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Abstract: - Extracting and evaluating pertinent information in a high-dimensional feature set is extremely difficult when dealing with a 

high-dimensional feature space. Classification methods require additional training time to generate a classification model. Every feature 

is not equally relevant in a high-dimensional feature collection. As a result, feature selection is a productive method for identifying vital 

features and eliminating unnecessary ones. Feature selection serves as a method of pre-processing before classification. It decreases the 

dimension of the dataset to shorten the training period required to develop a classifier. This research study aims to propose a novel feature 

subset selection method that establishes the relative importance of each feature using several criteria. The proposed approach ranks 

available features from high to low using a variety of feature-ranking approaches. Different feature ranking algorithms perform 

differently on the same dataset. It is challenging to obtain robust performance with just one feature ranking algorithm. To overcome this 

problem, we have used the Schulze rank aggregation method. The Schulze method combines multiple feature ranking techniques to 

assign a rank to each feature inside the dataset. This study presents an optimization strategy for heuristic search based on the backward 

feature removal method. It eliminates features according to the rank determined by the Schulze rank aggregation technique. In this paper, 

we evaluated the performance of the proposed method against the current state-of-the-art feature ranking techniques for high-dimensional 

feature set classification. 

Keywords: Feature Ranking, Feature Subset Selection, Backward Feature Elimination, Hybrid Feature Selection, Schulze 

Method 

 

 

I.  INTRODUCTION  

High-dimensional feature sets require more time to generate a classification model. All the features from the 

high-dimensional feature set do not take part in the development process of a classifier. Removing those 

unnecessary features before the creation of the classifier reduces the time to create the classifier [1]. Feature 

selection is a preprocessing phase in classification that reduces the dimension of the dataset. An ideal subset of 

features increases the classifier’s performance from the perspective of evaluation metrics like classification 

accuracy and time complexity [2]. Utilizing an optimal subset of features in real-world applications can lead to 

simple and faster classification models. It also increases the understanding of classification rules described by 

the classification model. There are two primary components to feature selection procedures. (i) The production 

of various subsets of features using various search approaches and (ii) the Usefulness of various feature subsets 

obtained by search approaches using evaluation criteria [2–4]. There are three broad methods of feature selection 

approaches based on the interaction with the classifier. These three methods are (i) the Filter approach, (ii) the 

Wrapper approach, and (iii) the Embedded approach [3]. The filter approach uses an intrinsic characteristic of 

the data and provides a ranking of features as output. It generates results without interaction with the 

classification technique [3, 5]. It is the fastest approach among all approaches. The wrapper approach is 

associated with the specified classifier [3, 6]. It selects the best subset of features from the feature set using 

different search methods [5, 6]. There are three main search strategies available: (1) Sequential search, (2) 

Complete search, and (3) Random search [7, 8]. The evaluation metrics and validation criteria guide the choice 

of the best possible subset of features in the wrapper approach. Wrapper strategies perform better than filter 

strategies. However, it takes more time to discover an optimal subset of features because one must run a 

classification algorithm during the feature subset generation process [6]. The Embedded approach uses a mixture 

of the filter and wrapper approaches to complete feature selection. The Embedded approaches provide an 

excellent balance between classifier generation time and classification performance [3]. Feature selection aims to 
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discover meaningful information from a pool of data. It is beneficial in application domains that contain many 

features and minimal instances. Text mining and bioinformatics are two examples of such fields [4]. Researchers 

always choose a stable feature selection method in a real-world application, where slight changes in the dataset 

do not affect the efficacy of the entire feature selection process. Surprisingly, the robustness (stability) of the 

feature selection methods received a relative lack of attention in the literature [7, 9]. The stability metrics 

employed for the feature selection process have been the primary focus of recent research in this field. Different 

stability measures for feature selection are dependency, consistency, and information theory [9]. Kalousis et al. 

provide a comparative assessment of the stability of feature selection across multiple high-dimensional datasets 

[5, 9]. We emphasize the robust feature ranking approaches and optimal backward feature elimination strategies. 

In this research paper, We studied whether combining different feature ranking algorithms results in a more 

stable feature rank and a more stable classification performance. The Schulze method is effective for a 

combination of various feature ranking strategies. It gives a final rank list of features that provides a more stable 

performance than an individual rank list of different feature rank strategies [10]. 

The rest of the paper is structured as follows. We explain the research topic with the substantial development 

made thus far in section II. We described various rank aggregation methods used to generate rank for features in 

section III. We discussed a heuristic feature selection technique called optimized backward feature elimination in 

section IV. Section V presents the experimental findings of the suggested method on high-dimensional feature 

sets. Section VI brings this paper to a conclusion. 

II. PROBLEM DESCRIPTION 

Wherever In many real-life applications, we have very high-dimensional feature sets. The feature selection 

technique applies to the high-dimensional feature set to select the most desirable features. We have an m-

dimensional data collection that serves as the input for the algorithm for choosing features. The data set contains 

n number of data samples. A Matrix (Datan*m) represents a dataset, where m represents the overall feature count 

in the data set, while n represents the total number of samples. Suppose X={X(i) | i = 1, 2, .., m} is an original 

feature set with m-dimension. Then, the purpose of the feature choice method is to find a new feature vector    

Y={ Y (i) | i = 1, 2, 3, .., p}, which is a subset of the initial feature set X. It means Y⊂ X and p ≤ m.  

The classification algorithm takes the optimal subset of features. An ensemble learner produces predictive 

models. They compete with other single learners and provide better performance. This assertion is correct in the 

field of bioinformatics [11]. The current research examined used the ensemble notion to choose features [12]. 

The ensemble idea offers advantages over feature selection based on a single rank list, including a more stable 

feature list and superior classification accuracy [12]. However, the choice of how to aggregate the results is a 

part of the ensemble feature selection technique. In the following part, we discuss several possible rank 

aggregating methods. Many parts of the ranking process are the subject of rank aggregation strategies, such as 

giving the highest-ranked features greater weight or merging two or more established feature selection methods 

to improve performance [11, 13]. The prior research study demonstrates that selecting different rank aggregation 

strategies improves the classifier performance [13]. If we apply feature ranking procedure R(D, Ftarget) to dataset 

D, it outputs a list of features F={F1, F2, ..., Fn} ordered by decreasing importance Imp(fi) concerning Ftarget. The 

function Imp(fi) and the list of ranked features are distinct for each ranking method. If we use only one ranking 

technique, it may not give the best results for all datasets. A specialist in the field would favor a stable algorithm 

over an unstable one. We consider the issue of how reliable the ordering of features in a ranked list is, assuming 

we are unaware of the ranking technique. Ensemble feature ranking refers to this problem.  

III. RANK AGGREGATION 

The rank aggregation method aims to generate one final rank of the attributes using different available rank lists. 

Several ranking strategies, including Information Gain, Symmetric Uncertainty, Gain Ratio, OneR, Relief, Chi-

square, etc., are available for the Feature selection technique. Each of the above-listed ranking techniques ranks 

the data set features. Rank states the importance of each attribute of the data set. Any specific ranking technique 

cannot provide the optimal rank for every feature of the feature set. If we combine rank from multiple ranking 

techniques, we can get advantages of all ranking techniques and also get a stable rank list [14]. We face two 

significant obstacles when we combine many feature rank lists into a single rank list. (i) How can several rank 

lists be generated? (ii) The aggregation function employed in rank aggregation. There are two different ways to 

generate rank lists. (i) The first one is to use the same dataset but apply multiple ranking techniques with 
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different criteria to generate different rank lists shown in Figure 1. (ii) The second one is to divide the data set 

into partitions and apply different ranking techniques on different segments of the datasets to generate multiple 

rank lists, as shown in Figure 2. In our experiments, we have used the first rank generation technique. The 

second issue is which type of aggregation function to use. There are primarily two types of rank aggregation: 

order-based rank aggregation and score-based rank aggregation. An individual rank list contains scores for each 

feature, and the accumulation process uses these scores to generate the final rank list for all attributes in score-

based rank aggregation. For creating the final rank list, an order-based rank aggregation incorporates the order of 

each feature in each rank list. In this paper, we have focused on the order-based rank aggregation technique. In 

this research, We evaluated the features that made up the data set using six well-liked feature ranking algorithms. 

These techniques are Information Gain, Symmetric uncertainly, Gain Ratio, OneR, Relief, and Chi-Squared 

[15]. Borda(BD), Condorcet(CD), Schulze(SSD), and Markov Chain are some of the popular rank aggregation 

methods [2, 16, 17]. We have used the Schulze rank aggregation method to generate a stable rank list from 

multiple rank lists generated with the above-listed feature ranking techniques. 

 

.                 Fig. 1 Use of Different Feature Ranking Algorithm 

 

 
Fig. 2 Rank Aggregation 
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A. Feature Ranking Techniques 

1) Information Gain (IG): A feature’s Information Gain is its ability to predict the class of training data 

instances based on uncertainty [18]. According to Claude Shannon, an attribute with a higher uncertainty value 

provides valuable information, whereas a feature with a lower uncertainty value is irrelevant. To put it another 

way, if a coin has a head on both sides, then the outcome of tossing it does not produce any information. 

However, if a conventional coin has a head and a tail, then the result of tossing a coin provides information. 

The Information Gain (entropy) about feature Y following observation of feature X is the same as the 

Information Gain (entropy) about feature X following analysis of feature Y. The IG criterion has the drawback 

of favoring features with various values even when those features are not more informative than other features. 

It is possible to identify the features that are most relevant to the target class through information gain. IG is 

provided by, The steps are as follows: 

IG=H(Y)-H(Y ∣  X )=H(X)-H(X ∣ Y )                                                            (1) 

a) Find the entropy of the target feature. 

Info(𝐷) = H(D) = −∑  n
i=1 pilog2(pi)                                                        (2) 

      where, Pi is the nonzero probability that a specific tuple in D belongs to class Ci. 

b) For each feature, find the anticipated information needed To categorize a tuple from the target  

              feature based on partitioning by that feature. 

Infofeature 𝑖
(D) = ∑  𝑚

𝑗=1

|D𝑗|

𝐷
× Info(D𝑗)                                                      (3) 

c) Now, Find Information Gain of each feature using the below formula: 

Gain(feature𝑖) = Info(𝐷) − Infofeature 𝑖
(D)                                               (4) 

d) Generate a rank list by ordering the Information Gain value of each feature in descending  

               order. 

 

2) Symmetrical Uncertainty (SU): Symmetrical uncertainty works on the drawback of Information Gain. 

It uses the entropy of individual features to overcome the problem of Information Gain. It normalizes its value 

between the range [0, 1] and rectifies Information Gain’s bias towards features with enormous values [19]. 

SU( feature𝑖) = 2.0 × [
MI(X,Y)

𝐻(Y)+H(X)
]                                                               (5) 

                              where, MI(X,Y) = Mutual Information between Feature X and Feature Y, H(X) = Entropy of 

the target feature and H(Y) = Entropy of all features. The steps to find Symmetrical uncertainty are as follows: 

a) Find the Entropy of the target feature and all features. 

b) Find the Information Gain of every feature. 

c) Following that, find the value of symmetrical uncertainty (SU) of every feature using the 

              above listed equation (5). 

d) Generate a rank list by ordering the value of symmetrical uncertainty of each feature in  

               descending  order. 

 

3) OneR: OneR (One Rule) is a straightforward classifier that generates a decision tree with one level 

[2]. It can infer simple and accurate classification rules from data samples (instances). It can handle missing 

values of the dataset. It creates a Rule for each feature of the training data and then sets the Rule with the 

minimum error margin as its One Rule. The most common class for each feature determines the Rule of that 

feature. A Rule is a collection of feature values associated with their frequently associated class name. The 

Rule’s error rate is the amount of training data instances in which the class of a feature value does not agree 

with the binding for that feature value in the Rule. The algorithm chooses the Rule randomly when two or more 

rules have the same error rate. In the nominal dataset, The OneR algorithm’s steps are as follows: 

a) Build the frequency table of each distinct value of every feature with all the target classes. The 

              frequency table contains a count of each class name associated with every distinct feature  

              value. 

b) Find the Rule for each feature with the help of a frequency table. Choose among the classes to   

              generate a Rule (Feature Value → Class Value) depending on the maximum value of that  

              frequency. 

c)           Following Find the error rate of each Rule for the class value of that feature that does not agree 

              with that Rule. 

d)           Generate a rank list by ordering the value of symmetrical uncertainty of each feature in  

              descending  order. 
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4) RELIEF: Marko Robnik-ikonja and Igor Kononenko describe the RELIEF method, which uses 

instance-based learning to assign each feature a pertinent weight [20]. The Relief algorithm’s main principle is 

to treat each feature as an independent entity and determine the importance of the feature based on its potential 

to discriminate data samples that are close to one another. The Relief algorithm has the inherent flaw of giving 

high relevance ratings to all the discriminating features, although some features have substantial correlations. 

The algorithm consists of three main parts, which followed as:  

a) Determine the distance between the closest hit and miss. 

b) Determine each feature’s weight and update it following dataset samples. 

c) Retrieve the top k features or an ordered list of features based on a specified threshold.  

 

5) Gain Ratio: The information Gain metric favors tests having a wide range of outcomes. The 

Information Gain prefers attributes with more possible values, even though features with fewer values are more 

informative. The gain ratio (GR), an addition to Information Gain, is used by C4.5, a method that replaces the 

ID3 algorithm to combat bias [21]. By using the intrinsic information (Entropy) of that characteristic, it 

corrects Information Gain. Let D be a collection of d data samples divided into different classes. The 

anticipated details required to categorize a particular data sample are provided by, 

GainRatio ( feature 𝑖) =
 Gain ( feature 𝑖)

 splitInfo feature 𝑗
(𝐷)

                                                            (6) 

                       The steps to find the Gain Ratio are as follows: 

a) Find Information Gain of each feature. 

b) Find Discover the split information for each feature. This value shows the possible data  

              generated by dividing the data set used for training, D, into v divisions, which coincide with  

              the v results of a test on feature i. 

SplitInfofeature i
(D) = −∑  v

j=1
|Dj|

|D|
× log2 (

|Dj|

|D|
)                                                                      (7) 

c)            Find the Gain Ratio of each feature according to its equation. 

d)           Generate a rank list by ordering the value of the Gain Ratio of each feature in descending  

               order. 

 

6) Chi-Square: The chi-square test of independence allows the researcher to determine whether features 

are independent of one another or whether there is a pattern of dependence between them [22]. The researcher 

might assert there exists a statistically significant connection between the two features when there is a 

dependency. The chi-square calculation in the feature selection scenario is as follows: 

𝜒(𝑥𝑖)
2 = ∑  𝑖𝑗

( observed 𝑖𝑗− Expected 𝑖𝑗)
2

 Expected 𝑖𝑗
                                                                       (8) 

                                                   where the expected number of features Xi computed as: 

 𝐸𝑖𝑗 =
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑢𝑛𝑡(𝐶𝑙𝑎𝑠𝑠𝑗)∗𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑢𝑛𝑡(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖)

𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                        (9)  

 

The chi-squared test creates a frequency table containing the class value for each feature and each unique 

feature value. The frequency table determines the anticipated value for each distinct value of that particular 

feature. We need to count the chi-squared value for each feature with class to select features. A feature with a 

high chi-squared value for the target class indicates a strong relationship with the class. Arrange all chi-squared 

values in descending order to generate a rank list. 

B. Rank Aggregation Techniques 

1) Borda Count (BC) : A feature’s average position in the rank list is its Borda count. 

𝐵𝑜𝑟𝑑𝑎(𝑖) = ∑  𝑛
𝑗=1 𝜋𝑗(𝑓𝑖)                                                                              (10) 

where The rank of feature fi in ranking Pij is expressed as Pij(fi). By arranging Borda counts in ascending 

  order, the Borda algorithm provides each feature a rank [23]. 

 

2) Condorcet : A The Condorcet technique incorporates a pairwise comparison of the rankings of two 

features. The Condorcet criterion states that a candidate is the ”Condorcet winner” if it outperforms all others 

in straightforward pairwise comparisons [16]. Depending on this characteristic, the Condorcet aggregation 

method operates as follows: for each input ranking method, compare the rank of a feature (fi) with the rank of 

each other feature, each combination at once, and determine which feature ”wins” by having the higher rank. 

Add up these victories for all ranking techniques while keeping separate totals for each pairwise combination. 

The feature that outperforms all remaining features in pairwise contests is considered the most preferred 
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feature, and it ranks first in the aggregated ranking. Once we determine the best feature, we can remove the 

best feature from the feature set and derive another Condorcet winner from the remaining features. We can 

consider the second Condorcet winner as the second-best feature in the aggregated ranking, and so on. We can 

use a random tiebreak among winners if we fail to identify a single Condorcet winner. 

 

3) Schulze Method (SSD): Schulze Method is known as Schwartz Sequential Dropping (SSD) [10, 24]. 

This approach also complies with the Condorcet criterion. We calculate how many ranks of feature fx are 

higher than feature fy for each pair of features and vice versa. If the first number is higher, then fx defeats fy, 

else fy defeats fx, and there is a tie if both numbers are equal. We can generate the following graph based on 

the above information: The features serve as the vertices, and we add an edge from fx to fy whenever fx 

triumphs over fy. This method guarantees that every created graph contains at least one cycle or a single 

winning vertex element. The Schwartz set is the collection of all these winning elements. If there are cycles in 

the Schwartz set, we remove edges from the graph to remove them. If the number of ranks where fx is higher 

than fy is least, considering all sets of edges in the cycle, we remove the edge that connects fx to fy. We 

eliminate the elements at once if they receive equal vote counts. The system keeps doing this until there aren’t 

any more cycles in the Schwartz set. The Schwartz set only contains isolated vertices after we broke all of the 

cycles of the graph, and the associated vertices are the victorious ones. After that, we can delete these vertices 

from the graph and choose a fresh set of winners. We rate each feature in the aggregation rank based on the 

order in which they occur as winners. This approach announces only one winner per round. We break ties at 

random While there are many winners [24]. 

 

4) Markov Chain  (MC): Dwork et al. explain a method for creating aggregate ranks based on Markov 

chains(MC4) [16]. The MC4 algorithm is comparable to Google PageRank. The MC4 criteria for feature 

ranking are as follows: The stationary probability distribution helps the basis for arranging the features to 

construct the aggregated rating. The Markov chain state pertains to the features to be ranked, and the transition 

probabilities rely on the input rankings. The algorithm operates as follows: We use the graph to represent the 

Markov chain. In a graph, every feature correlates to a vertex. A weighted directed edge is generated from the 

vertex fx to the vertex fy for each pair of vertices fx and fy if fx appears above fy in a ranking and the weight is 

proportional to the separation between these features in the ranking. The transition probabilities are represented 

by rescaling these weights to the (0-1) range. If this feature vertex already exists in the graph, then we change 

the weight by adding it to the original weight, and a number is proportionate to the separation between the two 

features. We apply the PageRank method to a competing graph production process till convergence. Then, 

based on each network vertex’s ”prior importance,” we order the attributes in decreasing order. 

 

IV. PROPOSED APPROACH 

We have proposed an optimized backward feature elimination strategy using heuristic search to extract the most 

useful subset of features from high dimensional datasets. The suggested method consists of two steps. In step 1, 

We provide a rank to every feature in the data set using six popular feature ranking techniques. These techniques 

are Information Gain, Symmetric uncertainly, Gain Ratio, OneR, Relief, and Chi-Square. We then take the rank 

that each ranking technique provides and combine it using the Schulze rank aggregation method. Schulze 

method gives a new stable rank to each feature of datasets utilizing the rank provided by all ranking techniques. 

In phase 2, We arrange all the features of data sets from low-ranked features to high-ranked features. In 

optimized backward feature elimination, We remove less significant low-ranked features before highly 

significant high-ranked features. Initially, We consider all the features of datasets and find classification 

accuracy. Then, we individually remove each feature according to their rank given by the Schulze method from 

a lower rank to a higher rank. A feature is removed from the final optimized subset of the features if its removal 

improves the classification accuracy. 

To understand the proposed approach, consider the situation shown in Figure 3. Suppose we have a dataset with 

nine features from f1 to f9. The final rank of features based on the Schulze method from low rank to high rank is 

f9,f6, f7, f1, f3, f5, f3, f8, and f4. Now, someone is trying to eliminate feature f9. Temp Feature Subset contains 

features f1 to f8. We find Temp Classification Accuracy. If the Temp Classification Accuracy is better than the 

Best Classification Accuracy, then we will replace the Best Classification Accuracy with Temp Classification 

Accuracy and remove feature f9. If the above condition is not satisfied, we will not eliminate feature f9. We go 

over each feature of the data set in the same order. In the end, we get the Best Feature Subset. In Figure 3, 
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feature f6, f7, f3 and f2 are eliminated and feature f9, f1, f5, f8 and f4 are not eliminated by algorithm. This heuristic 

search procedure considers one feature in each iteration. In the case of n features in data sets, we employ the n 

times wrapper classification algorithm in the proposed approach. 

 
Fig. 3 Optimized Backward Feature Elimination 

 

V. EXPERIMENT RESULTS 

In this section, we conducted several experiments to examine the effectiveness of the suggested optimized 

backward feature elimination strategy. We combined the ranks of six independent feature ranking algorithms 

using the Schulze rank aggregation method. We have used six ranking techniques: Information Gain, Symmetric 

uncertainly, Gain Ratio, OneR, Relief, and Chi-Squared. We compared the performance of the Schulze method 

with the above-listed ranking techniques. We have used WEKA (an open-source machine learning library) to 

find the rank of features for the above listed feature ranking methods with the Naive Bayes classifier as a 

wrapper classification algorithm [25]. We employed datasets from the UCI data repository shown in Table 1 

[26]. Some datasets have a minimal number of data samples and a high number of features. These datasets 

present challenges to classification and feature selection algorithms. We have used a 10-fold cross-validation 

classification accuracy measure for the Nave Bayes classifier to compare the performance of various ranking 

techniques. We have shown a performance comparison of the Schulze method with other ranking techniques 

using optimized backward feature elimination in Table 2. 

 

Table 1: Accuracy of existing 

Dataset 

Number 

of 

Features 

Number of 

Instances 

Ozon 72 2536 

Spambase 57 4601 

Waveform v2 40 5000 

Coil2000 85 9822 

Movement libras 90 360 

Semeion 256 1593 

Musk 166 476 

Isolet 617 1559 

Madelon 500 2600 

cnae-9 856 1080 

multiple-features 649 2000 

Micromass 1300 360 

 

VI. CONCLUSION 

Identification of a constrained subset of improved predictive features is critical to the performance of machine 

learning algorithms. The existence of redundant and irrelevant features in the predictive model leads to poor 

computational cost and accuracy performance. High-dimensional data sets are not feasible for the most popular 

search techniques due to their computational requirements. In this research, we created an entirely novel method 

for selecting features that enables us to employ a hybrid model to discover an optimal set of features for 
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classification. In this work, we have also introduced the rank aggregation method to generate a stable rank of 

each attribute across multiple feature ranking methods. Our results showed that rank aggregation methods could 

improve feature order and feature subset selection. This heuristic search performs exceptionally well on the 

stable rank list of features compared to the traditional sequential backward elimination search technique. This 

feature selection technique improves the classification accuracy concerning filter approaches and also the 

computational cost for the wrapper approach. 

 

Table 2: Experiment Results 

 

 

Total 
Feature

s / 

Origina
l 

Accura

cy 

Remov
ed 

Feature

s 

Improv
ed 

Accura

cy 

Total 
Feature

s / 

Origina
l 

Accura

cy 

Removed 

Features 

Improved 

Accuracy 

Total 
Feature

s / 

Origina
l 

Accura

cy 

Remov
ed 

Feature

s 

Improv
ed 

Accura

cy 

 Ozon Spambase Vaveform v2 

IG 

72/ 

71.76 

44 79.02 

57/ 

79.28 

10 80.72 

40/ 

80 

17 82.54 

SU 43 79.02 22 89.24 17 82.54 

OneR 50 81.11 18 83.54 13 82.17 

Relief 41 78.7 16 80.59 14 81.74 

Gain 

Ratio 
50 80.91 21 83.09 17 82.54 

Chi-
Square

d 

50 81.26 19 90 17 82.54 

Schulze 

Method 
45 78.62 20 89.13 17 82.54 

Withou

t Rank 
33 77.32 24 90.26 15 82.66 

 Coil2000 Movement_libras Semeion 

IG 

85/ 

78.07 

72 92.92 

90/ 

62.77 

22 65 

256/ 

85.24 

36 87.25 

SU 75 93.1 23 66.11 38 87.06 

OneR 63 91.13 14 65 41 86.62 

Relief 66 91.67 21 65.55 48 86.94 

Gain 
Ratio 

77 94.03 7 65.55 46 87.82 

Chi-

Square
d 

74 92.99 7 64.72 49 86.94 

Schulze 

Method 
69 92.98 16 66.11 34 87 

Withou
t Rank 

77 94.02 19 65.55 38 86.81 

 Musk Isolet Madelon 

IG 

166/ 

75.21 

87 82.77 

617/ 

83.77 

194 86.08 

500/ 

59.53 

29 61 

SU 76 81.3 151 85.76 29 61 

OneR 74 81.93 205 86.52 50 61.76 

Relief 76 81.72 208 86.33 73 62 

Gain 

Ratio 
63 81.09 144 86.01 29 61 

Chi-
Square

d 

62 81.3 148 85.95 29 61 

Schulze 
Method 

70 82.35 162 85.18 29 61 

Withou

t Rank 
78 82.33 171 86.65 48 61.42 

 cnae-9 multiple-features Micromass 
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IG 

856/ 
93.14 

743 95.27 

649/ 
95.35 

248 96.05 

1300/ 
94.44 

1162 98.05 

SU 745 95.27 271 96.15 1162 98.33 

OneR 748 94.62 277 96.45 1171 98.05 

Relief 743 95.09 220 95.95 1133 98.05 

Gain 

Ratio 
740 95.27 283 96.25 1120 97.5 

Chi-

Square
d 

743 95.09 240 96.15 1177 97.77 

Schulze 

Method 
750 95.27 281 96.1 1177 98.05 

Withou
t Rank 

739 94.62 193 96.15 1050 97.5 
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