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Abstract: - The research examines the marine fishing sector and highlights the urgent need for an electronic monitoring system designed to 

meet the unique needs of fishermen. The initiative’s motive is emphasized in the paper, which highlights how cutting-edge technology like 

object detection and tracking could revolutionize the fishing industry when integrated into an electronic monitoring framework.  The 

research proposes an electronic monitoring system based on YOLOv8 (You Only Look Once) as a comprehensive solution to address 

current issues, such as out-of-date data collection methods and a lack of guiding applications. The review of the literature, which highlights 

gaps in the current fishing applications, is an important component of the paper. The research is geared towards training an object detection 

model on the fishnet dataset. The focus is on data processing created by an electronic monitoring system to rectify the current state of the 

fishing industry’s deficiencies. 
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I.  INTRODUCTION  

In the expansive realm of maritime activities, modern fishing vessels are equipped with state-of-the-art electronic 

monitoring systems, featuring video cameras meticulously positioned to document the bustling deck where fish 

are landed. Initially designed for security and safety, these camera systems hold untapped potential for identifying 

fish species and precisely tracking and counting the marine harvest. The urgency to automate these tasks drives 

our research, emphasizing the need for a real-time image processing system to ensure swift and accurate fish 

identification and counting.  

Our research is fueled by a dual commitment—to advance technological frontiers and to foster an economically 

and environmentally sustainable ecosystem within the fishing industry. At its core, our primary goal is to lay the 

groundwork for the seamless implementation of automated counting and species identification of the fish catch. 

This ambition extends beyond individual fishing operations, aiming to elevate the sustainability and efficiency of 

marine fishing methods globally. 

The fishnet dataset, a repository of annotated images extracted from video frames, serves as the backbone of our 

exploration. Leveraging the YOLOv8 model, a robust object detection algorithm, we delve into the intricacies of 

the dataset, paving the way for automation of catch reporting. While our current focus is on static images, the 

YOLOv8 model is poised for a dynamic transition to video feeds, contingent upon the availability of an 

appropriate dataset. Furthermore, our research contemplates the model and application of live video streams 

captured by electronic monitoring systems' cameras. The fishnet dataset, a repository of annotated images 

extracted from video frames, serves as the backbone of our exploration. Leveraging the YOLOv8 model, a robust 

object detection algorithm, we delve into the intricacies of the dataset, paving the way for automation of catch 

reporting. While our current focus is on static images, the YOLOv8 model is poised for a dynamic transition to 

video feeds, contingent upon the availability of an appropriate dataset.  

In essence, our research signifies the convergence of technological prowess and environmental stewardship. By 

tapping into the potential of electronic monitoring systems, annotated datasets, and advanced object detection 

algorithms, we aspire to redefine the trajectory of marine fishing practices. The future beckons towards a realm 

where sustainability and efficiency harmoniously coexist, driven by the innovative solutions that emerge from our 

dedicated exploration of the seas. 
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II. LITERATURE REVIEW 

Khokher et al discussed MLAI-based approaches for automating fishery catch and bycatch monitoring face 

challenges related to data quantity and operational complexity.  When it comes to improving the efficiency and 

accuracy of data gathering in the demanding and ever-changing environment of fishing vessels, MLAI-based 

systems for automating fishery catch and bycatch monitoring offer an appealing answer. Obtaining annotated 

training datasets is a major difficulty, particularly in fisheries with changeable conditions and various catch 

compositions. The diversity and quality of the training data are essential for building strong models that can handle 

the intricacies of many species, climates, and lighting changes. In order to implement MLAI effectively, the study 

highlights the significance of prioritizing species according to their ecological, economic, or vulnerability status. 

This is because imbalanced data may result in insufficient training for specific species. To combat this bias and 

guarantee a more fair representation of species in training data, techniques like undersampling or creating 

synthetic images are recommended. Furthermore, the work highlights the significance of taxonomic categorization 

and suggests a multi-label, hierarchical method for MLAI models to concurrently classify captures at various 

taxonomic levels.[1] 

Zhang et al. did a study focused on improving the YOLOv5 model for the detection and analysis of Engraulis 

japonicus fishing vessel operations. To improve feature extraction and detection accuracy, the Squeeze-and-

Excitation Network (SENet), a fusion attention mechanism, is incorporated into the proposed YOLOv5 model. 

The model performs better than the baseline YOLOv5 and other modified versions when measured by mean 

average precision (mAP), precision, recall, and loss functions. To track and count the number of fishing baskets, 

fishing nets, and processing vessels, the research incorporates a target identification approach that uses Kalman 

filtering and the Hungarian matching algorithm. In comparison to human counting, the study's automated 

statistical analysis of fishing vessel activity is expected to be more precise and efficient. The results show that 

when compared to previous models, the enhanced YOLOv5_SE model obtains a higher mAP (99.4%) as well as 

better precision and recall. The suggested strategy also addresses issues with statistical accuracy, including the 

use of threshold techniques for processing vessels and fishing nets. The report does, however, point out areas that 

still need work, such as the size and complexity of the model, and it makes recommendations for possible future 

improvements including automatic labeling and the application of sophisticated feature extraction techniques.[2] 

Kay & Merrifield have provided publicly accessible data regarding camera-based electronic monitoring (EM) 

systems on commercial fishing vessels that was addressed by the Fishnet Open Images Database. It is the largest 

and most varied dataset for fish detection and classification in the context of fisheries EM, with over 86,000 photos 

containing 34 object classifications. The dataset comes from the increasing number of ships that have EM systems 

installed to apply computer vision to automate the assessment process in light of the anticipated increase in data 

volume. Fishnet provides a difficult benchmark for creating computer vision algorithms suited to the particular 

difficulties of EM images taken above water, in contrast to other datasets like ImageNet and COCO, which lack 

data specific to fishing.In order to obtain raw video and capture annotations, the dataset collection process entails 

agreements with authorities and EM service providers. Privacy is protected by means of facial blurring and the 

removal of identifiable vessel information. The dataset presents issues such as visual resemblance between 

species, skewed class distributions, and unfavorable weather circumstances. It focuses on longline tuna vessels in 

the western and central Pacific Ocean. It replicates real-world situations and is divided into training, validation, 

and test sets. This makes it an essential tool for developing computer vision applications in fisheries electronic 

monitoring.[3] 

Qiao et al. presented a unique method for automating the detection of capture events in electronic monitoring 

(EM) video footage from fishing vessels using deep learning. The system uses a two-step process: it first uses 

frame-by-frame identification of fish and fishermen, and then it applies a temporal filter to identify catch events. 

Convolutional neural networks (CNNs) were the basis of the object detection framework that showed encouraging 

results; TensorBox, which used the ResNet 152 architecture, worked well. The catch event detection system 

demonstrated its potential for precise and quick analysis of massive amounts of EM data by achieving excellent 

recall and precision. Even with the accomplishment, there are still issues to be resolved, like the requirement for 

bigger and more varied training datasets to improve the model's ability to generalize across various vessels and 

circumstances. The suggested approach offers an alternative to the time-consuming and mistake-prone human 

video analysis process, addressing the growing significance of EM in fisheries management. Deep learning 
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techniques have the potential to be widely used in fisheries monitoring as long as they continue to progress, leading 

to more sustainable and knowledgeable management strategies.[4] 

Gilman et al. proposed the use of novel techniques such as a multi-scale fusion feature pyramid network, large-

scale depthwise separable convolutions, and a cross-stage partial DWNeck backbone, the research presents CMS-

YOLO, a road scene recognition method that improves real-time performance and detection accuracy. With 

noteworthy gains in mAP@0.5 on the BDD100K and Udacity Self-Driving datasets, CMS-YOLO shows amazing 

improvements over YOLOv5, and in autonomous driving scenarios, it reaches an impressive real-time detection 

speed of 34.5 frames per second. Turning its attention to fisheries management, the report emphasizes how EM 

systems—which include sensors, cameras, GPS, and data loggers—are being used more and more to address 

issues that human observers encounter. Situated as a cost-effective and expandable substitute, EM systems surpass 

traditional observer initiatives by utilizing real-time data transfer via satellite, Automatic Identification Systems 

(AIS), Video Monitoring Systems (VMS), and sophisticated sensors.[5] 

 

 Li et al. proposed the use of YOLOv3, YOLO-CAN which is a novel object recognition method that 

improves speed and accuracy, especially for small and occluded objects, by introducing innovations including an 

attention mechanism, CIoU loss function, Soft-NMS, and depthwise separable convolution. On the MS COCO 

and KAIST datasets, experimental results show that YOLO-ACN has an AP of 18.2%, a single-class mAP of over 

80%, and a real-time mAP50 of 53.8%. The architecture has been improved to solve problems with small targets 

and occlusions. It does this by incorporating attention methods, depthwise separable convolution, and improved 

CIoU and Soft-NMS loss functions for accurate bounding box regression and better handling of 

occlusions.YOLO-ACN outperforms YOLOv3 with noticeable minor target identification improvements and is 

quicker and more accurate than SSD513. It also matches faster R-CNN precision. The important effect of the 

attention mechanism on accuracy is demonstrated by ablation studies. To sum up, YOLO-ACN provides a 

workable way to identify small, obscured objects in real time.[6] 

 Hartill et al. pointed out that the underuse of digital cameras for tracking recreational fishing efforts is 

highlighted in the literature, which draws on early adopter research conducted in Germany, Australia, and New 

Zealand. Conventional approaches, characterized by their labor-intensive and irregular nature, impede a thorough 

comprehension of dynamic recreational fisheries. The writers support affordable digital camera monitoring 

systems, highlighting their capacity to track trends of fishing efforts over time. Different jurisdictions have 

different ethical standards, including privacy rights. It is advised to follow privacy regulations and use low-

resolution photographs. For monitoring to be effective, representative monitoring locations, infrastructure 

requirements, and technological factors like lens selection and data storage are essential. Over time, the program's 

cost-effectiveness and efficacy are influenced by strategic choices on monitoring methodologies, ongoing 

attention to system components, and resolution of possible problems.[7] 

III. EXISTING SYSTEM 

Electronic monitoring (EM) technologies for fisheries management have made significant strides, but there are 

still several restrictions and knowledge gaps. Although improving recall and precision, the suggested YOLOv5-

based method for Engraulis japonicus fishing recognition might not be scalable or universal. It has successfully 

cut down on storage and review time, but the automated catch event detection framework still needs more 

validation to be more flexible. Though useful, the Fishnet Open Images Database might not accurately depict EM 

difficulties in the real world. Although the approach for automatic species identification utilizing optical tracking 

and convolutional neural networks shows promise, issues with species variety and environmental variability 

require more research. For EM systems to be fully and successfully used in fisheries management, several 

deficiencies must be filled. 

IV. PROPOSED SYSTEM  

A. Introduction to YOLO 

You Only Look Once (YOLO) operates on the principle of unified object detection through a grid-based approach, 

exhibiting notable efficacy in real-time computer vision applications. YOLO's core mechanism involves dividing 
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input images into a grid, and each grid cell is responsible for predicting bounding boxes and class probabilities 

concurrently. This unique design facilitates the expeditious and comprehensive identification of multiple objects 

within the image. Within each grid cell, YOLO predicts bounding box coordinates relative to the cell’s spatial 

dimensions, along with associated class probabilities. The model employs a single convolutional neural network 

(CNN) to process the entire image, enabling end-to-end predictions. This streamlined architecture significantly 

accelerates inference speed while maintaining competitive accuracy, addressing the imperative of real-time 

applications. 

YOLO integrates non-maximum suppression to refine the output by eliminating redundant bounding boxes and 

enhancing localization precision. The model is trained through a comprehensive loss function, encompassing 

localization, confidence scores, and class predictions, optimizing parameters through backpropagation. The 

YOLOv8 model is the latest version of the YOLO model developed by ultralytics company. 

Keys features of YOLOv8: 

Anchor-Free Detection: YOLOv8 diverges significantly from earlier models by adopting an anchor-free 

approach in object detection. This entails direct prediction of the object's center, eliminating the need for offsets 

from predefined anchor boxes. Anchor boxes, a historical challenge in earlier YOLO models, often did not align 

with the distribution of custom datasets. The shift to anchor-free detection in YOLOv8 addresses the complexities 

associated with anchor boxes, reducing computational load and enhancing adaptability to custom datasets. This 

modification significantly impacts the number of box predictions, consequently expediting Non-Maximum 

Suppression (NMS), a critical post-processing step that refines candidate detections post-inference. This 

streamlined approach improves the model's efficiency without compromising its real-world applicability. 

 

Closing the Mosaic Augmentation: In deep learning research, while model architecture often takes the spotlight, 

the training routine is crucial for the success of models like YOLOv5 and YOLOv8. YOLOv8 employs online 

image augmentation during training, exposing the model to slightly varied images in each epoch. A significant 

technique is mosaic augmentation, where four images are stitched together to challenge the model with new object 

locations, partial occlusion, and different surroundings. However, empirical evidence suggests that continuous 

use of mosaic augmentation throughout training can degrade performance. To address this, it is beneficial to 

disable it for the final ten training epochs. This strategic adjustment exemplifies the meticulous attention given to 

refining YOLO modeling, evident in the YOLOv5 repository and ongoing YOLOv8 research. 

B. Dataset characteristics 

 Images from longline tuna vessels in the western and central Pacific are included in the fishnet dataset. 

Four visually similar tuna species (albacore, yellowfin, skipjack, and bigeye) are represented by almost 85% of 

the included fish annotations. The "L1" label collection comprises 25 more species from which the other fish 

annotations are derived. The FAO ASFIS List of Species for Fishery Statistics Purposes is another source of 12 

coarser classes that group related species and create the "L2" label set. "Unknown" L1 classes and those with 

fewer than 1000 labels are included in the L2 "OTH" (other) class; sharks are excluded for conservation purposes. 

Indicators of fishing activity include annotations made by humans. Due to uneven catch among boats and skewed 

species distribution, both the L1 and L2 class distributions are long-tailed, as shown in the dataset.  

C. Data Split 

The training, validation, and testing sets are designed to emulate real-world operating situations for EM 

algorithms. Mimicking both visible (current EM program members) and invisible (new EM program members) 

vessels is critical. The Fishnet validation and test sets include equal amounts of imagery from "seen" and "unseen" 

cameras, which is consistent with datasets that originate photographs from many distinct places. The final split 

included 59,497 training images, 13,648 validation images, and 12,891 test images. Figure 1 depicts the class 

distribution. Class Frequency Distribution 
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Fig. 2. Class Frequency Distribution 

The dataset is highly unbalanced as some classes have little representation, which is unsuitable for a good result. 

As a result, only the most common classes were chosen for training: "Albacore", "Bigeye tuna", "Yellowfin tuna", 

and "Unknown". A subset of the dataset was isolated such that each class would have 2700 instances spread across 

6618 images. 

D. Evaluation Metrics 

The following metrics are used to evaluate the model performance[9]: 

mAP - Mean Average Precision (mAP) is the primary performance measure of computer vision models. mAP is 

equal to the average of the Average Precision metric across all classes in a model. You can use mAP to compare 

both different models on the same task and different versions of the same model. mAP is measured between 0 and 

1 

Precision - Precision is a metric in a confusion matrix measuring the accuracy of positive predictions. It is 

calculated as the ratio of true positives to the sum of true positives and false positives.  

 
 

Recall - Recall, also known as sensitivity or true positive rate, is a metric in a confusion matrix measuring the 

model's ability to correctly identify all positive instances. 

 
 

Experimental Environment: 

CPU: Intel(R) Xeon(R) CPU @ 2.00GHz 

GPU: Tesla P100-PCIE-16GB  

Driver Version: 535.129.03 

CUDA Version: 12.2 

Python version” 3.10.12 

 

Hyperparameters: 

Model type: yolov8s 

Epochs: 100 

Image Size: 640x640 

Batch Size: 16 

Optimizer: SGD 

IOU: 0.7 

Momentum: 0.937 

Weight_decay: 0.001 

 

V. RESULTS AND EVALUATIONS 

The model was trained with a mAP50 of 0.90351 and a mAP50-95 of 0.69167. The Precision-Recall curve below 

further illustrates the mAP of distinct classes.  
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Fig. 2. Precision-Recall Curve 

The model's extensive training routine produced outstanding results, with a mean Average Precision at IoU 

(Intersection over Union) 50 (mAP50) of 0.90351 and a mAP50-95 of 0.69167. These metrics are strong indicators 

of the model's ability to detect and localize fish in the dataset. The Precision-Recall curve in Figure 2 provides a 

detailed representation of the mean Average Precision for each class.  

 

 
Fig. 3. mAP through epochs 

Figure 3 visually depicts the progressive increase in mean Average Precision (mAP) across the training epochs, 

highlighting a notable upward trend. Notably, the mAP50-95 begins to plateau around the 90-epoch mark, 

suggesting diminishing returns in performance improvement. This observation guided the decision to cap the 

training duration at 100 epochs, striking a balance between optimizing the model's accuracy and mitigating the 

diminishing returns associated with prolonged training.  

 
Fig. 4. Confusion Matrix 
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The generated confusion matrix provides a comprehensive visualization of the prediction outcomes for the four 

distinct classes, along with the background category. This matrix serves as a valuable tool for assessing the model's 

performance in terms of classification accuracy and potential areas for improvement. 
 

 
Fig. 5. Prediction Results 

Figure 5 shows an actual example of model predictions. The higher photos clearly indicate class designations, 

providing a visual reference for the ground truth. Meanwhile, the lower images represent the model's predictions, 

which are shown as class names with matching confidence scores. The confidence scores range from 0 to 1, 

providing a quantitative assessment of the model's assurance in its predictions. This visual depiction clearly 

demonstrates the model's capacity to appropriately classify items while quantifying the level of confidence 

associated with each prediction. 

 
Fig. 6. Loss Metrics during training 

Figure 6 depicts a range of loss metrics, where lower values indicate greater model performance. Notably, during 

the 90th epoch, the majority of the loss metrics show no discernible variation. This result is consistent with the 

concept of diminishing returns, implying that more training beyond this point may produce minimal improvements 

in performance. The thorough examination of these loss indicators yields useful insights into training dynamics 

and aids in establishing the best training duration to balance model development and computing efficiency.  

VI. CONCLUSION 

To conclude, our study presents a thorough examination of an upgraded YOLO (You Only Look Once) model 

applied to the fishnet dataset, revealing promising outcomes that carry significant implications for fisheries 
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management practices. As we navigate the dynamic waters of technological innovation, our findings illuminate a 

promising path toward a more refined and efficient system for monitoring fisheries activities. 

Looking ahead, there exists ample room for future research to enhance the YOLO model's practical impact by 

integrating advanced features like fish tracking and automated counting. This expansion into real-time video feeds 

not only bolsters accuracy but also holds the potential to revolutionize the enforcement of fishing quotas, 

addressing challenges associated with manual reporting and mitigating the risks of underreporting. 

In essence, the proposed enhancements position the YOLO model as a transformative tool for sustainable fisheries 

practices, elevating its technical capabilities beyond its current scope. This research not only lays the foundation 

for future investigations into automated fish tracking but also presents innovative solutions with far-reaching 

implications for global fisheries conservation and management. As we continue to navigate the confluence of 

technology and environmental stewardship, our study envisions a future where automated systems contribute 

significantly to the preservation and sustainable management of our marine resources. 
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