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Abstract: - The development of electric vehicles (EVs) is influenced by various factors such as cost, autonomy, charging speed, and 

infrastructure. The objective of this research paper is to model an EV fast-charging station that provides incentives to end users in 

terms of money. The charging station incorporates a renewable energy source (solar) and an energy storage system, taking into 

account the demand for EVs, state of charge (SOC), and vehicle arrival and departure times. This approach aims to increase the 

revenue of the station and reduce the high energy demand from the grid. To incentivize end users, the vehicle-to-grid (V2G) and 

battery swapping modes have been implemented. The Monte Carlo approach is used to model the demand for EVs and the 

production of renewable energy, considering hourly intervals. Subsequently, the installation and utilization of the EV fast-charging 

station (EVCS) are optimized using the Adaptive Harris Hawk Optimization (AHHO) algorithm. The system is analyzed with and 

without V2G and battery swapping modes. The comparison between the two modes reveals that the system with V2G and battery 

swapping provides both revenue and incentives to end users. 

Keywords: Adaptive Harris Hawk algorithm (AHHO), Battery Swapping (BS), Electric Vehicle (EV), Charging 

Station (CS). 

 

 

I.  INTRODUCTION  

Approximately 64% of the total global CO2 production is contributed by the electricity and transportation 

sectors, causing increasing concern due to their detrimental impact on the environment. To address this issue, the 

adoption of electric cars (EVs) and other alternative fuel vehicles (AFVs) presents a practical solution. By 

harnessing renewable energy sources, we have the potential to substantially reduce emissions from both the 

transportation and electricity industries [1]. The emergence of the electric vehicle (EV) has brought forth 

numerous advantages, including decreased reliance on fossil fuels, enhanced performance, and emission-free 

operation. As a result of the substantial increase in EV ownership, individuals are now considering electric 

vehicles as a viable option for transportation. However, the insufficiency of charging infrastructure remains a 

pressing issue that needs immediate attention in the progress of electric vehicles. 

Vehicle owners have the option to recharge their electric vehicles at their own residences; however, this 

method is time-consuming. In order to facilitate the expansion of electric vehicles, it is essential to establish rapid 

charging stations. While fast charging enables EV batteries to be replenished within approximately 15 minutes, it 

is important to acknowledge that this approach consumes a significant amount of power and exerts a substantial 

impact on the grid. To address this concern, the utilization of renewable energy sources and advancements in 

battery technology can be employed [2]. When deploying EV charging infrastructure in a city, it is crucial to take 

into account various factors such as the potential locations and their space limitations, the transportation and 

charging needs of electric vehicles, the behavior of EV owners, and the stability requirements and charging load 

restrictions of the power grid. Numerous studies and research papers have been dedicated to addressing the 

challenges associated with the deployment of EV charging infrastructure, and several proposals have been put 

forward to tackle the issue of charging station placement. To meet as many EV charging requirements as feasible, 

flow refueling location models have been presented [3]–[5]. When deploying EV charging infrastructure in a 

city, it is crucial to take into account various factors such as the potential locations and their space limitations, the 

transportation and charging needs of electric vehicles, the behavior of EV owners, and the stability requirements 

and charging load restrictions of the power grid. Numerous studies and research papers have been dedicated to 

addressing the challenges associated with the deployment of EV charging infrastructure, and several proposals 
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have been put forward to tackle the issue of charging station placement. To meet as many EV charging 

requirements as feasible, flow refueling location models have been presented [3]–[5].  

Several charging station deployment techniques have been proposed within the limits of the power system to 

reduce total costs, which include power generation, power transmission loss, and charging station building costs. 

[3], [5]. Some publications address the issue of EV station placements and even sizing, albeit with 

oversimplifications about demand and operation. To place rapid-charging stations in a city, the authors [6] used a 

mixed integer non-linear optimization approach with targets that included expenditures associated with 

development, electrification, energy loss from EVs, and losses to the electric grid. They didn't account for the 

arrival time or station occupancy in the simulation; they only took into account the number of EVs would be 

coming at the station. A multi-objective planning approach for EV charging stations was created by the authors 

[7] in order to decrease power losses and voltage changes in the distribution system. They did not consider the 

functioning of price process; instead, they focused on a fixed demand. A lot of designs of EV charging stations 

have been found in literature in which they have shown a simple consideration of parameter i.e., only solar based, 

battery based, solar cum battery based, only battery swapping based station. The ideal design of an EV charging 

station was provided by the authors,[7] in order to reduce the lifecycle cost. They employed Homer software to 

optimize the process, taking into account renewable energy, grid connectivity, and batteries but ignoring arrival 

time. 

Simple demand models with continuous demand [8] and load profile [7], [9] were used in the development of 

EV charging stations. These load profiles represent an average value for each hour rather than taking into account 

the starting and ending time during the charging of each vehicle. The operation of EV charging stations can be 

modelled in more intricate ways. The authors [10]  employed a model, based on an M/M/s queueing theory, 

which was based on state-transition algorithm [11].  The author [12] employed a cell-transmission traffic model 

to create an M/M/s backlog, while the authors [13] used real-world traffic statistics. In this paper [9]  the authors 

presented a model based on solar and wind and used MPPT technique. 

For operating EV charging stations, complicated approaches have been discovered. In the EV charging 

process, author aimed to optimize incentives [14], [15] minimized total energy costs for customers For operating 

EV charging stations, complicated approaches have been discovered. In the EV charging process, author aimed to 

optimize incentives [14], [15], minimized total energy costs for customers [16], [17], reduced network power 

losses  minimized production costs , reduced network power losses, minimized production costs [22], minimized 

peak load [1], avoided distribution network congestion [23], or managed frequency [24]. In [25] the authors 

presented a design of charging station with renewable source and battery storage but did not consider the battery 

swapping in this design. 

The authors presented a charging station design based on the cost model and optimized the location of EVCS 

based on demand using genetic algorithm. The cost model includes the economic cost (infrastructure cost and 

fee) and environmental cost (energy consumption cost and CO2 emission cost) [26]. Some researchers have 

developed a design base on variable pricing to facilitate more incentive for owner of charging station. In this 

paper [27] authors showed the different studies for charging station, one for fixed pricing and other for variable 

pricing. When charging station has crowded than price of charging vehicle is increased so that charging station 

would get more incentive but they did not provide any type of incentive for the user. In this paper [28] authors 

provided the algorithm based on location. Algorithm provide the incentive based on location of charging station. 

Distribution system operators provided the incentive for the charging station to fulfil the demand of EV user and 

maintain the stability of the distribution system. The author suggested an incentive-based scheduling of EV at 

charging station under uncertainty [29]. In this [30] paper author developed an algorithm based on incentive in 

term of price and showed that this algorithm would provide better way to utilize the charging infrastructure. In 

this [30] paper author developed an algorithm based on incentive in term of price and showed that this algorithm 

would provide better way to utilize the charging infrastructure.  

A platform called the Battery Swapping System (BSS) allows for the quick swapping of fully charged 

batteries within a certain amount of time. The Charging station can last for hours, but in battery swap mode, the 

EV car driver simply goes to his BSS and uses a mechanical arm to swap the battery pack with a fully charged 

one. This process only takes a few minutes, regardless of battery capacity. BSS addresses to some extent the 

trade-off between battery charging speed and cycle life. Using BSS has many other advantages. (1)  BSS helps to 

extend battery life by charging more slowly. (2) BSS helps utilities balance price demands, transmission and 

distribution (T&D) costs. 
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The majority of earlier publications have focused on operations or grid effect, with only a handful addressing 

the architecture of EV charging stations. Since they must change the input data into an optimization tool like 

Homer, which is not intended to address this type of problem, they did not include the charging dynamic (the 

arrival time and amount of charge of each electric car) in the design papers. In the literature, lot of issues related 

to charging station have been pointed out and the lot of solution have been provided for them but very less work 

is done as far as the EV user ‘concerned.  

The novelty of this research paper is as follows: 

• This design of fast charging station problem incorporates a wide range of energy sources, including solar, the 

grid, and energy storage considering the arrival and departure time, soc and battery capacity. 

• An Adaptive Harris-Hawks optimization is first time used to optimize the such type of design. 

• Investigations are performed and compared with station fed from grid, Station fed from solar and energy 

storage and station fed from hybrid mode i.e grid, solar and energy storage. 

• This study shows the approach toward the end user incentives are proposed for the first time. 

• Comparison between with and without use of V2G and Battery swapping at fast charging station is 

discussed. 

 The rest of the paper is laid out in the following manner. Section II deals with system description. In Section 

III, mathematical modelling for designing the EV station is presented. In Section IV, the properties of an adaptive 

Harris hawk’s optimization are displayed. Finally, in Section V, three situations are examined and compared to 

demonstrate design changes, and the study is concluded in Section VI. 

II. SYSTEM EXPLAINATION 

A fast-charging station shown in fig.1 is designed considering detail parameter to provide the revenue to the 

station owner as well as end user. For extracting the profit to the station owner, a two-way exchange of power, 

i.e., grid to EV and EV to grid, is considered and to provide the end user benefit, system used the V2G and 

Battery swapping facility at station. The energy storage with renewable source integrated with grid to increase the 

benefit of owner. The parameters of renewable (solar), energy storage is optimized by the AHHO algorithm. The 

EV demand pattern such as arrival line, departure time, waiting time, battery capacity and SOC are considered 

for further investigations. The goal of this paper is achieved by using (a) station fed by grid only (b) station feed 

by RES and Battery only (c) station feed by hybrid mode, i.e., grid, RES and energy storage. An AHHO 

algorithm is used to optimize the system parameter to get revenue and incentive to end user. 

GRID

EVCS

Case 1

SOLAR+ ENERGY 
STORAGE

EVCS

Case 2

GRID+ 
SOLAR+ENERGY 

STORAGE

EVCS
   V2G

Case 3
 

Fig.1 System investigated 

III.  MATHEMATICAL MODELING OF EVCS 

The EVCS under investigation in this study is equipped with a large number of chargers for recharging the 

batteries of EV users, as well as solar panel and Energy storage system facilities to boost their profitability and 

lessen their influence on the power grid. The following equations are used in the design of the charging station. 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑
𝑛𝑒𝑡 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤 𝑎𝑡 𝑦𝑒𝑎𝑟 𝑝

(1+𝑟)𝑘 − 𝑆
𝑝
𝑘=1          (1) 

S is Initial investment (€), r= interest rate, k= a year index, p= no. of year considers, 20 years in this case  

𝐴𝑘 = ∑ (𝐼𝑛𝑐𝑜𝑚𝑒ℎ𝑟𝑠 − 𝐸𝑥𝑝𝑎𝑛𝑑ℎ𝑟𝑠) − 𝐸𝑘
8760
ℎ=1                (2) 

     

𝐴𝑘= Net cash flow at year k (€), 𝐸𝑘= replacement and maintenance cost of battery at year k (€).  

𝐼𝑛𝑐𝑜𝑚𝑒ℎ𝑟𝑠 = 𝐸𝑆ℎ𝑟𝑠 × 𝐶𝐸ℎ𝑟𝑠 + 𝐸𝑆𝐺ℎ𝑟𝑠 ×   𝐶𝐸𝑆𝐺ℎ𝑟𝑠 +  𝐶𝐵𝑆ℎ𝑟𝑠     (3) 
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𝐼𝑛𝑐𝑜𝑚𝑒ℎ𝑟𝑠= Income at hour hrs(€), 𝐸𝑆ℎ𝑟𝑠= Energy supplied to EV used in hour hrs (kWh), 𝐶𝐸ℎ𝑟𝑠= Price of 

energy in hour hrs (€), 𝐸𝑆𝐺ℎ𝑟𝑠= Delivered energy to grid in hour hrs (kWh), 𝐶𝐸𝑆𝐺ℎ𝑟𝑠= Selling price of energy to 

grid in hour(€), 𝐶𝐵𝑆ℎ𝑟𝑠= Price of battery system (€). 

 

𝐸𝑥𝑝𝑒𝑛𝑑ℎ𝑟𝑠 = 𝐸𝑇𝐺ℎ𝑟𝑠 × 𝐶𝐸𝑇𝐺ℎ𝑟𝑠        (4) 

𝐸𝑥𝑝𝑒𝑛𝑑ℎ𝑟𝑠= expenditure at hour (€), 𝐸𝑇𝐺ℎ𝑟𝑠= Energy taken from grid in hour, 𝐶𝐸𝑇𝐺ℎ𝑟𝑠= price of enegy 

taken from grid in hour (€). 

𝐸𝑘 =
∑ 𝐸𝐷𝐵ℎ𝑟𝑠

8760
ℎ=1

𝑇𝐸𝐵
× 𝐶𝐵 × 𝐶𝐼𝐵𝑆 + 𝑀𝐶𝐷𝑘       (5) 

𝐸𝐷𝐵ℎ𝑟𝑠= energy discharged from storage system at hour hrs (kWh), 𝑇𝐸𝐵= Total energy of battery during 

their life cycle (kWh), 𝐶𝐵=Price of batteries (€), 𝐶𝐼𝐵𝑆= nominal capacity of battery system in (kWh), 𝑀𝐶𝐷𝑘= 

maintenance cost of batteries at year k (€). 

Initial investment 

𝑆 = 𝐶𝐶 × 𝑇𝑁𝐶𝐼 × 𝑅𝑃𝐶 + 𝐶𝑆𝑃 × 𝐼𝐴𝑆𝑃 +  𝐶𝐵𝑆 × 𝐸𝐶𝐼𝐵𝑆      (6) 

𝐶𝐶= Price of charger (€), 𝑇𝑁𝐶𝐼=Total no. of charger installed, 𝑅𝑃𝐶=Power of EV charger, 𝐶𝑆𝑃=cost of solar 

panel (€), 𝐼𝐴𝑆𝑃 =Installed area of solar panel in meter2, 𝐶𝐵𝑆 =Price of battery system (€), 𝐸𝐶𝐼𝐵𝑆 =Energy 

capacity of installed battery (kWh). 

Energy balance at a charging station at hour h 

𝐸𝐺ℎ𝑟𝑠 + 𝐸𝑆𝑃ℎ𝑟𝑠 + 𝐸𝐷𝐵ℎ𝑟𝑠 = 𝐸𝑆ℎ𝑟𝑠 + 𝐸𝑆𝐺ℎ𝑟𝑠 + 𝐸𝑃𝐵ℎ𝑟𝑠                                                      (7) 

 

𝐸𝐺ℎ𝑟𝑠=Energy provided by the grid in an hour hrs (kWh), 𝐸𝑆𝑃ℎ𝑟𝑠=Energy provided by the solar panel in an 

hour hrs (kWh), 𝐸𝐷𝐵ℎ𝑟𝑠=Energy provided by the batteries in an hour hrs (kWh), 𝐸𝑆ℎ𝑟𝑠=Energy supplied to EV 

in an hour hrs (kWh), 𝐸𝑆𝐺ℎ𝑟𝑠=Delivered energy to grid in an hour hrs (kWh), 𝐸𝑃𝐵ℎ𝑟𝑠 =Energy supplied to 

batteries in an hour hrs (kWh). 

Energy stored in batteries at hour hrs 

𝐸𝐵𝑆𝐻ℎ𝑟𝑠 = 𝐸𝐵𝑆𝐻ℎ𝑟𝑠−1 + 𝐸𝑃𝐵ℎ𝑟𝑠 −  𝐸𝐷𝐵ℎ𝑟𝑠 −  𝐸𝑃𝐵𝐵𝑆ℎ𝑟𝑠                          (8) 

 

𝐸𝐵𝑆𝐻ℎ𝑟𝑠=Energy in batteries in an hour hrs (kWh), 𝐸𝐵𝑆𝐻ℎ𝑟𝑠−1= Energy in batteries in an hrs-1 (kWh), 

𝐸𝑃𝐵ℎ𝑟𝑠 = Energy provided by batteries in an hour hrs. (kWh), 𝐸𝐷𝐵ℎ𝑟𝑠= Energy discharged in charging batteries 

in an hour (kWh), 𝐸𝑃𝐵𝐵𝑆ℎ𝑟𝑠=Energy provided by the batteries during battery swapping at an hour (kWh). 

Condition for power supplied by the installed solar panel 

𝑃𝑆𝑃ℎ ≤ 𝑃𝑆𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙                                         (9) 

𝑃𝑆𝑃ℎ=Power supplied by solar panel in an hour hrs (kW), 𝑃𝑆𝑃𝑖𝑛𝑠𝑡𝑎𝑙𝑙=Installed power of solar panel (kW). 

Condition for power charging and discharging of the batteries 

𝑃𝐷𝐵ℎ ≤ 𝑃𝐼𝐵𝑖𝑛𝑠𝑡𝑎𝑙𝑙                  (10) 

 

 𝑃𝐶𝐵ℎ ≤ 𝑃𝐼𝐵𝑖𝑛𝑠𝑡𝑎𝑙𝑙                        (11) 

 

𝑃𝐷𝐵ℎ=power after discharge batteries at an hour hrs (kW), 𝑃𝐶𝐵ℎ=charging power for batteries in an hour hrs 

(kW), 𝑃𝐼𝐵𝑖𝑛𝑠𝑡𝑎𝑙𝑙=Rated power of installed batteries (kW). 

Condition for energy charging and discharging of the batteries 

𝐸𝐷𝐵ℎ𝑟𝑠 ≤ 𝐸𝑆𝐵ℎ𝑟𝑠−1                                           (12) 

𝐸𝐶𝐵ℎ𝑟𝑠 ≤ 𝐸𝐶𝐼𝐵𝑆 − 𝐸𝑆𝐵ℎ𝑟𝑠−1                   (13) 

𝐸𝐷𝐵ℎ𝑟𝑠=energy discharged by the batteries in hour hrs (kWh), 𝐸𝐶𝐵ℎ𝑟𝑠= energy charged from batteries in 

hour hrs (kWh), 𝐸𝑆𝐵ℎ𝑟𝑠−1=energy store in batteries in hour hrs-1 (kWh), 𝐸𝐶𝐼𝐵𝑆=energy capacity of installed 

battery system (kWh). 
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Condition for the stored energy in batteries 

𝐸𝑆𝐵ℎ𝑟𝑠 ≤ 𝐸𝑆𝐵ℎ𝑟𝑠−1                                          (14) 

 

𝐸𝑆𝐵ℎ𝑟𝑠 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛 × 𝐸𝐶𝐼𝐵𝑆                                        (15) 

𝐸𝑆𝐵ℎ𝑟𝑠=energy store in batteries in hour hrs (kWh), 𝑆𝑂𝐶𝑚𝑖𝑛= minimum state of charge(p.u.). 

Condition for consumed and supplied power from the grid  

𝑃𝑆𝐺ℎ𝑟𝑠 ≤ 𝑃𝐺𝐶𝑃                                         (16) 

𝑃𝐶𝐺ℎ𝑟𝑠 ≤ 𝑃𝐺𝐶𝑃                                            (17) 

𝑃𝑆𝐺ℎ𝑟𝑠= power delivered to grid in hour hrs (KW), 𝑃𝐶𝐺ℎ𝑟𝑠=power consumed from the grid in hour hrs 

(KW), 𝑃𝐺𝐶𝑃= power constraint at grid connection point. 

Condition for EV-supplied power at each EVCS Supplier 

𝑃𝐸𝑉ℎ𝑟𝑠 ≤ 𝑃𝐶𝐻𝑖𝑛𝑠𝑡𝑎𝑙𝑙                                    (18) 

𝑃𝐸𝑉ℎ𝑟𝑠= power supplied to EV from charger in hour hrs (KW)), 𝑃𝐶𝐻𝑖𝑛𝑠𝑡𝑎𝑙𝑙= power of charging supplier 

(KW). 

Condition for energy supplied to EV in hour hrs 

𝐸𝑆ℎ𝑟𝑠 ≤ 𝑀𝐸𝐷𝐸𝑉ℎ𝑟𝑠                                (19) 

𝐸𝑆ℎ𝑟𝑠= energy supplied to EV customers at hour hrs (kWh), 𝑀𝐸𝐷𝐸𝑉ℎ𝑟𝑠= peak energy demand by EV user in 

hour hrs (KWh). 

Condition for waiting time for each EV 

𝑡𝑤 ≤ 𝑡𝑚𝑤                                (20) 

𝑡𝑤= waiting time (min.), 𝑡𝑚𝑤= maximum waiting time, 0 in this case. 

As was already said, the initial step entails estimating the EV usage at the charging station. The number of 

electric vehicles that arrive at the charging station, as well as their battery size and level of charge, define this EV 

usage. However, we also assume that there are only a certain number of chargers at the charging station, and then 

if none is available for a new client, he will leave. This system is known as an Erlang B queuing model or 

M/M/c/c queuing model shown. The arrival time chosen for this investigation is displayed in Figure 1 as 

𝑇𝐴(𝑡) = 1 − 𝑒−𝜆ℎ𝑟𝑠𝑡                       (21) 

TA(t)= time between arrivals of two vehicle 

𝜆ℎ𝑟𝑠= time interval between two arrivals or the average arrival time 

In the interval [0, 1], a list of random integers is generated, and each number represents the arrival time of the 

next car to be introduced into the equation (21) parameter t, figure 1-figure 4 provides the sequence’s example. 

The energy required to charge the battery is determined in the second phase for each car that arrives. The 

capacity and level of charge of the EV's battery must be determined for this. The vehicle type is linked to the 

battery capacity. Motorbikes, cars, and vans are thought to be among the vehicles that can arrive at the station. 

The EV battery's state of charge (SOC) can be predicted using the following equation  

𝑆𝑂𝐶 =
1

𝐸𝜎√2𝜋
𝑒−(𝑙𝑛𝐸−𝜇)2/2𝜎2

                              (22) 

E= initial state of SOC of EV battery, value varies from 0 to 1, average (µ) and typical deviation (σ) of the 

logarithm of the SOC variable, µ= 3 and σ=0.6. 

After calculating the SOC and battery capacity in the third stage, use this simplified formula to calculate the 

charging time for each vehicle: 

𝑇𝑐ℎ =
𝐵𝑐×(1−𝑆𝑂𝐶)

𝑃𝑐ℎ
               (23) 

𝑇𝑐ℎ= Charing time (min.), 𝐵𝑐 = Battery capacity, 𝑃𝑐ℎ= power of charger (KW) 



J. Electrical Systems 20-7s (2024): 1157-1168 

 

1162 

If a new EV shows up when every charger is occupied, it does not wait and is lost. Customers typically do not 

wait if all of the chargers are filled because the charging intervals are so long and instead move on to the next 

charging station. 

The power for quick charging and supplying is: 

𝑃𝑠𝑡 = ∑ 𝑃𝑐ℎ , 𝑖(𝑡)𝑛
𝑖=1                                (24) 

𝑃𝑠𝑡= power of charging station (KW), n= no. of charger 

The solar panel power output in an hour can be given by     

𝑃𝑆𝑃ℎ = 𝐺𝑖𝐴. 𝜂                                       (25) 

Where Gi is the solar irradiance, A is the installed surface, and η the efficiency of the Solar panel Maintaining 

the Integrity of the Specifications 

 
                                    Fig. 1 Average arrival time of EV (min)         Fig. 2 Time of arrival (min) 

 

 
Fig. 3 No. of EV/hour                                    Fig. 4 Time between EV arrivals (min) 

 

Energy prices: In this paper, the distinction in electricity buys and promoting charges because of the phrases 

stated above changed into computed to be 0.0828 and 0.0022 €/kWh, respectively. The electricity sale fee to 

electric powered cars changed calculated by including 0.04 €/kWh to the electricity buy fee as a benefit. The 

vehicles considered are shown in Table 1. 

Table 1. Type of Vehicle [25] 

Type of Vehicle Battery capacity (KWh) Probability (%) Accumulated probability (%) 

Two-Wheeler 

Small Vehicle 

Large Vehicle 

Van 

3600 

16000 

25000 

63000 

0.115 

0.370 

0.380 

0.135 

0.115 

0.458 

0.865 

1 

IV. OPTIMIZATION ALGORITHM 

In Harris Hawks optimization (HHO) [31], a meta-heuristic approach that is good for optimization, is gaining 

popularity within its family. In this strategy, when the escape energy is equal to zero, the prey gets exhausted and 

thus fails to pursue anymore. The stochastic operator in the current technique wastes candidate solutions (Harris 

Hawk). To overcome this challenge, we propose an adaptive Harris Hawks optimization (AHHO) [32] technique. 

Except for the mutation interval, the mutation is used in this study to keep the escape energy within the range. 

Our approach uses average fitness to adaptively determine whether the Harris hawk will sit with the rest of the 

family or go to a random tall tree. 
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An AHHO [32] with the premise that, as "no free lunch" (NFL) [33] suggests, no technique is optimal for all 

classes of problems and that there is always scope for further improvement in search efficacy. 

AHHO's modeling and prediction: The adaptive Harris hawks optimization (AHHO) method was created 

using the basic theory of prey escape energy and the perching technique of the Harris hawk of HHO [31]. The 

three steps of the AHHO method—exploration, transition, and exploitation—can be expressed mathematically as 

follows. 

Let's define X(t) as the hawks' position vector, the prey position vector Xprey(t), Xrand(t) as a randomly picked 

hawk from the existing population at the latest iteration t, and tmax is the highest number of iterations. 

Exploration phase: The new position of hawks can be obtained by following the equation 

𝑋(𝑡 + 1) =  {
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟𝑑1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟𝑑2(𝑡)|     𝑣 ≥ 0.5

(𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋𝑚(𝑡)) − 𝑟𝑑3(𝐿𝐵 + 𝑟𝑑4(𝑈𝐵 − 𝐿𝐵))   𝑣 < 0.5              
          (26) 

Where rd1, rd2, rd3, and rd4 are all random values between 0 and 1. UB seems to be the upper margin of the 

search area, LB seems to be the lower margin of the search area, Xm(t) is the mean position vector of the present 

population of k hawks, and Xprey(t) is the optimal location of the pray, all of which are updated in each iteration. 

𝑋𝑚(𝑡) =
1

𝑘
∑ 𝑋𝑖(𝑡)𝑘

𝑖=1           (27) 

The position of the ith hawk in iteration t is represented by 𝑋𝑖(𝑡). 

Let us define the mean fitness (Fmean) value of the Harris Hawk search locations (𝑋𝑖|𝑖 = 1,2,3, … … … 𝑘) as 

𝐹𝑚𝑒𝑎𝑛 =
1

𝑘
∑ 𝐹(𝑋𝑖)

𝑘
𝑖=1            (28) 

where F(Xi)signifies the individual Harris hawk's fitness value 

The new search location 𝑋𝑖(𝑡 + 1) of harris hawks in the exploration phase can be modeled as  

Xi(t + 1) = {
Xrand(t) − rd1|Xrand(t) − 2rd2Xi(t)|      F(Xi) ≥ Fmean

(Xprey(t) − Xm(t)) − rd3(LB + rd4(UB − LB))    F(Xi) < Fmean
                  (29) 

Where rd1, rd2, rd3, and rd4 are all random values between 0 and 1. UB seems to be the upper margin of the 

search area, LB seems to be the lower margin of the search area, Xm(t) is the mean position vector of the present 

population of k hawks, and Xprey(t) is the optimal location of the pray, all of which are updated in each iteration. 

Transition phases: Harris hawks' foraging behavior is determined by the prey's escape energy, which further 

determines the exploratory, exploitative, and transition phases. HHO's escape energy is calculated as follows: 

𝐸 = 2𝐸𝑜(1 −
𝑡

𝑇𝑚
)                                    (30) 

Where E and Eo refer to the initial prey escaping energy and energy state respectively. 

The time-dependent behavior of EAHHO is depicted in Eq. (30), which models the escape energy of AHHO. 

𝐸𝐴𝐻𝐻𝑂 = 𝐸1 × 𝐸𝑚          (31) 

Where, 

𝐸1 = 2(1 −
𝑡

𝑇𝑚
)          (32) 

Em= mutation energy 

 

Table 2. Limit of optimization parameter 

S. No Description  Lower range Upper range 

1 

2 

3 

4 

5 

No charger 

Charger power 

Area covered by solar panel 

Battery capacity 

Power transfer to the grid 

1 

44 

0sq. meter 

0KWh 

0Kwh 

10 

220 

1875 sq. meter 

500KWh 

600Kwh 

V. RESULTS AND DISCUSSION  

This paper presents a design of algorithm of fast charging station that provide the incentive to EV user as well 

as incentive to Charging station owner. The design of charging station includes the solar resources, battery 

storage, grid connection. Lithium-ion batteries with a minimum SOC level of 10%, were investigated for use in 
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the storage system. Table 1 lists the parameters for optimization variables subjected to a constraint given in 

equations (2- 20) and an objective function given in equation (1) using the adaptive Harris hawk’s algorithm. 

 In this paper, charging station works in two modes, one when charging station charge the EV only in three 

different case and second when charging station charge the EV as well as using Vehicle to Grid mode and EV 

battery swapping.  By using these two concepts we provide the incentive to the user in term of money and time 

and same time make the charging system profitable. 

Design 1: - When charging station charge the EV only  

Case 1: When charging station feeding from grid only 

The charging station is connected to the grid only, and it purchases all of its energy from it. The contracted 

power and the energy consumed are two terms in the energy pricing. The result of this case is shown in table 3. 

Case 2: When charging station feeding from solar resource and storage system: The charging station is only 

connected to solar resources and energy storage system and not connected to grid. Because renewable energy is 

unpredictable, batteries are placed to ensure the EV station's operation. The design includes constraints for the 

amount of solar energy that may be placed, which vary depending on the region; in this scenario, the boundaries 

are listed in Table 3. 

Case 3: When charging station feeding from grid, solar resource and storage system 

The charging station is powered by a combination of renewable and grid energy. The charging station in this 

scenario uses renewable energy and is connected to the grid. This is the most adaptable concept because it 

combines the best of both worlds: low-cost energy from renewable sources and safe grid feeding. It is also 

possible to sell the extra energy to the grid.  

Table 3: Optimal NPV using AHHO for design 1 

Case 

No1 

NPV (€) Investment 

(€) 

PIR 

(p.u) 

IIR 

(Year) 

Cost of Battery 

Replacement 

(€) 

Cost of 

Maintenance 

(€/year) 

CBEG 

(€) 

IESG 

(€) 

IESEV 

(€/year) 
ISEBEV 

1 69271 88204 0.3679 8 0 1000 10608 0 36725 0 

2 90272 104190 0.3368 8 1923.4 1000 0 0 36725 0 

3 94396 112250 0.2905 8 1685.8 1000 9765.2 0 36725 0 

 

                                     
                     Fig. 5 Investment for all cases          Fig.6 Comparison of annual cost for all cases 

 

Table-4 Optimal configuration for all the cases 

Case No No. of 

charger 

Charger 

Power (KW) 

Solar 

Surface(m2) 

Battery 

(KWH) 

Grid Power 

(KW) 

1 4 44.232 0 0 83.63 

2 4 44.859 272.2 65.5 0 

3 4 44.084 462.26 68.799 36.058 
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                 Fig. 5 Investment for all cases     Fig. 6 Comparison of annual cost for all cases 

 

Design 2: - When the charging station charge the EV as well as considering the vehicle to Grid mode and 

battery swapping.  

 

Case 1: When charging station feeding from grid only. 

The charging station is connected to the grid only, and it purchases all of its energy from grid. The supply is 

utilized for providing the charging of EV and battery. Battery swapping facility will be available at the peak 

hours. Those EV users will utilize this facility at non peak hour, some incentive will be given to the user. The 

result of this case is shown in table 5. 

Case 2: When charging station feeding from solar resource and storage system. 

 The charging station is only connected to solar resources as well as energy storage system and not connected 

to grid. Because renewable energy is unpredictable, batteries are placed to ensure the EV station's operation. The 

design includes constraints for the amount of solar energy that may be placed, which vary depending on the 

region; in this scenario, the boundaries are listed in Table 6. In this case battery swapping is also utilized for 

developing the incentive. The result of this case is shown in table 5. 

Case 3: When charging station feeding from grid, solar resource and storage system 

The charging station is powered by a combination of renewable and grid energy. The charging station in this 

scenario uses renewable energy and is connected to the grid. This concept is the most adaptable because it 

combines the best of both worlds: low-cost energy from renewable sources and safe grid feeding. It is also 

possible to sell the extra energy to the grid as well as battery swapping also utilized in this case. The result of this 

case is shown in table 5. 

Table 5: Optimal NPV using AHHO for design 2 

Case 

No1 

NPV (€) Investment 

(€) 

PIR 

(p.u) 

IIR 

(Year) 

Cost of Battery 

Replacement 

(€) 

Cost of 

Maintenance 

(€/year) 

CBEG 

(€) 

IESG 

(€) 

IESEV 

(€/year) 

ISEBEV 

(€/year) 

1 2069.2 89405 1.2039 9 0 1000 54283 0 190130 15590 

2 43935 104340 0.9486 9 38918 1000 0 0 189920 16164 

3 25071 100870 1.4087 9 5692.9 1000 29000 16141 200360 16107 

 

                             
 

                         Fig. 7 Investment for all cases                              Fig. 8 comparison of annual cost for all cases 
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Table 6: Optimal configuration for design 2 

Case No No. of 

charger 

Charger 

Power (KW) 

Solar 

Surface(m2) 

Battery 

(KWH) 

Grid Power 

(KW) 

1 4 44.702 0 0 225.91 

2 4 44.483 46.27 71.618 0 

3 4 44.553 71.219 75.918 46.482 

 

Design 1 

The number of charger and power of charger depend on the demand of EV and these factors are calculated by 

the optimization technique. The number of chargers is same for both the design in all the case. 

In case 1 the grid power is more as compared to case 3. In case 1 only grid is used to feed the charging station 

and energy is used to charge the EV battery and charge the drain battery of charging battery.  

The comparison of case 2 and case 3, the maximum power of installed solar panel is 462.26m2 and battery 

capacity is 68.79 kwh while in case 2 the power of installed solar panel is 272.2 m2 and battery capacity is 65.5 

kwh. In case 2 only renewable source (solar panel) and battery are used to charge the EV battery and drain 

battery of the charging station. Energy selling to grid and buying from EV owner is zero. The energy that is not 

sold to EV and not use in battery charging is wasted. 

In case 3 provide the solution of case 2 which used the more battery capacity that provide the reliable operation 

of charging station when renewable source produced less power. In this case station is fed by Grid, renewable 

source (solar panel) and battery. But dependency on grid supply is reduced in this case. The charging station can 

sell their energy to EV user only.  

According to table 3 and fig. 5, installation cost due to installed capacity and operational cost of case 2 and case 

3 is higher than case 1. These costs are compensated easily by operational cost and cost of the energy used. The 

cost of buying energy from grid in case 1 is 10608 €/year but in case 3 is 9765.20 €/year and in case 2 is zero. In 

case 1,2, and 3 the cost of selling energy to the grid is 0 €/year. Form this point of view impact on grid, in case 2 

is better because all energy is provided from renewable source and energy storage while there is no exchange of 

energy to or from the grid.  

The initial input into the optimization process is the hypothetical demand produced by the EVs at the site of the 

charging station, which is the same in all three situations. However, the actual demand that each station can meet 

varies based on the number of chargers that optimization of its design awarded to it as well as the amount of 

energy that is available at any given time according to the energy supply configuration that optimization assigned 

to it. Given that case I contains four chargers, some users won't stop until every available charger is taken. case 2 

can accommodate more consumers thanks to its five chargers, however occasionally energy shortfalls might arise 

due to changes in renewable energy. Fig 6 shows the annual equivalent value of all three cases. The high 

operational cost in Case 1 results in a high overall cost. Due to the fact case 3, has the highest revenue. 

Design 2 

In case 1 the grid power is more as compared to case 3. In case 1 only grid is used to feed the charging station 

and energy is used to charge the EV battery and it will charge the drain battery of charging station. The charged 

battery will be utilized by battery swapping scheme and generate the incentive to station owner and incentive to 

EV user in term of time.  

The comparison of case 2 and case 3, the maximum power of installed solar panel is 462.26 m2 and battery 

capacity is 68.79 kwh while in case 2 the power of installed solar panel is 272.2 m2 and battery capacity is 65.5 

kwh. In case 2 only renewable source (solar panel) and battery capacity is used to charge the EV battery and 

drain battery of the charging station. The charging station battery can be utilized for battery swapping when 

required. Energy selling to grid and buying from EV owner is zero. The energy that is not sold to EV and not use 

in battery charging is wasted. 

In case 3 provide the solution of case 2 which is used the more battery capacity that provides the reliable 

operation of charging station when renewable source produced less power. In this case station is feed by Grid, 

renewable source (solar) and battery. But dependency on grid supply is reduced in this case. The charging station 

have the facility of battery swapping for the EV user.  

According to table 5 and fig. 7, Installation cost due to installed capacity and operational cost of case 2 and case 

3 is higher than case 1. These costs are compensated easily by operational cost and cost of the energy used. The 

cost of buying energy from grid in case 1 is 54283 €/year but in case 3 is 29000 €/year and in case 2 is zero. In 
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case 1, and 2 the cost of selling energy to the grid is 0 €/year but case 3 is 16141€/year. In case 1,2, and 3 

incentives provided to EV user for utilizing the Battery swapping and V2G scheme. Form this point of view 

impact on grid, in case 2 is better because all energy is provided from renewable source and energy storage while 

there is no exchange of energy to or from the grid.  

Fig 8 shows the annual equivalent value of all three case. The high operational costs in case 1 result in a high 

overall cost. Due to the fact case 2, has the highest revenue and provides the highest incentive to EV user. 

VI. CONCLUSION  

An AHHO optimized the design of EV fast-charging stations using technological and budgetary 

considerations. This design shows the profitable income for EV user in term of money and time.  More 

realistically modelled EV demand and renewable generation were probabilistic distributions. More information 

was added to the EV demand model, specifically the arrival time, EV battery capacity, SOC, and the distribution 

of EVs during the day. An EV charging station can be lucrative, as shown by the three simulated instances.  The 

biggest drawback of EV fast charging is the high-power requirement. To overcome this issue Solar panel is used 

in the design. Solar Panel can increase a station's profitability, but to balance the intermittent nature of solar 

energy, it needs to be connected to the grid or have a battery storage system. 

The significant focal is technological advancement is trending toward cost reductions, which is extremely 

interesting in the case of energy storage devices, both for the storage system and for EVs. Both designs have 

compared with different case. The results show that this design provide incentive to end user and the case 2 of 

design 2 is provide the optimal incentive to end user. 
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