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Abstract: - This study presents a approach for creating the supervisor of expansive uncertain systems. The Controller for a particular high 

order system is designed using a reduced order model. The numerator and denominator polynomial in the suggested reduction approach is 

derived using modified polynomial differential method. A lower order model with least ISE optimization is obtained. Assuming that the 

initial high-order system is stable, the proposed approach guarantees the stability of the streamlined model. Through With reference to the 

original high-order systems, a PID controller is created for the suggested low-order model. In order to explain the method's efficiency, a 

few numerical examples were taken into consideration. It has been demonstrated that applying Control from the lower order model to the 

higher order system is improved and the controlled system's performance. Common numerical illustrations seen in the literature have been 

used to test the method, and the results show that it works satisfactorily. 
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1. INTRODUCTION 

It is intrinsically exceedingly difficult to build, analyze, and govern a higher order system. This makes it possible 

to model lower order systems that are generated from higher order systems in order to represent higher order 

systems. In engineering and science technologies, uncertainty is involved to variable degrees, which gives rise to 

analysis and design problems. Issues with the data may have an impact on the kind of uncertainty that exists in 

the system. As an illustration, consider the following scenarios: data that has vanished or is unavailable; data that 

is present but unpredictable or uncertain as a result of computation errors; data that is inaccurately or 

unpredictablely represented; etc. There are several approaches to characterize uncertainty, including probabilistic, 

rounded, or fuzzy descriptions. Still, a lot of systems have constant elements. [1-4]. 

The primary benefit of interval arithmetic is its ability to regulate internal computation flaws like rounding errors 

and to design and analyze potential magnitude uncertainties. Its main drawback is its tendency to encourage more 

conservative or conventional processes. Often to the point of inefficiency, the interval provides a far more 

complete range than the actual range of the related quantities. This issue is particularly problematic in lengthy 

computation sequences since, in this case, the intervals are calculated at one step and used as inputs for a 

subsequent stage. [5-7]. 

The primary motivation behind using affine arithmetic is to progress the dependence issue, which arises 

particularly when evaluating a function's range. Every numerical issue that involves crucial guaranteed enclosures 

to continuous functions, including solving non-linear equations, analyzing dynamical systems, solving differential 

equations and integrating functions, etc., most likely uses algebraic arithmetic. Ray tracing, curve modeling, 

parametric surfaces, range analysis, dependency problems, process management, and electric circuit analysis are a 

few examples of applications using Affine arithmetic. Affine arithmetic is intended to be a specific advancement 

of interval arithmetic (IA). It is comparable to Taylor arithmetic in the first-order, the closed on-slope model, 
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ellipsoid calculus, and stable is established interval arithmetic in that it is a self-regulating technique to derive 

first-order approved approximations to [9-10]. 

In many cases, affine arithmetic is able to produce interval approximations that are much better than those 

obtained with standard interval arithmetic because of the suggested method for solving the interval arithmetic 

problem by using some computational models and maintaining correlations between input and computed 

quantities of first-order system. These correlations are therefore exploited in original operations. Additionally, 

interval approaches can be made more efficient by using affine arithmetic, which effectively gives a geometric 

representation for the total range of associated quantities. Similar to interval arithmetic, affine arithmetic 

automatically affects each calculated size to provide the round-off and transition errors. [11-12]. Next, by 

changing the interpolation points, an ideal model (with least ISE) is produced An PID controller is created for the 

original high order systems with the proposed method. 

PID controllers can be used in a variety of control system applications and function well enough without 

requiring any modifications or only coarse tweaking. However, they lack direct process knowledge, therefore 

their overall performance is compromise and reactive. The best controller available for an observer is this one, 

which provides superior performance when the process actor is explicitly modeled without the need for an 

observer. When Reduced PID loop gains are necessary to keep the control system from oscillating, overshooting, 

or hunting about the control set point value; PID controllers by themselves may not work well in certain 

situations. They also react slowly, suffer in the presence of non-linearities, and may be unable to respond quickly 

enough for control. 

II. REDUCTION PROCEDURE 

This section provides an interpretation of the suggested lower order reduction technique. The Modified 

Polynomial Differentiation method [13-15] using a procedure, the lower order coefficients are obtained, without 

taking into account the original system's time instants. The necessary Polynomial Differentiation method is 

computed using the following equations in the suggested manner. 

Take a look at the interval system's higher-order transfer function as follows: 

𝐺(𝑠) =
[𝑑1

−,𝑑1
+]𝑠𝑛−1+[𝑑2

−,𝑑2
+]𝑠𝑛−2+⋯+[𝑑𝑛

−,𝑑𝑛
+]

[𝑐0
−,𝑐0

+]𝑠𝑛+[𝑐1
−,𝑐1

+]𝑠𝑛−1+⋯+[𝑐𝑛
−,𝑐𝑛

+]
  .….     (1) 

The rth order reduced model Rr(s) is characterized by  

𝑅𝑟(𝑠) =
𝐷𝑟(𝑠)

𝐶𝑟(𝑠)
         .….  (2) 

Where,𝐶𝑟(𝑠) = 𝑠2𝐶𝑟−2(𝑠) + [𝛾𝑟
−, 𝛾𝑟

+]𝐶𝑟−1(𝑠) 

 

𝐷𝑟(𝑠) = [𝛿𝑟
−, 𝛿𝑟

+]𝑠𝑟−1 + 𝑠2𝐷𝑟−2(𝑠) + [𝛾𝑟
−, 𝛾𝑟

+]𝐷𝑟−1(𝑠)  ..….   (3) 

III. DESIGN PROCEDURE 

The following are the steps in the design process: 

1) Determine the constants for a system by finding the closed-loop transfer function T(S) from the 

controlled system (Gc(s)).. 

2) Select the constants from the closed-loop's characteristic equation based on the ITAE performance 
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index optimum coefficient for the lowest ITAE. for step input is given in table 4.1. 

3) The transfer function for universal closed loops in the instance of the zero steady state step error system 

is  

 

𝑇(𝑤) =
𝐶(𝑤)

𝑅(𝑤)
=

𝑎𝑛

𝑤𝑛 + 𝑎1𝑤𝑛−1+. . . . +𝑎𝑛−1𝑤 + 𝑎𝑛

 

w+wn 

w2+1.4wnw+wn
2 

w3+1.75wnw2+2.15wn
2w+wn

3 

w4+2.1wn w3+3.4wn 
2w2+2.7wn

3w+wn
4 

 

Table.1Forms of the closed loop transfer function that are optimal based on the 

ITAE criterion (zero steady –state step error system) 

𝑇(𝑤) =
𝐶(𝑤)

𝑅(𝑤)
=

𝑎𝑛−1
𝑤 + 𝑎𝑛

𝑤𝑛 + 𝑎1𝑤𝑛−1+. . . . +𝑎𝑛−1𝑤 + 𝑎𝑛

 

w2+3.2wnw+wn
2 

w3+1.75wnw2+3.25wn
2w+wn

3 

w4+2.41wn w3+4.93wn 
2w2+5.14wn

3w+wn
4 

 

Table.2: versions of the transfer function in a closed loop that are ideal according to the ITAE standard (zero 

steady –state Ramp Error system) 

4) From the above step we can write T(S) in form of known coefficient except for Wn. From these we can 

get the constants of Gc(S) in the terms of Wn. 

5) For the specified setting time, choose a suitable value of 𝝃 and then find Wn. 

6) Now full Gc(S) is known as so in T(S). 

7) Presence of zeros of Gc(S) in T(S) normally does not allow the % overshoot requirement to be met. 

8) By determining a pre-filter Gp(S), we can eliminate the zeros of T(S). 

IV. CASE STUDY 

Consider the 4th order system as follows: 

                 G(s) =
𝑑𝑛(𝑠)

𝑒𝑛(𝑠)
 

𝑑𝑛(𝑠) = [6.2164,1]𝑠3 + [4.6146, 6]𝑠2 + [1.7134, 11]𝑠 + [0.25,6]

 𝑒𝑛(𝑠) = [73.018, 1]𝑠4+′[50.03, 17]𝑠3 + [17.104,82]𝑠2 + [1.919, 130]𝑠 + [0.25,100] 

 

Using the suggested method described in section 2in the subsequent stages, For the higher order system stated 

earlier, a second order reduced model is generated. 

𝑅2(𝑠) =
𝑎𝑘(𝑠)

𝑏𝑘(𝑠)
 

After applying the Routh approach and normalizing the above, the reduced order denominator is: 

𝑏𝑘(𝑠) = [0.9,1]𝑠2 + [0.07881,1.4409]𝑠 + [0. .0186,1.3449]
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Reduced order numerator (by applying modified routh approximation method): 

The reduced order model is obtained as, 

R2(s) =
[0.05244,0.1205]s + [0.0194,0.0806]

[0.9,1]s2 + [0.07881,1.4409]s + [0. .0186,1.3449]
 

 

 

Fig.1   Original and lower order systems' step responses 

 

Fig. 2 Step reactions of original and lower order systems 

The following is the design of the PID controller for the reduced order model:  

Let the transfer function of the PID controller be as 

𝐺𝑐(𝑠) =
𝑘𝑑𝑠2 + 𝑘𝑝𝑠 + 𝑘𝑖

𝑠
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Utilizing the reduced model and the ITAE performance index approach, the values of Kp,  Ki and Kd are 

obtained 

𝑅2(𝑠) =
0.05244𝑠 + 0.0194

𝑠2 + 0.07881𝑠 + 0.0186
 

To now acquire the reduced order closed-loop transfer function

 
The tuned PID values are  

 

𝐾𝑝 = −9.1331, 𝐾𝑖 = 7.654 , 𝐾𝑑    = 23.899 

Contrasting the compensated system's characteristic equation with the ideal ITAE characteristic equation as, 

𝑤3 + 1.75𝑤𝑛𝑤2 + 3.25𝑤𝑛
2𝑤 + 𝑤𝑛

3

 

The following is the system's closed-loop transfer function with unity feedback after the PID controller is added 

to the forward path: 

𝑇𝑐(𝑠) =
𝐺𝐶(𝑆)𝐺(𝑆)

1 + 𝐺𝐶(𝑆)𝐺(𝑆)
 

where Gc(s) is the PID controller transfer function and G(s) is the high order system. 

 

Utilizing the reduced model and the ITAE performance index approach,Kp, Ki, and Kd values are acquired. 

𝑅2(𝑠) =
0.1205𝑠 + 0.0806

𝑠2 + 1.4409𝑠 + 1.3449
 

To now acquire the reduced order closed-loop transfer function

 
The tuned PID values are  

𝐾𝑝 = 0.889, 𝐾𝑖 = 133.33 , 𝐾𝑑    = 19.183 

contrasting the compensated system's characteristic equation with the ideal ITAE characteristic equation as, 

𝑠3 + 1.75𝑤𝑛𝑠2 + 3.25𝑤𝑛
2𝑠 + 𝑤𝑛

3

 

The following is the system's closed-loop transfer function with unity feedback after the PID controller is added 

to the forward path: 

𝑇𝑐(𝑠) =
𝐺𝐶(𝑆)𝐺(𝑆)

1 + 𝐺𝐶(𝑆)𝐺(𝑆)
 

Where Gc(s) is the PID controller transfer function and G(s) is the high order system. 

 

Fig. 3 Comparing compensated and uncompensated systems' step response 
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Fig.4   Comparing compensated and uncompensated systems' step response 

CONCLUSION 

 For these kinds of systems, controller design and analysis become laborious and 

expensive. The suggested approach has improved as a tool for high-order uncertain system 

analysis and simulation. For these reasons, it is preferable to operate from a lower-order model 

to a higher-order system while preserving the primary functionalities of the initial system. The 

original system's performance is quite expensive, as the created lower-order system from it 

illustrates. Thus, model order reduction is utilized in higher-order system simulation. 

Compared to interval arithmetic, Affine Arithmetic produces better steady intervals and 

preserves the associations between those quantities. 
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