠𝑜𝑙𝑝) ≤ 𝐹𝑛(𝑠𝑜𝑙𝑞)                                                         

(24) 

               ∧ ∃n ∈  {1, … 3, . . . , nobj} → 𝐹𝑛(𝑠𝑜𝑙𝑝) < 𝐹𝑛(𝑠𝑜𝑙𝑞)                                                         

(25) 

where 𝐹𝑛(𝑠𝑜𝑙𝑝) represents the nth objective function value of solution q. 

In this way, If the solution 𝑠𝑜𝑙𝑚  dominates all the solutions, 𝑠𝑜𝑙𝑚 enters into a non-dominant solution set 

G Crowding distance metric 

The crowding distance metric (𝐶𝑟) is computed for each solution in the Pareto front to restrict the total number of 

solutions to a predetermined number, say. The solutions with the highest 𝐶𝑟 are then kept in a collection known 

as the repository. The crowding distance metric for the nth solution (𝐶𝑟𝑛 ) in the Pareto front is expressed 

mathematically as 

                      (𝐶𝑟𝑛) = ∑
𝐹𝑘

𝑛+1−𝐹𝑘
𝑛−1

𝐹𝑘
𝑚𝑎𝑥−𝐹𝑘

𝑚𝑖𝑛
𝑛𝑜𝑏𝑗𝑒𝑐
𝑘=1                                          (26) 
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H TOPSIS method 

A decision-making process called the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

is intended to help choose the best option out of a given set of non-dominated solutions. Based on how close each 

solution in the non-dominated set to the positive ideal solution (PIS) and the negative ideal solution (NIS), this 

technique evaluates each solution. The TOPSIS approach is described in the following steps [44]: 

1) Formulation of a decision matrix (𝑋) with the rows of m alternatives and the columns of n objectives. 

𝑋 =

[
 
 
 
 
𝐹1

1   𝐹1
2 … …… …𝐹1

𝑛

𝐹2
1   𝐹2

2 … …… …𝐹2
𝑛

.

.
𝐹𝑚

1    𝐹𝑚
2 … …… …𝐹𝑚

𝑛]
 
 
 
 

                                                                      (27) 

2) Formulation of normalized decision matrix (𝑁𝑋).      

                              𝑁𝑋 =

[
 
 
 
 
𝑛𝐹1

1   𝑛𝐹1
2 . . . . . . . . . . . . 𝑛𝐹1

𝑛

𝑛𝐹2
1   𝑛𝐹2

2 . . . . . . . . . . . . 𝑛𝐹2
𝑛

.

.
𝑛𝐹𝑚

1    𝑛𝐹𝑚
2 . . . . . . . . . . . . 𝑛𝐹𝑚

𝑛]
 
 
 
 

            where 𝑛𝐹𝑚
𝑛 =

𝐹𝑚
𝑛

√∑ 𝐹𝑚
𝑖𝑚

𝑖=1

                                                                  

(28)  

                                      

3) Formulation of normalized decision matrix (𝑊𝑁𝑋).      

𝑊𝑁𝑋 =

[
 
 
 
 
𝑤𝑛𝐹1

1   𝑤𝑛𝐹1
2 . . . . . . . . . . . . 𝑤𝑛𝐹1

𝑛

𝑤𝑛𝐹2
1   𝑤𝑛𝐹2

2 . . . . . . . . . . . . 𝑤𝑛𝐹2
𝑛

.

.
𝑤𝑛𝐹𝑚

1    𝑤𝑛𝐹𝑚
2 . . . . . . . . . . . . 𝑤𝑛𝐹𝑚

𝑛]
 
 
 
 

                                                                                        (29)                                   

           where 𝑤𝑛𝐹𝑚
𝑛 = (𝑤1 ∗ 𝑛𝐹𝑚

1   + 𝑤2∗𝑛𝐹𝑚
2 +. . . . . . . . . . . . +𝑤𝑛∗𝑛𝐹𝑚

𝑛) , 𝑤𝑛 is the weight  

            assigned to objective function. 

4) Determination of positive & negative ideal solution (PIS & NIS). 

 𝑃𝐼𝑆 = {𝑝𝑖1
+   𝑝𝑖2

+. . . . . . . . . . . . 𝑝𝑖𝑛
+}

𝑁𝐼𝑆 = {𝑛𝑖1
−   𝑛𝑖2

−. . . . . . . . . . . . 𝑛𝑖𝑛
−}

                                                                                    (30)                                                           

                       𝑤ℎ𝑒𝑟𝑒 
𝑝𝑖𝑛

+ = 𝑚𝑖𝑛{𝑤𝑛𝐹1
𝑛   𝑤𝑛𝐹2

𝑛. . . . . . . . . . . . 𝑤𝑛𝐹𝑚
𝑛}

𝑛𝑖𝑛
− = 𝑚𝑎𝑥{𝑤𝑛𝐹1

𝑛   𝑤𝑛𝐹2
𝑛 . . . . . . . . . . . . 𝑤𝑛𝐹𝑚

𝑛}
                                                                                              

(31)                               

5)  Calculation of Euclidian distance from PIS & NIS. 

𝑒𝑑𝑖
+ = √(∑ 𝑤𝑛𝐹𝑖

𝑗𝑛
𝑗=1 − 𝑝𝑖𝑗

+)
2
𝑖 = 1. . . . 𝑚                                                                                           (32)                                         

e𝑑𝑖
− = √(∑ 𝑤𝑛𝐹𝑖

𝑗𝑛
𝑗=1 − 𝑛𝑖𝑗

−)
2
𝑖 = 1. . . . 𝑚                                                                                          (33)                                              

6) Relative closeness index (𝑅𝐶𝐼𝑖) of each solution is determined. 

       𝑅𝐶𝐼𝑖 =
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

+    𝑖 = 1. . . . . 𝑚                                                                                                                        (34)                                                                                                

7) The alternative with the highest 𝑅𝐶𝐼𝑖  is considered as the best choice according to the TOPSIS method 

 

I Implementation of TOPSIS-MOAHO algorithm 

  

The following outlines the step-by-step process for the TOPIS-MOAHO algorithm for finding the optimal location 

sizes of DGs & EVCSs for enhancing above cited objectives 

1. Read the line and load information from the distribution system 

2. Initialising the algorithm's parameters, like the number of agents (N), the maximum number of iterations 

(Maxiter), the size of the Archive, and so on 
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3. Generation of initial set of hummingbird positions between minimum and maximum decision variable 

boundary limits 

4. For every search agent, do power flow analyses to determine the objective function values 

5. Finding of non-dominated solutions using the concept addressed in section 3.2 and update the solutions 

in the archive set using the concept addressed in section 3.3 

6. Set iteration count t =0 

7. Update the humming bird’s positions using the methodology discussed in Section 3.1 

8. Calculate updated humming bird agent's objective function values by performing load flow analysis 

9. Merge new hummingbird agents and old hummingbird agents positions and find the non-dominated 

solutions using the concepts discussed in section 3.2 and update the positions in the archive set using the concept 

discussed in section 3.3 

10. Repeat steps 6-9 until current iteration fall below the maximum iteration number, otherwise print the 

final outcomes: the most compromised solution using the TOPSIS methodology addressed in section 3.4 

The flowchart of the TOPIS-MOAHO technique for optimal deployment of DGs and EVCSs is depicted in Figure  

3 

 
Figure 3 Flowchart of TOPIS-MOAHO technique for optimal 

deployment of DGs and EVCSs in the distribution system 

 

IV. RESULTS AND DISCUSSIONS 

In this section, the impact on the improvement of three distribution system metrics (network power loss 

minimization, minimization of total voltage deviation and maximization of voltage stability index) due to optimal 

deployment of various DG technologies is presented at first. Then the enhancement of the above-cited metrics by 

simultaneous optimal deployment of DGs and EVCSs is discussed in the second stage. The following cases are 

considered in this work 

Case-0: Without DGs and EVCSs 

Case-1: Optimal Planning of DGs operating with upf (Type-1 DGs) 

Case-2: Optimal Planning of DGs operating with upf and zpf (Type-1 & Type-2 DGs) 

Case-3: Optimal Planning of DGs operating with 0.9 pf (Type-3 DGs) 

Case-4: Optimal Planning of DGs operating with optimal pf (Type-3 DGs) 

Case-5: Optimal Planning of DGs operating with 0.9 pf followed by Optimal Planning of  EVCSs  

Case-6: Simultaneous Optimal Planning of DGs with upf & zpf and EVCSs 
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Case-7: Simultaneous Optimal Planning of DGs with 0.9 pf and EVCSs 

Case-8: Simultaneous Optimal Planning of DGs with optimal pf and EVCSs 

where pf, upf and zpf refer to the power factor, unity power factor and zero power factor.  Cases 1-4 deal with the 

optimal deployment of different DG technologies, case 5 deals with the optimal planning of EVCSs after the 

optimal planning of DGs, and cases 6-8 deal with the simultaneous optimal deployment of DGs and EVCS. Three 

standard IEEE-33,69 bus systems comprised of small, medium and large-scale radial distribution systems are 

considered. A Pareto-based novel multi-objective hummingbird optimization algorithm (MOAHO) has been 

employed for generating the optimal Pareto fronts between the conflicting objectives. TOPSIS method is 

employed for selecting the most (or) best compromised solution from the optimal pareto front. In step 3 of the 

TOPSIS method, the weights related to objectives 𝐹1 (𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠), 𝐹2(𝑇𝑉𝐷), 𝐹3(𝑉𝑆𝐼)  are coined as 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠.The outcomes of the TOPSIS-MOAHO algorithm are compared with MOPSO, MOGWO & NSGA-

II algorithms. The proposed optimal deployment problem of DGs and EVCSs using TOPSIS-MOAHA, MOPSO, 

MOGWO & NSGA2 is developed under the MATLAB environment and was executed on a personal computer 

having Intel(R) Core (TM) i5-7200U CPU @ 2.50GHz processor with installed RAM of 8 GB. Population size of 

300, Archive size of 200 and maximum number of iterations of 600 are considered for all algorithms. The 

remaining control parameters of all algorithms were initialized to the values quoted in [41]. 

 

A. IEEE-33 BUS SYSTEM 

 

The single-line diagram of the 33-bus radial distribution system is depicted in Figure  4.  A detailed description 

of the 33-bus system can be found in [42]. The total real and reactive power demands of the system are 3715 kW 

and 2300 kVar. The base MVA and kV are 100 and 12.66. In case-0, load flow analysis for the initial assessment 

of the system without DGs and EVCSs is performed. Load flow results indicate a real power loss of 210.98 kW, 

TVD of 0.1338 p.u and VSI of 0.6672 p.u.  

 
 

Figure 4 Single diagram of 33 bus system   

 

B.  DGs deployment  

 

Optimal Pareto fronts generated by MOAHA, MOPSO, MOGWO and NSGA-II algorithms for cases 1-4 of the 

33-bus system are depicted in Figure  5. 
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Figure 5 Optimal Pareto fronts of MOAHA, MOPSO, MOGWO & NSGA-II  

algorithms for cases 1-4 of the 33-bus system 

 

The outcomes like DGs locations, DGs sizes, DGs pf, and system technical parameters for cases 1-4 generated by 

the TOPSIS-MOAHO algorithm (with equal weightage (𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠)=1/3) are tabulated in Table 1. From the 

outcomes tabulated in Table 1 for cases 1-4, the following observations are made. In case-1, due to the connection 

of DGs operating with upf at optimal locations 13, 24, 30 with optimal capacities of 1155 kW, 1071 kW, and 1572 

kW respectively, system power loss reduced to 91.023 kW accounts for 56.85 % loss reduction, TVD is reduced 

to 0.0012 p.u and VSI is maximized to 0.9595 p.u In case-2, system power loss reduced to 17.181 kW accounts 

for 91.860 % loss reduction, TVD is reduced to 0.00005 p.u and VSI is maximized to 0.9881 p.u due to the optimal 

connection of Type-1 & Type-2 DGs in the system. In case-3, loss is mitigated to 19.183 kW, TVD is reduced to 

0.00023 p.u and VSI is maximized to 0.9768 p.u due to optimal planning of Type-3 DGs operating with 0.9 pf 

and in case-4, loss is mitigated to 13.342 kW, TVD is mitigated to 0.00024 p.u and VSI is maximized to 0.9766 

p.u due to optimal connection of Type-3 DGs operating with optimal pf. The outmost improvement in TVD & 

VSI of the system is observed during optimal deployment of Type-1 & Type-2 DGs, balanced improvement in 

three technical metrics is of the system is observed in case-4 i.e., due to optimal deployment of Type-3 DGs 

operating with optimal pf.  

                              Table 1 Results of 33 bus system for cases 0-4 

Case 

No 

DG loc’s/DG 

Sizes (KW/KVAR) 

/DG’s pf 

𝑅𝑃𝑙𝑜𝑠𝑠 

in KW 

 

TVD 

in p.u 

VSI 

in p.u 

% 𝑅𝑃𝑙𝑜𝑠𝑠 

reduction 

Minimum 

Voltage in 

p.u 

0 --------- 210.98 0.1338 0.6672 ---------- 0.9038 

1 
13/1155/1,24/1071/1 

30/1572/1 
91.023 0.0012 0.9595 56.857 0.9895 

2 

14/0827/1,24/1355/1 

30/1055/1,08/0689/0 

21/0272/0,30/0972/0 

17.181 0.00005 0.9881 91.860 0.997 

3 
13/0837/0.9, 24/1177/0.9 

30/1350/0.9 
19.183 0.00023 0.9768 90.907 0.9942 

4 
13/0810/0.88,24/1119/0.88 

30/1206/0.80 
13.342 0.00024 0.9766 93.679 0.9942 

 

 

Several weight combinations are chosen for investigation in order to examine the effects of weight allocations to 

stage III of TOPSIS objectives. The findings were then carefully examined. Table 2 depicts the impact on the 

technical metrics improvement during the optimal deployment of DGs in cases 1-4 due to the consideration of 

different weights during the selection of compromised solutions using the TOPSIS method.  
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                                              Table 2 Results of cases 1-4 of 33 bus system for different weights   

 

Case 

No 

 

Weights 
DG loc’s/DG 

Sizes (KW/kVAR) 

/DG’s pf 

𝑅𝑃𝑙𝑜𝑠𝑠 

in kW 

 

TVD 

in p.u 

VSI 

in p.u 

1 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1,0,0) 
13/807/1,24/1080/1,30/1054/1 72.786 0.0149 0.8817 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,1,0) 
14/1087/1,29/2145/1,25/0589/1 114.3081 0.0004 0.9696 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,0,1) 
13/1311/1,25/781/1,30/1727/1 107.2547 0.0006 0.9738 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1/2,1/2,0) 
13/1154/1,24/1071/,30/1572/1 92.365 0.0013 0.9596 

2 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1,0,0) 

24/1089/1,14/764/1,30/1016/1,11/468/0 

30/0974/0,24/0487/0 
11.962 0.0006 0.9715 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,1,0) 

25/1223/1,15/782/1,30/1349/1,08/682/0 

28/0799/0,21/0387/0 
29.813 0.00005 0.9927 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,0,1) 

25/1202/1,15/817/1,30/1403/1,08/637/0 

28/0973/0,21/0406/0 
23.232 0.0006 0.9972 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1/2,1/2,0) 

24/1355/1,14/827/1,30/1055/1 

08/689/0,30/0973/0,21/0272/0 
17.18 0.00009 0.9881 

3 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1,0,0) 
13/795/0.9,24/1074/0.9,30/1235/0.9 18.40 0.0008 0.9664 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,1,0) 
13/830/0.9,24/12205/0.9,30/1363/0.9 19.814 0.0002 0.977 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,0,1) 
12/1068/0.9,24/1389/0.9,30/1280/0.9 23.93 0.0008 0.9779 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1/2,1/2,0) 
13/0817/0.9,24/1084/0.9,30/1254/0.9 18.484 0.0005 0.971 

4 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1,0,0) 

14/0766/0.88,24/1047/0.87 

30/1105/0.80 
12.885 0.00063 0.9672 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,1,0) 

13/0750/0.84,24/0971/0.83 

29/1351/0.83 
17.043 0.00023 0.9768 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,0,1) 

13/0872/0.80,24/1584/0.80 

29/1186/0.80 
28.773 0.0022 0.9787 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1/2,1/2,0) 

13/0787/0.86,24/1052/0.89 

30/1204/0.81 
13.350 0.00027 0.9763 

 

 

From the outcomes tabulated in Table 2, it is observed that power loss is mitigated to the utmost value for weights 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 = (1,0,0), TVD is reduced to the utmost value for weights 𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 = (0,1,0), VSI is enhanced 

to the utmost value for weights 𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 = (0,0,1) and balanced improvement in all metrics is observed for 

weights 𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 = (1/3,1/3,1/3). Due to the consideration of TVD & VSI as one of the objective functions, 

the better improvement in TVD & VSI in respective cases is achieved by drawing more power from DGs into the 

system. Depending on the importance given to improvement in technical metrics, the distribution operator (or) 

planner may choose one solution from the solutions tabulated in Table 2.Figure 6 depicts the 33-bus system voltage 

profile box plot of cases 1-4 for different weights. It can be seen from Figure 6 that whenever TVD is considered 

as one of the target functions, the system's bus voltages are significantly closer to reference values. 
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Figure 6 33-bus system voltage profile box plot of cases 1-4 for different weights 

 

C.  Simultaneous DGs & EVCSs deployment  

Based on the survey reported in [43], the optimal planning of one charging station in each zone depicted in Figure. 

4 with a total of four charging stations having a total charging station capacity of 800 kVA are considered in the 

33-bus system. Optimal Pareto fronts generated by MOAHA, MOPSO, MOGWO and NSGA-II algorithms for 

cases 5-8 of the 33-bus system are depicted 

 in Figure  7.  

 
Figure 7 Optimal Pareto fronts of MOAHA, MOPSO, MOGWO & NSGA-II algorithms for cases 5-8 of the 33-

bus system 

 

The outcomes like DGs locations, DGs sizes, DGs pf, EVCSs locations, EVCSs sizes, and system technical 

parameters for cases 5-8 were generated using the TOPSIS-MOAHO algorithm (with equal weightage 

(𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠)=1/3) are tabulated in Table 3. 
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Table 3 Results of 33 bus system for cases 5-8 

 

Case 

No 

DG loc’s/DG 

Sizes(KW/KVAR) 

/DG’s pf 

EVCS 

loc/EVCS 

Sizes (kVA) 

𝑅𝑃𝑙𝑜𝑠𝑠 

in KW 

 

TVD 

in p.u 

VSI 

in p.u 

% 𝑅𝑃𝑙𝑜𝑠𝑠 

reduction 

Minimum 

Voltage 

in p.u 

5 

13/0835/0.9 

24/1076/0.9 

30/1356/0.9 

07/300,27/300 

24/150,19/150 
28.411 0.0037 0.9359 86.533 0.9836 

6 

14/1129/1 

24/1517/1 

29/1455/1 

09/0676/0 

21/0326/0 

30/1109/0 

14/300,29/300 

24/150,19/150 
20.2506 0.0001 0.9875 90.40 0.9969 

7 

13/1115/0.9 

24/1345/0.9 

30/1620/0.9 

13/300,30/300 

24/150,19/150 
18.142 0.00024 0.9756 91.401 0.9939 

8 

13/1126/0.91 

24/1399/0.91 

30/1433/0.80 

13/300,30/300 

24/150,19/150 
13.193 0.00025 0.9756 93.746 0.9939 

 

In case-5, optimal planning of DGs operating with 0.9 pf followed by optimal planning of EVCSs is addressed. 

From the outcomes, it was observed that technical parameters are worsened in case 5 in comparison to the metrics 

quoted in case 4 due to the additional EVCS load on the system. Simultaneous optimal planning of EVCSs and 

DGs is addressed in cases 6-8. The utmost improvement in three technical metrics is observed in case-8 during 

simultaneous optimal planning of EVCSs and DGs operating with optimal pf i.e., power loss is reduced to 93.74%, 

TVD is mitigated to 0.00025, VSI is maximized to 0.9756. Figure  8 depicts the voltage profile of the system for 

all the cases 0-8. From Figure  8, it was observed that the voltage profile of the system is improved in all the cases 

and all the bus voltage limits are within minimum and maximum voltage permissible limits 

 

Figure 8 Voltage profile of 33 bus system for the outcomes of TOPSIS-MOAHO with equal weightage 

generated in different cases 
Table 4 depicts the impact on the technical metrics improvement during the optimal deployment of DGs in case 

8 due to the consideration of different weights during the selection of compromised solutions using the TOPSIS 

method.  
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Table 4 Results of case-8 of 33 bus system for different weights   

 

Weights  
𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1,0,0) 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,1,0) 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(0,0,1) 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1/2, 0,1/2) 

𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠 

(1/3,1/3,1/3) 

DG loc’s/DG 

Sizes (KW) 

/DG pf 

13/1095/0.92 

24/1169/0.89 

30/1405/0.80 

13/0938/0.80 

23/1983/0.83 

30/1408/0.82 

12/1144/0.8 

23/1870/0.8 

30/1331/0.8 

13/1109/0.91 

24/1204/0.89 

30/1395/0.8 

13/1126/0.91 

24/1399/0.91 

30/1433/0.80 

EVCS 

loc/EVCS 

Sizes (KVA) 

13/300,30/300 

24/150,19/150 

13/300,30/300 

23/150,19/150 

10/300,33/300 

23/150,19/150 

13/300,30/300 

24/150,19/150 

13/300,30/300 

24/150,19/150 

𝑅𝑃𝑙𝑜𝑠𝑠 

in KW 
12.3675 24.649 32.207 12.4194 13.193 

TVD 

in p.u 
0.0005 0.0002 0.0008 0.0003 0.00025 

VSI 

in p.u 
0.9697 0.9774 0.9777 0.9747 0.9756 

% Real power 

injection by 

DGs 

78.501       93.802 94.14 80.34 85.76 

 

D. IEEE-69 BUS SYSTEM 

 

The single-line diagram of the 69-bus radial distribution system is depicted in Figure  9.  A detailed description 

of the 69-bus system can be found in [12]. The total real and reactive power demand of the system are 3801.4 kW 

and 2693.6 kVar. The base MVA and kV are 100 and 12.66. In case-0, load flow analysis for the initial assessment 

of the system without DGs and EVCSs is performed. Load flow results indicate a real power loss of 224.894 kW, 

TVD of 0.0992 p.u and VSI of 0.6833 p.u.  

 
Figure 9 Single diagram of 69 bus system   

 

E. DGs deployment  

 

Optimal Pareto fronts generated by MOAHO, MOPSO, MOGWO and NSGA-II algorithms for cases 1-4 of the 

69-bus system are depicted in Fig 10.  
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Figure 10 Optimal Pareto fronts of MOAHA, MOPSO, MOGWO & NSGA-II algorithms for cases 1-4 of the 

69-bus system 

 

Table 5 gives the optimal locations, DG sizes and DGs pf given by the TOPSIS-MOAHO algorithm for cases 1-

4 of the 69-bus system. The utmost improvement in three technical metrics is observed in case-4 during optimal 

planning of DGs operating with optimal pf i.e., power loss is reduced to 98.053 %, TVD is mitigated to 0.00009, 

VSI is maximized to 0.9772.  

Table 5 Results of 69 bus system for cases 0-4 

 

Case 

No 

DG loc’s/DG 

Sizes (KW/kVAR) 

/DG’s pf 

𝑅𝑃𝑙𝑜𝑠𝑠 

in KW 

 

TVD 

in p.u 

VSI 

in p.u 

% 𝑅𝑃𝑙𝑜𝑠𝑠 

reduction 

Minimum 

Voltage in 

p.u 

0 --------- 224.894 0.0992 0.6833 ---------- 0.9092 

1 
11/0850/120/0425/1 

61/2120/1 
78.181 0.00025 0.9770 65.253 0.9942 

2 

11/0471/1,18/0356/1 

61/1729/1,21/0478/0 

49/1239/0,61/1209/0 

6.8742 0.00005 0.9921 96.949 0.9980 

3 
11/0596/0.9 61/1835/0.9 

18/0405/0.9 
9.4546 0.00009 0.9772 95.798 0.9943 

4 

11/0561/0.80 

19/0366/0.85 

61/1682/0.81 

4.3802 0.00009 0.9772 98.053 0.9943 

 

F.  Simultaneous DGs & EVCSs deployment  

Based on the survey reported in [37], the optimal planning of one charging station in each zone depicted in Figure 

. 9 with a total of five charging stations having a total charging station capacity of 1100 kVA are considered in the 

69-bus system. Optimal Pareto fronts generated by MOAHA, MOPSO, MOGWO and NSGA-II algorithms for 

cases 7-8 of the 69-bus system are depicted  

in Figure  11.  

 
Figure 11 Optimal Pareto fronts of MOAHA, MOPSO, MOGWO & NSGA-II algorithms for cases 7-8 of the 

69-bus system 
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The outcomes like DGs locations, DGs sizes, DGs pf, EVCSs locations, EVCSs sizes, and system technical 

parameters for cases 5-8 were generated using the TOPSIS-MOAHO algorithm (with equal weightage 

(𝑤𝑝, 𝑤𝑣𝑑 , 𝑤𝑣𝑠)=1/3) are tabulated in Table 6.  

Table 6 Results of 69 bus system for cases 5-8 

 

Case 

No 

DG loc’s/DG 

Sizes 

(KW/KVAR) 

/DG’s pf 

EVCS 

loc/EVCS 

Sizes (KVA) 

𝑅𝑃𝑙𝑜𝑠𝑠 

in KW 

 

TVD 

in p.u 

VSI 

in p.u 

% 𝑅𝑃𝑙𝑜𝑠𝑠 

Reduction 

Minimum 

Voltage in 

p.u 

5 

11/0596/0.9 

61/1835/0.9 

18/0405/0.9 

06/150,17/300 

39/300,30/150 

55/200 

14.6417 0.0039 0.938 93.450 0.9841 

6 

12/0427/1 

22/0633/1 

61/1936/1 

12/0619/0 

25/0290/0 

61/1186/0 

06/150,23/300 

39/300,30/150 

     58/200 

7.6310 0.00014 0.9947 96.608 0.9943 

7 

10/0755/0.9 

17/0723/0.9 

61/1966/0.9 

10/150,17/300 

39/300,30/150 

     58/200 

9.5492 0.00012 0.9964 95.755 0.9943 

8 

09/1058/0.88 

18/0746/0.87 

61/1639/0.80 

07/150,18/300 

39/300,30/150 

55/200 

6.1753 0.00013 0.9929 97.255 0.9943 

 

The utmost improvement in three technical metrics is observed in case-8 during simultaneous optimal planning of 

EVCSs and DGs operating with optimal pf i.e., power loss is reduced to 97.255%, TVD is mitigated to 0.00013, 

VSI is maximized to 0.9929. 

 Figure  12  depicts the voltage profile of the system for all the cases 0-8 of the 69-bus system. 

 

Figure 12 Voltage profile of 69 bus system for the outcomes of TOPSIS-MOAHO with equal weightage 

generated in different cases 
 

G. Comparative analysis 

Table 07 and 08 depicts the comparison of outcomes generated by the MOAHO algorithm with the MOSPSO, 

MOGWO & NSGA-II algorithms. From the values quoted in table 07 and 08 it has been observed that the 

MOAHO algorithm outperforms in all the cases of 33-bus, 69-bus  systems. In the proposed optimal planning of 

the DGs & EVCSs problem, the number of decision variables is 3 in case-1 of the 33-bus & 69-bus system . This 

shows the effectiveness of the MOAHO algorithm over MOPSO, MOGWO & NSGA2 algorithms over small-

size problems having a small number of decision variables to problems having a large number of variables. The 
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dominance of the MOAHO algorithm over MOSPO, MOGWO & NSGA2 algorithms is also observed from the 

Pareto fronts depicted in Figures 5,7,10,11.  

 

Table 07 Comparison results of MOAHO with MOPSO, MOGWO & NSGA2 for 33 bus system of cases 1,3,4,7 

& 8 

Case 

No 

Optimization 

Technique 

DG loc’s/DG 

Sizes (KW)/DG pf 

EVCS loc/EVCS 

Sizes (KVA) 

𝑅𝑃𝑙𝑜𝑠𝑠 

in kW 

 

TVD 

in p.u 

VSI 

in p.u 

1 

MOAHO 
13/1155/1, 24/1071/1 

30/1572/1 

---------- 

91.023 0.0012 0.9595 

MOPSO 
13/1186/1,24/0943/1 

30/1512/1 
91.069 0.0016 0.9523 

MOGWO 
14/1174/1, 24/975/1 

30/1556/1 
93.859 0.0013 0.9571 

NSGA2 
13/1106/1, 25/806//1 

29/1727/1 
93.440 0.0015 0.9506 

3 

MOAHO 
13/837/0.9, 24/1177/0.9 

30/1350/0.9 

---------- 

19.183 0.00023 0.9768 

MOPSO 
13/835/0.9, 24/1076/0.9 

30/1356/0.90 
19.249 0.00025 0.9765 

MOGWO 
13/839/0.9, 24/1346/0.9 

30/1359/0.9 
19.895 0.00023 0.9770 

NSGA2 
13/863/0.9,24/1123/0.9 

30/1264/0.9 
18.904 0.00034 0.9764 

4 

MOAHO 
13/810/0.88, 24/1119/0.88 

30/1206/0.8 

---------- 

13.342 0.00024 0.9766 

MOPSO 
13/0787/0.86, 24/1052/0.89 

30/1204/0.90 
13.350 0.00027 0.9763 

MOGWO 
12/991/0.9, 24/1033/0.8 

30/1162/0.81 
15.491 0.00033 0.9768 

NSGA2 
13/842/0.89, 24/1029/0.86 

30/1175/0.8 
13.227 0.00026 0.9764 

7 

MOAHO 
13/1115/0.9, 24/1345/0.9 

30/1620/0.9 

13/300,30/300 

24/150,19/150 
18.142 0.00024 0.9756 

MOPSO 
13/1090/0.9, 24/1319/0.9 

30/1649/0.9 

13/300,30/300 

24/150,19/150 
18.187 0.00026 0.9755 

MOGWO 
12/1260/0.9, 24/1211/0.9 

30/1654/0.9 

12/300,30/300 

4/150,19/150 
19.738 0.00034 0.9748 

NSGA2 
5/2053/0.9, 15/856/0.9 

31/1276/0.9 

10/300,32/300 

24/150,19/150 
37.397 0.00080 0.9457 

8 

MOAHO 
13/1126/0.91, 24/1399/0.91 

30/1433/0.80 

13/300,30/300 

24/150,19/150 
13.193 0.00025 0.9756 

MOPSO 
12/712/0.91, 25/1967/0.82 

33/1061/0.93 

18/300,33/300 

25/150,21/150 
23.360 0.00086 0.9599 

MOGWO 
10/1385/0.94, 24/1132/0.92 

30/1383/0.8 

10/300,28/300 

23/150,19/150 
18.502 0.00054 0.9647 

NSGA2 
16/861/0.9, 23/1485/0.9 

30/1485/0.8 

8/300, 29/300 

23/150,20/150 
28.505 0.00098 0.9561 

 

Table 08 Comparison results of MOAHO with MOPSO, MOGWO & NSGA2 for 69 bus system of cases 1,3,4,7 

& 8 
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Case 

No 

Optimization 

Technique 

DG loc’s/DG 

Sizes (KW)/DG pf 

EVCS loc/EVCS 

Sizes (KVA) 

𝑅𝑃𝑙𝑜𝑠𝑠 

in kW 

 

TVD 

in p.u 

VSI 

in p.u 

1 

MOAHO 11/850/1,20/425/1 

61/2120/1 

------------- 

78.181 0.00025 0.9770 

MOPSO 11/807/1,21/436/1 

61/2425/1 

78.255 0.00026 0.9770 

MOGWO 11/823/1, 21/448/1 

61/2139/1 

79.366 0.00026 0.9770 

NSGA2 14/952/1,30/28/1 

61/2120/1 

82.596 0.00025 0.9770 

3 

MOAHO 11/596/0.9,61/1835/0.9 

18/405/0.9 

------------- 

9.4546 0.00009 0.9772 

MOPSO 19/455/0.9,61/1846/0.9 

66/415/0.9 

9.8676 0.00012 0.9772 

MOGWO 15/664/0.9,50/876/0.9 

61/1874/0.9 

10.591 0.00022 0.9845 

NSGA2 11/563/0.9. 17/405/0.9 

61/1832/0.9 

9.4845 0.00010 0.9772 

4 

MOAHO 11/561/0.8, 19/366/0.85 

61/1682/0.81 

------------ 

 

 

4.3802 0.00009 0.9772 

MOPSO 18/410/0.8,61/1676/0.81 

67/400/0.8 

4.7048 0.00012 0.9772 

MOGWO 16/650/0.86,49/674/0.8 

61/1774/0.8 

6.0106 0.00028 0.9881 

NSGA2 18/559/0.82,50/743/0.8 

61/1774/0.81 

5.2042 0.00022 0.9824 

7 

MOAHO 10/755/0.9,17/723/0.9 

61/1966/0.9 

10/150,17/300 

39/300,30/150,58/200 

9.5492 0.00012 0.9964 

MOPSO 17/777/0.9,53/866/0.9 

61/1824/0.9 

07/150,17/300 

39/300,30/150,55/200 

10.680 0.00018 0.9772 

MOGWO 16/905/0.9,52/426/0.9 

61/2000/0.9 

06/150,17/300 

43/300,32/150,58/200 

13.564 0.00034 0.9903 

NSGA2 11/694/0.9, 23/651/0.9 

61/2001/0.9 

07/150,23/300 

43/300,32/150,58/200 

17.798 0.00063 0.9915 

8 

MOAHO 9/1058/0.88,18/746/0.87 

61/1639/0.80 

07/150,18/300 

39/300,30/150,55/200 

6.1753 0.00013 0.9929 

MOPSO 16/928/0.89, 49/714/0.8 

61/1969/0.83 

06/150,17/300 

39/300,30/150,55/200 

8.048 0.00024 0.9841 

MOGWO 25/600/0.8, 55/771/0.8 

61/1579/0.84 

07/150,25/300 

43/300,30/150,58/200 

11.573 0.00106 0.9728 

NSGA2 18/709/0.83,61/1840/0.83 

66/598/0.83 

10/150,18/300 

46/300,32/150,58/200 

11.690 0.00071 0.9915 

 

V. CONCLUSION 

In this work, the impact on the improvement of distribution system performance under optimal deployment of 

various DG technologies using the TOPSIS-MOAHO algorithm is presented. IEEE-33,69  bus distribution 

systems are considered test systems. Enhancement of three technical parameters: real power loss reduction, total 

voltage deviation minimization and voltage stability index maximization via eight cases is presented in this study. 

Optimal Pareto fronts for eight cases are generated by the MOAHO algorithm and the most compromised solution 

is selected using the TOPSIS method. The impact on the objective function’s outcomes due to variation of weights 
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in the TOPSIS method is presented. Maximum enhanced improvement in all the technical metrics has been 

balanced in all cases during the consideration of equal weightage in the TOPSIS method. Among all the cases, the 

outmost enhancement improvement in TVD & VSI of the test systems is improved in case-2 i.e., during optimal 

planning of Type-1 DGs (Micro-turbine etc.) and Type-2 (DSTATCOMs) because injection of active and reactive 

powers at different buses of the distribution system. Overall balanced improvement in system power loss 

mitigation, voltage deviation index minimization and voltage stability index maximization are observed during 

optimal planning of Type-3 DGs operating with optimal pf is observed. Later, simultaneous optimal planning of 

DGs and EVCSs in the distribution system is presented in the work. The worsening in technical metrics of the 

distribution system is observed due to the load of EVCS. Optimal planning of DGs and EVCSs has improved the 

system performance to the above-cited metrics. In terms of achieving the optimal solution, the MOAHO algorithm 

dominates the MOPSO, MOGWO and NSGA2 algorithms. Optimal planning of DGs and EVCSs considering 

much more practical insights like load & generation uncertainties, and traffic congestion of PHEVs could be a 

future scope of work.   
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