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Abstract: - The study aimed to propose methods to improve the data integrity of the Relational databases such as MS SQL, MySQL and 

PostgreSQL via record duplication detection. The FODORS and ZAGAT Restaurant database benchmark datasets have been utilized to 

facilitate the processes involved in preparing and delivering high-quality data. Furthermore, the Levenshtein distance algorithm was used 

to propose three (3) methods namely: default, eliminating equal string, and knowledge-based libraries to cut duplicate records in the 

database. In the 70% selected threshold, the average detected duplicate records of 88 out of 112 records in the restaurant dataset. Finally, 

to efficiently detect duplicate records in the database, depend on the data being analyzed and threshold selected. 
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I.  INTRODUCTION 

These days, information is stored on computer systems, from which data can be readily moved and altered. 

Considering saved data from these records is occasionally redundant and consumes storage space, the methodical 

use of data storage and search is essential. Retrieving records from various data structures—huge databases that are 

being implemented—that need search operations in order to carry out CRUD functions is a key software application 

need [1]. 

Advocated the use of TempTable and Identity Column as strategies to eliminate duplicate records. When putting 

records into a table in the relational database management system SQL Server, it has been determined that there are 

some duplicate records. Table primary key or cluster-index has not yet created which is the cause. In this instance, 

there is a breach in the data integrity, which could lead to inaccurate results, duplicate record entry, and wasteful 

data outcomes. This results in a significant quantity of storage space being consumed. Thus, determining the storage 

space, which is lesser than the two methods, is essential. It is also necessary to create a solution to SQL Server for 

managing duplicate records (Yue, 2018). 

Furthermore, user input, discrepancies, null values, and incorrect spelling into a limited set of information could all 

have an impact on data efficiency [3]. These issues hinder the gathering of precise analysis data and the conduct of 

research that yields false conclusions. It was claimed that the most essential step in the record information analysis 

procedure to solve such a challenging challenge is data processing. Moreover, the suggested techniques fall into 

four groups: (i) data cleansing, which attempts to complete missing values, (ii) data integration (iii) aggregation 

methods and normalization that include change of data, and (iv) data removal that goes to minimize the amount of 

data. 

Meanwhile, Levenshtein distance is used when evaluating similar string that requires a knowledge base which was 

mentioned by [4], wherein Road can be abbreviated to Rd. and some other instance like 7th for Seventh, which 

Levenshtein distance cannot determine.  

Levenshtein edit distance, which employs deletion, insertion, and substitution to calculate the number of edit 

distances, is maybe a string metric that works well for comparing text texts. The source string must be changed to 

the target string in this way. This algorithm can find the similarity of documents to detect suspected research 

manuscripts on the internet [5]. On the other hand, the Damerau-Levenshtein distance is also used in determining 

edit distance between two strings. The only edge is that it has another property of transposition of adjacent character 

and is used in string correction problems [6]. 

On the other hand, profiling the query result to the local system can also assist reduce the number of queries that 

the database must execute and the amount of network, database, and server resources used. This will speed up user 

requests and prevent redundant data from being stored in the repository [7]. 
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With this, the Philippine Government can significantly receive help from the proposed study. Government agencies 

do not have a centralized data system that causes duplication of citizen’s information. But with the help of the 

proposed method, duplication of data in the database can be imposed and verified efficiently.  

The Philippine government pushes the National ID System for all the citizens to have a unique ID to help prevent 

committing mistakes in tracing persons who are suspected with COVID-19. According to Sen. Sherwin Gatchalian, 

the National ID, often, is prone to duplication and prone to fraud. Still, the local and national government enable 

this to avoid all this fraud and duplication. Besides, the Philippine Statistics Authority (PSA) and in the fourth 

quarter of 2019 the government started testing the National ID System with an agreement to finish population 

enrollment by the middle of 2022 [8]. The National ID also helps to streamline COVID-19 to speed up the release 

of aid recipients in the problem of Social Amelioration Funds (SAF) distribution to solve any discrepancies between 

Local Government Units (LGUs) and the Department of Social Welfare Development (DSWD) database [9]. 

Also, universities can benefit from the proposed study since the retrieval of data of students, teaching, and non-

teaching staff can be time-consuming, especially when dealing with a large volume of information. The integrity of 

students’ data can also be applied using the method. The operational cost can be minimized using the innovative 

approach.  

Libraries can also benefit from the study. Retrieving books can be done quickly and effectively. The process of 

collecting, sorting, and finding books and other information can be done promptly and effectively in just a brief 

period. 

Likewise, the findings of the study may be a prodigious help to Database Administrators since a new maintenance 

mechanism will be introduced. Working on databases will be implemented to save memory usage and storage space.  

This suggested approach encourages the researcher to enhance the SQL database's data integrity through record 

duplicate identification and deletion [2]. The Structured Query Language performs better for particular statements 

and joint tables. Furthermore, the database's record integrity will be preserved, along with the reduction of storage 

space and RAM allocation to the server. 

II. EXPERIMENTAL AND COMPUTATIONAL DETAILS 

A. Methodology 

The Restaurant Dataset (FODORS and ZAGAT) [10] are a collection of benchmark datasets for evaluating methods 

and algorithms. Each dataset is included of .csv files and a defined number of duplicate records. From this dataset, 

the data in the MS SQL Server Database were imported for usage and analysis in the experiments conducted. 

The study implemented and used the Levenshtein distance algorithm for detecting records in the database. The 

researcher formulated and implemented three (3) proposed methods for the experiment in finding duplicate records 

in the database. The first one is Default which is the natural implementation of the Levenshtein distance; (2) EES 

stands for Elimination of Equal String method that eliminates equal string found in the comparison; (3) KBL – is 

also based on the Levenshtein distance, but the method is improved in finding similar terminologies via Knowledge-

Based Libraries [4]. The KBL method adopted the Rule-based technique of [11]. On the other hand, the three 

methods implemented the Blocking and Windowing technique to improve the efficiency of comparison and to speed 

up the data comparison process [12]. 

B. Study Design 

 
Fig. 1: Conceptual Framework. 

Fig. 1, illustrates the propose method that can be the improvement of the data Integrity of SQL Database via Record 

Duplication Detection. As shown in the diagram the Restaurant, Product, and Bibliography benchmark datasets 

were used to evaluate the data to detect duplicate record in the database along with the proposed three methods 

namely: default, eliminating equal string (EES) and Knowledge-based libraries (KBL). This was done with the use 
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of adopted Rule-Based Technique to improve Levenshtein Algorithm to find similar terminology of string. The 

Blocking, Windowing were used to manage the performance of the comparison. 

C. Datasets 

Restaurant Dataset from ZAGAT and FODOR'S firm offered a benchmark dataset for evaluating the methodologies 

within a relational database of Levenshtein distance function.[10] 

Their algorithms and techniques for removing data redundancy in relational databases were evaluated using a 

variety of research studies [10], [13] , [4], [14] 

The dataset supplier states that the documents were marked with the following column fields of the database: id, 

name, address, phone, city, and type and shown 112 duplicates out of a total of 864 records. Table I contains a list 

of the data that was used to assess the techniques for finding duplicate records in SQL databases. 

Table I. List of Tables used in the experiment for record duplication detection. 

Dataset Size Duplicates 

Restaurant 864 112 

D. Record Duplication Detection 

 
Fig. 2: The Diagram for record duplication detection and deletion. 

Fig. 2, shows the diagram for record duplication detection and deletion in the database using Levenshtein distance. 

The researcher selected a database and then got all the tables inside the database to analyze and perform Levenshtein 

distance function to detect similar tuples in the table selected. The detected similar records based on a given 

threshold were considered as duplicate records in a table and were then stored to a temporary table, which follows 

the method of storing duplicate data from [2]. 

E. Executing the Levenshtein distance Algorithm 

Definition of Parameters of the proposed method in Executing Levenshtein distance 

$dbName variable that holds the database name 

$numberofTables variable that holds the number of tables inside the database 

$tableName holds the table name information 

$recordCount retains the quantity of entries in the table. 

$counter variable that increases via the table's numerical entries. 

$x variable used to increment through the number of tables in the database 

$threshold variable that holds to determine the percentage of the duplication detection of the 

Levenshtein distance algorithm 

$distance variable that holds the distance of the comparison 

$percent holds the percentage value of the calculation result of the similarity of the two string 

$max retains the character count that separates the source and target strings. 

The pseudocode below explains the proposed method in executing the Levenshtein distance algorithm to detect 

duplicate record in the database. 

Start the Program 

Set variable $recordCount = 0  

Set variable $counter = 0 

Set variable $x = 0 

Initialize variable $dbName 

Initialize variable $numberofTables 
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Initialize variable $threshold 

Get list of tables 

Loop through each table in the database 

Set the variable $tableName to the name of the table 

Set the variable $recordCount to the total number of record in the table 

Loop through each record in the table 

Set the variable $counter is equal to zero 

Get the distance between the source string and target string 

Set the variable $percent to the result of the percentage of the similarity 

If percent is greater than or equal to the threshold 

Save to Temporary Table 

If counter is equal to the total record count of the table 

If variable $x is equal to the total number of tables count 

End the Program 

Else 

Add 1 to the variable $x 

Input the next Table  

End If 

Else 

Add 1 to the variable $counter 

Input the next Record 

End If 

Else 

If counter is equal to the total record count of the table 

If variable $x is equal to the total number of tables count 

End the Program 

Else 

Add 1 to the variable $x 

Input the next Table  

End If 

Else 

Add 1 to the variable $counter 

Input the next Record 

End If 

End If 

End Loop 

End Loop 

 
Fig. 3: Levenshtein distance function flowchart used to find identical records in a relational database. 
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Fig. 3, demonstrates the flow chart for using the SQL database's Levenshtein distance function to find duplicate 

records. Once the method started, it will initialize what the database needs to be analyzed, which represents the 

variable $dbName. The variable $numberofTables indicates how many tables are present in the database that has 

been chosen. The variable $x represents the counter of each loop in the number of tables. Conversely, the T stands 

for the chosen table.  

The method performs SQL command 'Select Top 1 from the $tableName' as Row1. The first record in the table 

executes the Levenshtein function then calculates the distance of the succeeding records that represents the 

$distance variable. The columns of each tuple in the tables get the percentage of the similarity of the comparison. 

Once the variable $percentage were calculated, they were compared to the threshold set by the user. If the 

$percentage is greater than or equal than the threshold, the record is stored to the temporary table, which is 

considered as a duplicate to the selected record comparison.  

After the data is stored in the temporary table, the researcher evaluated the variable $counter which is equal to the 

$recordcount variable. The $recordcount variable keeps track of how many records are in the table. If the conditions 

evaluated is No, the researcher continued comparing the selected record to the other record in the table. If the 

condition evaluated is Yes, the researcher evaluated the variable $x if the variable $numberofTables in the database 

is equal to the variable $x. Once the $numberofTables is equal to the variable $x, it ends the execution of the 

Levenshtein distance calculation. If they are not yet equal, it will continue to go to the next table for analysis to 

detect duplicate records in the database. 

F. Increase data-comparison Speed 

The researcher adopted blocking and windowing techniques in speeding the comparison of data to detect duplicated 

records in the database along with its tables as suggested by [15]. However, Windowing Technique was also adopted 

since Blocking Technique has possible downsides that could also increase the frequency of false mismatches 

because of the behavior of bringing together in one instance and comparing.  

The Windowing (Sorted Neighborhood) Technique was developed by [16]. In order to speed up the comparison, 

the Sorted Neighborhood technique's output must be combined. One sliding window approach is used, and each 

tiny group's key must be changed [17] and [15]. 

G. Blocking (Conventional blocking technique) (Draisbach, n.d.) 

 
Fig. 4: Diagram for the Conventional blocking technique to increase data-comparison speed for record duplication detection 

Fig. 4, shows the diagram for the implementation of the conventional blocking technique to speed-up data 

comparison speed between two tuples in the database to detect duplicate data. In the diagram, the first elements 

show that the records are not sorted. The method composes of the following three steps: (1) to order the records, 

(2) to build a disjoint block, and (3) to detect duplication within a single block. In this case, the process of detecting 

the duplicate records in the database was optimized by searching each block.  

Furthermore, the method could increase the process, but it could also increase the chance of comparing other tuples' 

mismatch. The drawback of this method is shown in Figure 6. The method only provides faster data-comparison by 

its behavior of partitioning large datasets into a series of blocks. Searching of duplicate records into smaller dataset 

is faster rather than searching the whole dataset. 
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H. Windowing (Sorted Neighborhood) [18] 

 
Fig. 5: Diagram illustrating the windowing procedure used to increase the database's record duplication detection efficiency. 

Fig. 5, windowing the required collection of tuples in order, demonstrates the effectiveness of the record duplicate 

detection procedure. In the first group of elements, the elements are not in the same order with the blocking method. 

The difference of this method is once the records are sorted with the desired key, the window over sorted tuples are 

grouped by the fixed number of partition and are searched for duplicate records within the partition. 

I. Knowledge-Based Libraries to Improve Levenshtein Distance Function 

Recommends that to be able to detect duplicate records knowledge base is required [4]. Review in dealing with 

duplicate records [15]. One of the methods reviewed is the Rule-Based Technique [11]. On the other hand, To 

decide whether or not the two records match, Madnick applied the predefined heuristic rules. This technique gives 

one or zero results for each attribute, which is much related to the Levenshtein distance. When evaluating two-

record distance and the result is zero, it means they are same. An instance of [11] defines a rule below. 

IF the age is under 22 then  

status as a student  

Graduate status for ELSE  

student_major = MIS IF course_id = 564 or course_id = 579 

J. Rule-Based Technique 

 
Fig. 6: Architectural design for the improvement of Levenshtein distance to detect duplicate records through knowledge based 

Fig. 6, shows the architectural design is derived from the proposed method of [11] that used the heuristics rules to 

determine if two strings are matched. The design shows the two strings as a Tuple in the database to compare each 

of the columns. If the column value contains a single word and if they match within the two-dimensional array that 

was retrieved in the Knowledge-Based Libraries database, then it validates the two strings. The researcher 
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considered the two strings match and returned zero as equivalent to the Levenshtein distance of zero, which is a 

100% match result. 

On the other hand, if the two strings have multiple values and have separated words in each column matching, the 

architectural design divides each of the words by space. In doing so, compare each of the divided words in the two-

dimensional array that comes from the record in the Knowledge-Based Libraries database. If matches are found, 

one of the strings is considered as zero distance. Afterwards, average the string match to the Levenshtein function 

to detect the similarity of the left behind strings. This method helps the Levenshtein distance algorithm to detect 

similar words through knowledge-based and a series of rule-based like techniques. The two sequences of the 

architectural design are illustrated in Fig. 7. 

 
Fig. 7: Sequences of the proposed method to enhance Levenshtein distance to improve duplicate record detection via Rule-Based Technique 

III. RESULTS AND DISCUSSIONS 

A. Record Duplication Detection using Levenshtein Distance 

No Blocking and Windowing Implemented in Record Duplication Detection 

 
Fig. 8: Representation of the implementation of Levenshtein distance to detect duplicate records in the database 

Fig. 8, illustrates the results of the implementation of the Levenshtein distance function to detect duplicate records 

in the database without blocking and windowing technique.  

The chart has the following three implementation comparison: Default, which implemented the default 

implementation of Levenshtein function, the EES (Eliminating Equal String), which eliminated the equal string in 

a string before applying the Levenshtein function, and the KBL (Knowledge-Based Libraries) that helped the 

Levenstein function to determine knowledge-based comparison, for instance, St. for Saint and Street when 

abbreviated.  

0

100

200

300

400

500

600

700

50 60 70 75 80 90

D
u

p
li

ca
te

 R
ec

o
rd

 D
et

ec
te

d

Threshold

Default

EES

KBL



J. Electrical Systems 20-7s (2024): 997-1006 

 

1004 

The graph was tested in a different threshold presented in 50, 60, 70, 75, 80, 90 percent to determine duplicate 

records in the database. The 50 percent threshold shows that more duplicate records were detected rather than the 

other thresholds. It took 600 duplicated rows of the default implementation, 650 records of the EES, and the KBL 

detected 650 duplicated records.  

Whereas, the second test of a 60 percent threshold took an average of 397 detected records. But, the threshold of 

70% only detected an average of 88 duplicated records. Based on the detailed result of the detected duplicated 

record, the most accurate threshold considered is the threshold of 75% and up are the most accurate comparison to 

70% and below the threshold. 

No Blocking and Windowing Implemented in Record Duplication Detection by Elapse Time 

 
Fig. 9: Representation of the implementation of Levenshtein distance on the comparison elapse time per threshold 

Fig. 9, displays the results of the elapsed time taken per threshold without implementing the blocking and 

windowing techniques. The results showed that the lower percentage of the threshold took faster to execute rather 

than the higher percentage of the threshold. However, as observed, without blocking and windowing technique, it 

consumed much time for the comparison of data. The total records of the testing datasets were only 864 records in 

one table.  

The above presentation shows that the EES is the fastest to execute compared to the Default implementation and 

the Knowledge-based Libraries extension of the Levenshtein distance function. 

Blocking and Windowing Implemented in Record Duplication Detection with a fixed size of five Partition 

 
Fig. 10: Representation of the implementation of blocking and windowing techniques to detect duplicate records in the Sequel Database 
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Fig. 10, shows the result of the total duplicate records in implementing blocking and windowing techniques to 

speed-up the comparison of data. The results on each of the methods being tested are remarkable and had a 

difference of 43 records in the 50% threshold and 24 records difference in the threshold of 60%. In the threshold of 

70%, the default method showed higher detected records compared to EES and KBL implementation methods up 

to the higher threshold. 

Blocking and Windowing Implemented in Record Duplication Detection with a fixed size of five (5) Partition to 

speed-up data-comparison 

 
Fig. 11: Representation of the implementation of blocking and windowing techniques to optimize data-comparison to Sequel Database 

Fig. 11, shows the outcome of the total amount of time that each approach took. The presentation results tell the 

effectiveness of the implementation of the blocking and windowing method. Due to the rapid speed of the 

comparison, it only takes all the methods more than two minutes execution rather than without partitioning 

techniques. It took more than 20 minutes before the comparison was executed. 

IV. CONCLUSIONS 

In summary, The researcher proposed new methods in record duplication detection through the Eliminating Equal 

String Method and the Knowledge-Based Method. It is concluded that the Eliminating Equal String Method and 

the Knowledge-Based Method could improve Levenstein Distance to identify real-world instances and 

terminologies. 

The Levenshtein Distance Algorithm and the Rule-based Technique were employed by the researcher to increase 

the algorithm's capacity to find similarities between two strings and an equal string. Based on the outcome of testing 

in the Restaurant Dataset, data comparison was shortened to 18 minutes of execution with the aid of the Blocking 

and Windowing technique. 

V. RECOMMENDATIONS 

It is recommended that the methods should be tested on a high-end computing device and on a bigger dataset. This 

would further improve the data comparison execution that may affect the time, data cleaning, and detection. 

VI. FUTURE WORKS 

Develop an application or tools that will implement the three (3) methods proposed to detect duplicate records in 

the database. 
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