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Abstract: - The study of image deblurring techniques in dynamic scenes is a high-profile research direction. Recently, given the 

excellence of Convolutional Neural Networks (CNNs) in extracting feature information, it has become a common and effective 

practice to utilize them for blurred image restoration work. However, CNN can only model local information and has a limited 

receptive field, which inhibits the deblurring effect. Transformer can model global information, so it can be combined with CNN to 

expand the receptive field and enhance the deblurring effect. Unfortunately, as the spatial resolution of the input image increases, the 

computational complexity of the Transformer increases dramatically, showing a trend of square-level growth, which makes it difficult 

to cope with the task of processing high-resolution images. To address the above problems, this paper proposes an image deblurring 

network based on efficient Transformer and multi-scale CNN called ET-MIMO-UNet. The local spatial features are extracted using 

multi-scale CNN and embedded into the global characteristics of the Transformer, modelling both local and global information. To 

solve the problem of difficult training due to large image size and to improve the computational efficiency, an efficient Transformer 

layer (ETL) is designed, which contains a multi-dconv head transposed attention (MHTA) and a gated-dconv feed-forward 

network(GFFN). In addition, a multi-layer feature fusion block (MFFB) is introduced to fuse full-scale features and reduce feature 

loss. On the GoPro test dataset, compared with the MIMO-UNet base network, the PSNR of the three models of ET-MIMO-UNet is 

improved by 0.39dB, 0.54dB, and 0.66dB, respectively; ET-MIMO-UNet reduces the number of parameters by half compared with 

MPRNet. The experimental data fully proved that the method demonstrated a significant processing effect in coping with the image-

blurring problem in dynamic scenes. 
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I.  INTRODUCTION 

When taking pictures, the quality of the image is often degraded by shaky camera equipment or the rapid 

movement of objects, resulting in blurred images. Image deblurring uses image processing techniques to restore a 

blurred image to an image with an explicit edge structure and rich details. Due to the many causes of image blurring, 

the image deblurring problem is a highly ill-posed problem with numerous unknown solutions[1]. 

In the image deblurring tasks, most traditional methods[2-4] solve the problem by modelling the deblurring 

problem as estimating the blur kernel. However, in the real-world scene, the blur kernel is unknown and very 

complex. Therefore, the estimation of the blur kernel is very tricky, and ultimately, the recovery of the blurred 

image is poor due to the inaccurate estimation of the blurring kernel. 

In recent years, image deblurring methods[5,6] based on CNN have been widely studied. Earlier, researchers 

used CNNs to estimate the blurring kernel of an image and devised a two-step deblurring method: first, the blurring 

kernel is estimated using CNNs; then, a deconvolution operation is performed using this kernel to remove image 

blur [7,8]. However, they depend more on the blur kernel and find it difficult to cope with various blur types. In 

contrast, today's CNN-based image deblurring methods are more advanced, and they directly learn the complex 

mapping relationship between blurred and clear images in an end-to-end manner[9-13], thus handling various 

blurring situations more flexibly. 

Although CNN has achieved high performance in single-image deblurring, it also brings two significant 

problems: (1) the convolutional operator has a limited receptive field, which makes it challenging to capture the 

information of remote pixels; (2) convolutional kernels have static weights in the inference, which are not able to 

adapt to the input flexibly. Different from the convolution operation that models the local feature, Transformers 

can dynamically model the global contexts by computing the correlations of one token to all other tokens[14]. So, 

the natural idea is to combine the Transformer with CNNs to expand the receptive field, modelling the image's 

local and global information to enhance the deblurring effect[15]. 

Based on the above objectives, this paper proposes an image deblurring network based on an efficient 

Transformer and Multi-scale CNN named ET-MIMO-UNet. We apply an encoder-decoder structure to extract 
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multi-scale features as most deblurring models do and use a coarse-to-fine approach to recover the image. Multi-

scale CNNs encode local features and then cascade with the Transformer, allowing the network to encode the input 

image's global and local information. An efficient transformer layer (ETL) is introduced to improve computational 

efficiency and solve the problem of input features that are too large of a scale and are difficult to train. The efficient 

Transformer consists of a multi-dconv head transposed attention (MHTA) and gated-dconv feed-forward network 

(GFFN). MHTA uses channel-based self-attention to reduce its computational complexity to linear. GFFN controls 

the information flow and extracts critical detailed information. A multi-layer feature (MLFF) fusion block is 

introduced to fuse full-scale information to reduce feature loss. 

The following are the main points of contribution to this paper: 

1. Multi-scale CNN cascaded Transformer: This combination helps preserve the local details of the image 

and explore global features over long distances with significant advantages. 

2. An efficient Transformer layer consists of MHTA and GFFN. MHTA reduces the computational 

complexity to linear by using a self-attentive mechanism based on channels rather than spatial dimension; 

GFFN suppresses invalid information and retains critical information. 

3. A multilayer feature fusion block is used to fuse full-scale features and reduce feature loss. 

4. We propose an image deblurring network based on efficient Transformer and multi-scale CNN, named 

ET-MIMO-U-Net, and verify the effectiveness of the model through extensive experiments. 

II. RELATED WORK 

A. Deep Learning for Image Deblurring 

Recently, deep learning has become a significant approach in the field of image deblurring. Sun et al.[7] 

proposed using CNN to estimate the spatial variation kernel of motion blur to remove non-uniform blur. Still, due 

to the complexity of the blur characteristics, the blur kernel estimation method cannot recover the blurred image 

well in the actual scene. Kupyn et al.[9] proposed DeblurGAN to achieve deblurring in a single scale based on 

generative adversarial network (GAN) and content loss. As a pioneering work, Nah et al.[10] introduced 

DeepDeblur, a deep multi-scale CNN network for de-blurring dynamic scenes based on the coarse-to-fine strategy, 

which extracts the multiscale information of an image without estimating any blurring kernel and recovers a clear 

image from a blurred image directly. However, this approach's computational time is long because the design does 

not share parameters across multiple scales. To solve this problem, encoder-decoder structures with skip 

connections are introduced to share parameters and capture contexts, e.g., PSS-NSC[16], MT-RNN[17], and 

MIMO-Uet[18]. Zhao et al.[19] proposed a lightweight and real-time unsupervised image blind deblurring method, 

FCL-GAN, with no image domain or resolution restriction, which guarantees lightweight and performance 

advantages. Tsai et al.[20] proposed the BANet model by employing a multicore strip-pooling attention structure 

to extract multiscale features. Although these models have achieved satisfactory results, they mainly focus on local 

features while ignoring global features, which limits the deblurring effect of the models to some extent. 

B. Vision Transformer 

Proposed initially for Natural Language Processing (NLP)[21,22], The Transformer employs multi-head self-

attention to capture global relationships between individual tokens. Due to its powerful global modelling 

capabilities, Transformer is used in a variety of vision applications such as image classification[23], object 

detection[24], semantic segmentation[25], inpainting[26], and super-segmentation[27]. Let's consider vision 

Transformers (ViT)[23] as an image classification example. ViT treats images similarly to language sequences by 

introducing the concept of patches. The input image is segmented into patches, and the transformer structure is 

subsequently employed to capture the inter-patch relationships. Nevertheless, disregarding convolution entirely is 

not advisable as the Transformer solely relies on global self-attention, thereby overlooking the capture of finer, 

local details. As stated by Zhang et al.[11] global and local information is crucial for deblurring real images. 

Therefore, this paper introduces a Transformer into CNN networks to model global and local detail information. 

Unfortunately, it is not feasible to introduce the transformer directly into the CNN network because the 

computational complexity of self-attention (SA) in the transformer increases exponentially as the number of image 

patches increases, posing a challenge for processing large images. Therefore, in underlying image processing 

applications that need to generate high-resolution outputs, recent approaches often employ different strategies to 

reduce the complexity. One potential remedy is to use the Swin transformer design to apply self-attention within 

localized image regions [28,29]. However, this design restricts contextual aggregation within the global 

neighbourhood, which goes against the primary motivation of using self-attention rather than convolution and, 
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thus, is not well suited for image restoration tasks. Inspired by Zamir et al.[30], we introduce an efficient 

transformer that models global information while maintaining computational efficiency. 

III. APPROACH 

The network structure of the proposed ET-MIMO-UNet is shown in Figure 1. The network mainly consists of 

a multiscale input encoder, an efficient transformer module(ETM), a multi-layer feature fusion block (MLFF), and 

a multiscale output decoder. Among them, two encoder blocks (EB) are used for the encoder, three decoder blocks 

(DB) are used for the decoder, and 12 efficient transformer layers (ETL) are used for the efficient transformer 

module (ETM). ET-MIMO-UNet is built on a single UNet architecture based on an encoder-decoder, which can 

fully utilize the multi-scale spatial features extracted from images by CNN. In addition, to capture global 

dependencies, an efficient transformer layer (ETL) is used to model global information, effectively combining local 

and global information to achieve multi-scale deblurring. 
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Figure 1: The Architecture of the Proposed Network 

A. Multi-scale Input Encoder 

Our proposed model incorporates a multi-scale input-output approach, which follows a coarse-to-fine strategy. 

This strategy has been widely adopted by various CNN-based deblurring models[10,16,31] and has proven its 

worth in terms of effectiveness. In the ET-MIMO-UNet encoder, different scales of blurry images are used as 

inputs through encoding blocks (EBs). EB1 consists of a convolutional layer and residual blocks; EB2 consists of 

a convolutional layer, a Feature Attention Module (FAM)[18] (See Figure 2), and residual blocks, and it has been 

proved that FAM can improve the performance of the model[18].  

Using a multi-scale strategy as the input to a single U-Net, the original scale blurred image B1 is downsampled 

twice by 1/2, and the other two scales of blurred images B2 and B3 are obtained.EB1 and EB2 extract the blurred 

images of the B1 and B2 scales, and the blurred image of the B3 scale is fed into the Efficient Transformer Module 

(ELM) after preprocessing to perform global feature modelling. When extracting features from the encoder or 

transformer module at each scale, the Shallow Convolution Module (SCM) (See Figure 2)[18] is used to extract 

features from the downsampled images B2 and B3. SCM uses two stacked 3x3 and 1x1 convolutional layers. Then, 

in the last 1x1 convolutional layer, the extracted features are connected to the input current scale image, and another 

1x1 convolutional layer is used to further refine the connection. The output of SCM is represented as Zout
k  . 

For the original scale blurred image B1, do not use SCM; input it directly into the encoding block EB1. For the 

blurred image B2 using SCM, the Feature Attention Module (FAM) fuses the SCM output 𝑍𝑜𝑢𝑡
2 with the encoder 

output 𝐸𝑜𝑢𝑡
1  at the B1 scale. Before fusion, a convolutional layer with a stride of 2 ensures that the two features 



J. Electrical Systems 20-3 (2024): 1200-1210 

1203 

have the same size. Finally, a residual layer is used to refine the connection further. For blurred images at the B3 

scale, the output 𝑍𝑜𝑢𝑡
3  of SCM is fused with the output 𝐸𝑜𝑢𝑡

2 of the encoder at the B2 scale. After shallow feature 

extraction and convolutional feature extraction at the first two scales, each pixel has a deeper receptive field, which 

is fed into an efficient transformer module (ETM). This module utilizes the global information modeling ability of 

the transformer to establish long-term dependencies of features and then feeds the extracted global features into 

residual blocks. 
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Figure 2: The Structures of Sub-modules: (a) SCM, (b) Feature Attention, and (c) MLFF. 

B. Efficient Transformer Module 

Although the Transformer is renowned for establishing long-term image dependencies, its high computational 

demands and substantial memory usage limit its widespread application. Consequently, handling high-resolution 

inputs becomes challenging. Inspired by Zamir et al.[30], we designed an efficient Transformer module (ETM) 

with the structure shown in Figure 3(a). Each ETM consists of multiple efficiency Transformer layers (ETL), whose 

structure is shown in Figure 3(b), and each ETL consists of multi-dconv head transposed attention (MHTA) and 

gated-dconv feed-forward network (GFFN). These two modules are described separately in the following. 

...
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FF
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Figure 3: The Structures of ETM and ETL 

1) Multi-dconv Head Transposed Attention: In Transformer, its computational complexity mainly comes from 

the self-attention layer, where the time and storage complexity of the dot product of query (Q) and key (K) in the 

traditional self-attention layer increase twice with the input spatial resolution. Therefore, applying self-attention 

layers to deblurring high-resolution images is not feasible. To solve this problem, this paper uses MHTA, which 

has linear complexity, as shown in Figure 4. The attention feature map of the self-attention layer is calculated 

across channels rather than spatial dimensions; that is, cross-channel covariance is calculated to generate an implicit 

encoding of the global context attention map. Before calculating feature covariance to generate attention feature 

maps, depth-wise convolution is introduced to emphasize local contextual information. 
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MHTA first generates a query (Q), key (K), and value (V) projection from the tensor Y that has been processed 

through layer normalization (LN). This process aggregates cross-channel pixels through 1x1 convolution, then 

applies 3x3 depth-wise convolution to encode channel-level contextual information. The formula is as follows: 

Q = 𝑓3×3(𝑓1×1(Y))                            (1) 

K = 𝑓3×3(𝑓1×1(Y))                                 (2) 

V = 𝑓3×3(𝑓1×1(Y))                     (3) 

Subsequently, it is necessary to capture global attention by establishing the correlation between Q and K. 

Firstly, reshape Q and K into matrix form, where Q̃∈RC × HW and K̃∈RHW × C. Then, the dot product operation is 

applied for interaction to generate a transposed attention map of size RC× C. Then, V is also reshaped into matrix 

form, represented as Ṽ∈RHW × C, and the attention map is multiplied by Ṽ to obtain the feature map Xf∈ RHW × C. 

Finally, reshape Xf into tensor form, i.e. Xf̃ ∈ RH×W × C, and apply 1x1 convolution operation to it. Before the 

softmax operation, we use temperature parameters β to control the dot product of Q and V. The appeal process is 

defined as follows: 

𝑋𝑓 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄̃ ∙ 𝐾/𝛽) ∙ 𝑉̃                                             (4) 

𝑌 = 𝑓1×1(𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑋𝑓))                                 (5) 
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Figure 4: The Structures of MHTA 

2) GFFN: GFFN is a network structure used to control information flow to suppress invalid information and 

preserve important information. In the GFFN shown in Figure 5, depth-wise convolution is also used. After layer 

normalization, adjacent pixel positions are encoded through depth-wise convolution to learn local image structures. 

Next, element-wise multiplication is used between the two branches to control the flow of information, with one 

branch activated by the GELU function. Finally, the output is obtained by refining the features through 1x1 

convolution and adding input features. Assuming X represents the input feature, GFFN is defined as follows: 

𝑋̃ = 𝑓3×3(𝑓1×1(𝐿𝑁(𝑋)))                            (6) 

𝑌 = 𝑓1×1(𝑋̃ ∙ 𝐺𝐸𝐿𝑈(𝑋̃)) + 𝑋                                          (7) 
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Figure 5: The Structure of GFFN 

C. Multi-layer Feature Fusion Block 

The multi-layer feature fusion block (MLFF) (See Figure 2) aims to fuse the features from the encoder output 

and the ETM output after the residual blocks, align their dimensions by up-sampling or down-sampling, and then 

splice them in channel dimensions and undergo convolutional fusion, and ultimately output them to the decoder to 
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facilitate the decoder to recover the image better and to reduce the loss of information. The detailed process can be 

formulated as follows: 

𝑀𝐿𝐹𝐹1
𝑜𝑢𝑡 = 𝑀𝐿𝐹𝐹1(𝐸𝐵1

𝑜𝑢𝑡 , (𝐸𝐵2
𝑜𝑢𝑡)↑, (𝐸𝐿𝑀𝑜𝑢𝑡)↑)                   (8) 

𝑀𝐿𝐹𝐹2
𝑜𝑢𝑡 = 𝑀𝐿𝐹𝐹2((𝐸𝐵1

𝑜𝑢𝑡)↓, 𝐸𝐵2
𝑜𝑢𝑡 , (𝐸𝐿𝑀𝑜𝑢𝑡)↑)                         (9) 

D. Multi-scale Output Decoder 

After upsampling or downsampling, different scale features are fed into the MLFF module for feature fusion, 

and the fused features are fed to the network decoder for image reconstruction. The decoder still uses a single U-

Net to simulate multiple cascaded U-Nets outputting deblurred images of different scales[18]. The decoding block 

(DB) consists of convolutional layers and residual blocks. Since the output of the decoding block is a feature map 

rather than an image, convolutional layers are used as mapping functions to generate deblurred images for each 

layer. 

E. Loss Function 

Adopting a coarse-to-fine approach, our model comprises three distinct stages, with each stage generating a 

progressively restored image. Therefore, we adopt a multi-scale loss to optimize our model, where the loss function 

combines two different losses: multi-scale content loss and multi-scale frequency reconstruction loss. Assume that 

GK is the ground truth image of the K stage, and SK is the corresponding restored image of the K stage, and tk is 

the total number of elements of the K stage. 

Multi-scale content loss: We use a multi-scale content loss function similar to other multi-scale networks[18]. 

The content loss function is defined as follows: 

𝐿𝑐𝑜𝑛𝑡 = ∑
1

𝑡𝑘

𝐾
1 ‖𝑆𝐾 − 𝐺𝐾‖1                                          (10) 

Studies have shown that adding auxiliary loss terms can improve model performance[18]. Auxiliary loss terms 

that minimize the distance between input and output in feature space have gained widespread adoption in image 

restoration tasks, leading to impressive outcomes[32]. For deblurring, it mainly restores the high-frequency 

components of the image[18]. As an auxiliary loss term, the multi-scale frequency reconstruction (MSFR) loss 

function is employed. This loss function calculates the L1 distance between the multi-scale ground-truth image and 

the restored image in the frequency domain. The specific definition is outlined below: 

𝐿𝑀𝑆𝐹𝑅 = ∑
1

𝑡𝑘

𝐾
1 ‖𝐹𝑇(𝑆𝐾) − 𝐹𝑇(𝐺𝐾)‖1                             (11) 

Here, F represents the fast Fourier transform (FFT), which converts the image signal into the frequency domain. 

The ultimate loss function for training our network is determined in the following manner, where λ is set 0.1: 

𝐿 = 𝐿𝑐𝑜𝑛𝑡 + 𝜆𝐿𝑀𝑆𝐹𝑅                             (12) 

IV. EXPERIMENTS 

A. Datasets and Implementation Details 

Train the network using the GoPro[10] training dataset, which includes 2103 pairs of blurred and clear images. 

The test dataset was comprised of GoPro, which includes 1111 pairs of images. In addition, to evaluate the 

generalization ability of the proposed model, the GoPro-trained network was directly applied to the ReaBlur[33] 

test dataset, which includes two sub-datasets: RealBlur-R and RealBlur- J, each containing 980 pairs of images. 

We employed the Pytorch framework to train all models. During data preprocessing, we randomly cropped the 

images to a size of 256×256 and horizontally flipped them with a 50% chance. We conducted iterative training 

on the GoPro training dataset for 3000 epochs, with a batch size of 4. The initial learning rate for network training 

was set at 1×10-4, halved every 500 epochs. Additionally, our experiments were performed on a computer 

equipped with a GTX1080Ti GPU. 

Taking into account the balance between computational efficiency and deblurring performance, we proposed 

variants of ET-MIMO-UNet, namely ET-MIMO-UNet+ and ET-MIMO-UNet++. Among them, 10 residual blocks 

for each EB and DB and 12 ETMs were used in ET-MIMO-UNet, and 20 residual blocks for each EB and DB and 

6 ETMs were used in ET-MIMO-UNet+. ET-MIMO-UNet++ was based on ET-MIMO-UNet+ and replaced the 

depth-wise convolution in ETL with ordinary convolution. 

B. Experimental Results 

1) Quantitative Analysis: We tested all compared models under the same environment and evaluated image 

quality by peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. Table 1 compares the 
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advanced models[9-11,13,16,18,19,31,34,35] based on the GoPro dataset. As can be seen from Table 1, compared 

with the MIMO-UNet basic network, the PSNR of the three models of ET-MIMO-UNet is improved by 0.41dB, 

0.56dB, and 0.69dB, respectively; ET-MIMO-UNet is better than the comparison DeepDeblur, DeblurGAN, SRN, 

PSNR increased by 2.91dB, 3.44dB, 1.88dB respectively; Especially in the average SSIM, the method in this paper 

is significantly better than the comparison method. 

Table 1: Deblurring Effect of the Advanced Deblurring Model onGoPro; The Optimal Model is Emphasized in 

Bold within the Table. 

Method PSNR(dB) SSIM 

FCL-GAN[19] 24.84 0.771 

CRNet[13] 28.31 0.905 

DeblurGAN[9] 28.70 0.858 

DeepDeblur[10] 29.08 0.914 

SRN[31] 30.26 0.934 

PSS-NSC[16] 30.92 0.942 

DMPHN[34] 31.20 0.945 

Lian et el.[35] 31.53 0.948 

CNBNet[11] 32.21 0.953 

MIMO-UNet[18] 31.73 0.951 

ET-MIMO-UNet(Ours) 32.14 0.958 

ET-MIMO-UNet+(Ours) 32.29 0.959 

ET-MIMO-UNet++(Ours) 32.42 0.960 

We trained the model only on the GoPro dataset and tested it on the RealBlur dataset directly to evaluate the 

generalization ability of the proposed model. Table 2 shows the results of comparing the proposed method with the 

advanced method[9,10,18,19,31,34] on the RealBlur test dataset. As shown in Table 2, both PSNR and SSIM of 

our method outperform the comparison method, verifying the excellent generalization ability of ET-MIMO-UNet. 

Table 2: Deblurring Results of Advanced Models on RealBlur are Evaluated Directly Using Gopro-trained 

Models; The Optimal Model is Emphasized in Bold within the Table. 

Method 
RealBlur-R RealBlur-J 

PSNR(dB) SSIM PSNR(dB) SSIM 

FCL-GAN[19] 28.37 0.663 25.35 0.736 

DeepDeblur[10] 32.51 0.841 27.87 0.827 

DeblurGAN[9] 33.79 0.903 27.97 0.834 

SRN[31] 35.66 0.947 28.56 0.867 

DMPHN[34] 35.70 0.948 28.42 0.860 

MIMO-UNet[18] 35.47 0.946 27.76 0.836 

ET-MIMO-UNet(Ours) 35.46 0.947 28.17 0.858 

ET-MIMO-UNet+(Ours) 35.69 0.947 28.68 0.862 

ET-MIMO-UNet++(Ours) 35.74 0.948 28.72 0.868 

2) Qualitative Analysis: Figures 6 and 7 show examples of visual comparisons between our method and some 

existing algorithms on the GoPro test dataset and Real Blur test dataset, respectively. To present the restoration 

effect of each model more intuitively, we specially cropped out the local details of the image. Through 

comparison, it is clear that our proposed method performs better than other comparison methods in restoring 

image details. 
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Figure 6: Several Examples on the GoPro Test Dataset. From Top Left to Bottom Right: Blurry Images, Ground-

truth Images, DeepDeblur[10], SRN[31], PSS-NSC[16], DMPHN[34], MIMO-UNet[18], ET-MIMI-

UNet+(ours). 
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Figure 7: Several Examples on the RealBlur Test Dataset. From Left to Right: Blurry Images, Ground-truth 

Images, SRN[31], MIMO-UNet[18], ET-MIMI-UNet+(ours). 

C. Ablation Study 

We designed many experiments for the comprehensive evaluation of the proposed method. 

1) To assess the effectiveness of each individual block, we conducted a series of experiments where we removed 

each block separately and trained the modified structures on the GoPro dataset. Our baseline model was a U-

Net architecture with multiple inputs and outputs, excluding the ETM and MLFF components. Instead, it solely 

utilized 10 residual blocks in each encoder and decoder stage for feature extraction. We employed the same loss 

function described in Section 3.5 and adhered to the identical training approach. The outcomes of our experiments 

are summarized in Table 3. 
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Table 3: Impact of Various Components of ET-MIMO-UNet on the GoPro Test Dataset. The MLFF Indicates the 

Multi-layer Feature Fusion, and the ETM Indicates Efficient Transformer Module. The Symbol “√” Indicates that 

the Block is Included in the Training Process. 

Basline MLFF ETM PSNR(dB) SSIM 

√   31.55 0.946 

√ √  31.74 0.952 

√  √ 31.96 0.953 

√ √ √ 32.14 0.958 

As shown in Table 3, we comprehensively evaluated the PSNR and SSIM of ELM and MLFF. After introducing 

MLFF, PSNR increased by 0.19. It is worth noting that when ETM is introduced separately, the improvement of 

PSNR is more significant, reaching 0.41. The significant enhancement observed suggests that the global features 

captured by the Transformer module are pivotal in executing image deblurring tasks. By combining the global 

features of the Transformer with the local features of CNN, we significantly improved network performance. 

2) To verify the superiority of the deblurring performance of the multi-scale strategy introduced in this paper, 

it was compared with the CNN-based single-scale deblurring model Deblur-GAN[12], SDWNet[32] and the dual-

scale strategy-based deblurring model DeblurGAN-v2[33]. The results of comparing the GoPro test dataset are 

presented in Table 4. 

Table 4: Comparison of Validity of Multi-scale Performance on the GoPro Test Dataset 

Scale Method PSNR(dB) SSIM 

Sigle-scale Deblur-GAN[18] 28.70 0.958 

Sigle-scale SDWNet[36] 31.26 0.966 

Dual-scale DeblurGAN-v2[37] 29.55 0.934 

Multi-scale ET-MIMO-UNet(ours) 32.14 0.958 

As can be seen from Table 4, the multi-scale feature extraction method in this paper is better than the single-

scale and dual-scale feature extraction methods, which verifies the advantages of multi-scale information 

extraction. 

3) To delve deeper into the specific influence of the quantity of efficient Transformer layers (Num_ETL) within 

ETM on network performance, we undertook a comprehensive set of experiments utilizing the GoPro dataset. 

The comprehensive experimental findings are outlined in Table 5 below. 

Table 5: Impact of the Number of ETLs on Model Performance. Num_ETL Means the Number of Efficient 

Transformer Layers (ETL). 

NUM_ETL PSNR(dB) SSIM 

0 31.74 0.952 

4 31.88 0.953 

8 31.96 0.955 

12 32.14 0.958 

When num_ETL=0, it means that the ETM proposed in this paper is not used. As shown in Table 5, after adding 

ELM, the model performance is significantly improved, and as the number of ETL increases, the network 

performance gradually increases. When the number of ETLs is greater than 12, the hardware used in this paper is 

difficult to train due to the increased complexity of the model. Therefore, this article finally chooses ETL=12 

combined with CNNs as the final model. It is worth mentioning that experiments show that if hardware conditions 

permit, continuing to increase the number of ETLs in the model can achieve better PSNR and SSIM performance. 

4) To prove the effectiveness of using depth-wise convolution in ETL to reduce model parameters, we replaced 

the depth-wise convolution in ETL with ordinary convolution and conducted experiments on the GoPro dataset. 

The experimental results are as follows: 

Table 6: Validation of the Effectiveness of Depth-wise Convolution in ETL 

Conv type PSNR(dB) SSIM Params(M) 

Conv 32.17 0.958 11.7 

Depth-wise 32.14 0.958 11.1 

As shown in Table 6, replacing depth-wise convolution with ordinary convolution network performance 

increases, but the parameters also increase accordingly. Considering the balance between network performance 

and network parameters, we used depth-wise convolution. 
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D. Execution Time and Parameters Comparison 

In recent years, deblurring models have pursued a balance between accuracy, execution time, and parameters. 

Under similar precision, networks with smaller parameters are more suitable for deployment, and networks with 

less execution time are more popular. We focus on exploring an effective deblurring model with higher accuracy, 

lower parameters, and faster execution time. We tested all comparison models in the same environment. Table 7 

compares our model's accuracy, model parameters, and processing speed with some state-of-the-art (SOTA) 

models[10,34,18,1]. 

Table 7: Parameter and Execution Time Comparison. Execution Time is the Average Execution Time Per Image 

on GoPro Test Data. All Models were Evaluated Using a Separate GTX1080Ti GPU. 

 DeepDeblur[10] DMPHN[34] MIMO-UNet[18] MPRNet[1] 
ET-MIMO-UNet 

(ours) 

Params (M) 11.7 21.7 6.8 20.1 11.1 

Runtime (s) 4.330 0.424 0.013 1.976 0.257 

PSNR (dB) 29.23 31.20 31.73 32.66 32.14 

SSIM 0.916 0.945 0.951 0.959 0.958 

As shown in Table 7, our model achieves PSNR and SSIM, which compete with other models and are relatively 

fast with relatively few parameters. It is worth noting that MPRNet has the highest PSNR and SSIM, but it has 

twice the number of parameters and eight times the processing speed of our model. MIMO-UNet has smaller PSNR 

and SSIM than our model, although it has fewer parameters and runs faster. Our model has a faster processing 

speed and better performance than DMPHN. This demonstrates that our model exhibits notable advantages in terms 

of model parameters, processing efficiency, and deblurring capabilities. 

V. CONCLUSION 

In this paper, we introduce a unique and innovative deblurring network. ET-MIMO-UNet, which effectively 

integrates Transformer into CNN-based UNet to realize single-image blind deblurring in dynamic scenes. This 

network not only inherits the strengths of CNN in modelling local contextual information but also leverages 

Transformer effectively to capture global semantic correlations. Experimental results on GoPro and RealBlur test 

datasets validate the effectiveness of the network model. In addition, our method exhibits better accuracy, faster 

speed, and smaller parameters than other methods. In the next step, we shall persist in exploring the integration of 

CNN and Transformer algorithms, aiming to refine the network model and enhance the deblurring capability in 

dynamic settings. 
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