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Abstract: - The protection of industrialized management systems and related network protocols is guaranteed by vulnerability mining 

innovation. The inadequate receiving efficiency and insufficient vulnerability mining capacity of vulnerability mining strategies are 

their drawbacks. So, this study analyzes the network protocol vulnerability mining using fuzz testing combined with deep learning 

(DL). In this study, Modbus TCP is employed as a network protocol regarding vulnerability mining. This paper presents a unique 

threshold-sample-driven deep neural network (T-s DNN) framework. Based on the TSDNN, we construct a fuzzing framework (T-s 

DNN Fuzzer) for Modbus TCP protocols. The DNN algorithm is first trained to understand the meaning of the protocol's data unit 

using this framework. The likelihood distribution of every value in the information is quantified using the softmax mechanism. The 

technique then examines the highest likelihood and the random variable's threshold in deciding whether to use the information value 

with the optimal likelihood in place of the existing information value. The MBAP header has been finished by the protocol standard. 

Fuzz tests demonstrate that in addition to increasing sample receipt levels and exploitability, fuzzing devices can identify protocol 

vulnerabilities rapidly. Experiments conducted with the T-s DNN fuzzer demonstrate that it can detect industrial control protocol 

vulnerabilities greater in addition to increasing test case reception scores and exploitability. 

Keywords: Network protocol, TCP, vulnerability mining, deep learning (DL), fuzz test, threshold-sample driven deep 

neural network (T-s DNN) 

 

 

I.  INTRODUCTION  

Modern communication systems are based on network protocols, which allow devices to transmit data across 

networks with ease [1]. But as networks develop more intricate and associated, they also open themselves up to 

other security risks. One of the most crucial parts of information systems and information products is software. 

Software vulnerabilities are increasingly the factors that directly impact information system security [2]. It has been 

demonstrated that a majority of information security events are started by attackers who take advantage of software 

vulnerabilities. These kinds of instances have been worse over the past few years. As a result, identifying network 

components that are susceptible and require more investigation to determine their degree of risk and if required, 

rapidly assigning suitable patches was a growing and significant problem for software programmers [3]. 

A. Detection of Vulnerability 

A vulnerability is characterized as an issue that might be exploited by a threat source in an information system, 

system security protocols, internal controls, or implementation, whereas a fault or bug refers to a systemic 

imperfection that might (or might not) result in a vulnerability [4]. As a result, software faults that can be utilized 

maliciously are categorized as vulnerabilities. Because vulnerabilities are often ignored by users or programmers 

during regular system operation, vulnerabilities need a whole different strategy to identification than flaws, which 

can be found more easily and naturally [5]. Compared to usual faults, these make tackling vulnerabilities 

considerably more difficult. 

B. Comparison of Static and Dynamic Evaluation 

The two conventional methods for identifying vulnerabilities are (a) static evaluation and (b) dynamic 

evaluation [6]. Static analysis examined for vulnerabilities in the code without executing it. Consequently, during 

evaluation, the possible influence of the executable environment that was, the hardware and operating system was 

not considered [7]. To test whether the network will function in a run-time context, dynamic evaluation involves 

executing code. However, they can only make assumptions about the observable implementation routes, not all 

potential programming pathways [8]. Therefore, on their own, static and dynamic code evaluations both have 

certain issues. 
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C. Challenges for Detection of Vulnerability 

The constant threat scenery, resource-intensive nature, absence of thorough specifications and complexity of 

network protocols make mining vulnerabilities in them difficult [9]. Complicated relationships and lacking 

requirements can enable such vulnerabilities to pass undetected. New hazards are brought forth by a shifting cyber 

threat landscape, which makes vulnerability mining strategies more dynamic and demands constant monitoring. 

Accessibility was restricted for academics or lesser numbers due to the resource-intensive characteristics. These 

issues highlight the significance of constant improvement and teamwork to boost network security [10]. 

D. Contribution of the Study 

The following are the article's primary contributions: 

1. The article addresses the shortcomings of conventional vulnerability mining systems, which contain low 

capacity for vulnerability mining and low receiving efficiency. 

2. We proposed a threshold-sample-driven deep neural network (T-s DNN) architecture that is designed 

specifically for evaluating vulnerabilities in network protocols, with an emphasis on Modbus TCP. 

3. The algorithm evaluates a threshold for a random parameter along with its chances of the maximum 

probability. Its evaluation assists in determining whether to replace existing information values with ones that offer 

the highest probability, thus boosting vulnerability mining efficacy. 

4. Results from experiments show that the Ts DNN fuzzer increases test case variation scores, running duration 

and number of bugs while improving industrial control protocol detection of vulnerabilities significantly. 

The rest of the article is arranged as follows. To provide a brief overview of many relevant vulnerability 

assessment and management strategies in section 2. The background information for the suggested method is 

provided in section 3. Section 4, provides a series of comparative experimental evaluations and our vulnerability 

prediction methodology. Section 5 concludes with an assessment of the network's future. 

II. LITERATURE REVIEW 

The article [11] evaluated the effectiveness of Machine learning (ML) and Data Mining (DM) algorithms in 

assessing the accuracy of vulnerability prediction in computer security, specifically in identifying and mitigating 

computer software flaws. Potential tactics were identified via the literature assessment, but it also brought attention 

to problems including database size, misconceptions and changing assault vectors. The detection of phishing with 

ML techniques; the results showed that neural networks performed best in [12]. The IP address inclusiveness, URL 

width and encryption key validity were found to be important aspects. However, to counteract phishing assaults as 

they evolve, modifications to models regularly and user knowledge were crucial. The protocol analysis developed 

[13] a variety of scenario tests and created a fuzzy testing vulnerability mining approach to improve network 

security. The investigation [14] investigated using neural systems and DL techniques for software vulnerability 

detection, emphasizing the latter were capacity to comprehend code semantics and spot susceptible patterns. As 

this field developed, research was yet needed to address issues like the complexity of models and data scarcity; 

even with encouraging gains. The DL approach to software vulnerability identification was examined in [15], 

which discovered that the obstacles faced by traditional approaches include data duplication and erroneous class 

distribution. Considerable increases in recall and precision were demonstrated by suggested improvements based 

on practical scenarios, underscoring the necessity of more ethical data gathering and model building in DL-based 

vulnerability forecasting research. Table 1 presents previous researcher’s studies on network protocol vulnerability.  

Table 1: Previous Researcher’s Studies for Network Protocol Vulnerability 

Reference Objective Findings  Limitation 

[16] Decawatt Package (D-PACK) 

especially targets susceptible 

Internet of Things (IoT) devices, 

such as IP cameras, to 

strengthen defensive systems 

versus large-scale DDoS 

assaults by effectively filtering 

aberrant data at an early stage. 

By examining only, the initial two 

messages of each flow, D-PACK proves 

effective in achieving approximately the 

highest accuracy with a low false-

positive rate, based on the experimental 

data. The strategy lowers the processing 

load and makes it possible to stop 

harmful flows in real-time. 

D-PACK's dependence on 

pre-defined characteristics 

that are taken from the 

original packets presents a 

drawback since it might 

miss minute irregularities 

or change attack tactics. 

[17] The article efficiently detected 

defects in binary applications by 

employing an adaptive fuzzing 

framework known as V-Fuzz. 

The framework prioritizes code 

An evolutionary technique was used by 

V-Fuzz to target locations of software 

problems once a vulnerability 

detection strategy has identified them. 

Its efficacy was shown by the fact that it 

The precision of the 

vulnerability forecasting 

algorithm and the intricacy 

of the two-dimensional 

applications under test 
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parts that are susceptible using a 

flaw assessment algorithm. 

effectively identified three new and 10 

common Vulnerabilities and Exposures 

(CVEs). 

could have an impact on 

the efficacy of V-Fuzz 

performs. 

[18] The study addressed the 

deficiency of organized 

knowledge concerning the 

utilization of DL in C/C++ 

software vulnerability 

identification. The goal of 

Syntax-based, Semantics-based 

and Vector Representations 

(SySeVR) was to offer a 

structured approach for 

acquiring program 

representations that are capable 

of efficiently detecting 

vulnerabilities. 

Four software product tests show the 

benefit of the framework, fifteen 

vulnerabilities that had not been 

disclosed before were found, seven of 

which were unidentified and disclosed 

to vendors. 

One potential drawback of 

SySeVR might be its 

reliance on the caliber and 

variety of the training data, 

which could impair the 

algorithm's ability to 

effectively generalize to 

new vulnerabilities. 

[19] Bidirectional Graph Neural 

Network for Vulnerability 

Detecting (BGNN4VD), a 

vulnerability recognition 

technique that builds a 

Bidirectional Graph Network 

(BGNN) to overcome the 

shortcomings of the DL-based 

vulnerability detection 

techniques presently in 

operation. 

Based on experiment data, BGNN4VD 

improved F1-measure, accuracy and 

precision by 4.9%, 11.0% and 8.4%, 

respectively, when compared to these 

baselines. 

The use of vectorized 

source code visualizations, 

which could not adequately 

capture subtle weaknesses 

in intricate code structures, 

was BGNN4VD's primary 

drawback. 

[20] They create Formal Fuzzer, an 

emulation-based hybrids system 

that integrates fuzz testing and 

formal validation to effectively 

identify known and new 

vulnerabilities in SoCs, 

overcoming the drawbacks of 

conventional verification 

methods. 

Formal Fuzzer reduces the space for 

fuzzing tests by using template-based 

assertion generation and formal-

verification-based pre-processing. By 

selecting mutation algorithms using 

feedback from security-oriented cost 

functions, it effectively finds 

vulnerabilities in SoCs. 

The precision of the 

vulnerabilities samples and 

requirements utilized for 

determining the cost 

function could have an 

impact on the efficacy of 

Formal Fuzzer performs. 

[21] They build an ML-based 

approach that can anticipate 

software vulnerabilities from the 

source code before they become 

accessible, to improve software 

security and avert possible 

system damages. 

They developed a way for expressing 

source code that uses ML to intelligently 

interpret Abstract Syntax Tree (AST) 

representations of source code. Tests 

conducted on a publicly accessible set of 

function-level program segments show 

the efficacy it can be in comparison to 

other solutions. 

The possible bias or 

restrictions in the data set 

with labels might be one of 

the research's 

shortcomings, impacting 

the extent to which the 

findings can be applied. 

[22] A thorough analysis of SS7 

assaults, they included 

information on attack 

techniques, sites of entry within 

the SS7 core system, and 

recommended defenses. 

The study presented an anomaly 

detection technique for SS7 systems that 

was based on ML and suggested 

defenses against these threats. The 

outcomes demonstrate that when it 

involves anomaly detection and 

enhanced network security, the ML 

structure works better than rule-based 

filtering. 

The intricacy and dynamic 

character of SS7 assaults 

could be a study constraint, 

as it could provide 

difficulties in creating all-

encompassing defenses 

and detection techniques. 

[23] To increase the effectiveness of 

bug identification, the research 

developed Suzzer, a 

vulnerability-guided fuzzer, 

with an emphasis on examining 

code blocks that are more likely 

to have vulnerabilities. 

Suzzer was a lightweight static the 

detector that effectively targets 

susceptible code blocks and enhances 

bug discovery performance by 

extracting Abstract Control Flow Graph 

(ACFG) channels from target 

applications in 64.5% less time than 

VUzzer. 

The complexity and scale 

of the target software could 

have an impact on Suzzer's 

effectiveness. 
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A. Research Gap 

It is difficult for ML, DM, and DL techniques to anticipate computer security vulnerabilities with sufficient 

accuracy, particularly when attack vectors change frequently and available data sets are limited. While conventional 

techniques involving vulnerability tools for evaluation, fuzz evaluation and official verification have demonstrated 

potential, they also have drawbacks, including false positives, dependence on pre-defined features and scaling 

problems. The article develops and implement innovative techniques like T-s DNN fuzzer that have been identified 

in recent research to address these issues. These solutions increase the accuracy of vulnerability identification, 

lower false positives and strengthen system safety in the face of dynamic threats by utilizing advanced algorithms, 

hybrid structures and improved data representations. 

III. PROPOSED METHODOLOGY 

Modbus TCP/IP, often known as Modbus TCP (Transmission Control Protocol), is essentially the Modbus 

RTU (Remote Terminal Unit) protocol with an Ethernet-based TCP interface. The software protocol that 

establishes standards for organizing and interpreting data regardless of the data transmission channel is called the 

Modbus message structure. The Internet Protocol and Transmission Control Protocol, or IP/TCP, serve as the 

Modbus TCP/IP messaging's communication channel. TCP/IP facilitates the transfer of binary data blocks between 

computers. It is an international standard that forms the basis of the World Wide Web. Separate inputs, input 

registers, Coils and holding registers are the four memories that make up the Modbus slave framework's approach. 

A pattern of reading and writing of these memories, either via the physical procedures themselves or by remote 

requests sent by the Modbus master, can be used to mimic the control loops and reporting. The seven-byte header 

of the Modbus TCP/IP Application Unit (ADU) includes the protocol and transaction identifiers, protocol data unit, 

length field and unit identifier which is made up of function data and code. The ADU is transmitted to system port 

502 using TCP by embedding it within the data area of a typical TCP frame. All clients and servers that use Modbus 

receive and attend for information over this port, which is only meant for use with Modbus applications. The 

Modbus Application Protocol (MBAP) consists of a one-byte unit identification (set to 0𝑥𝐹𝐹, which is similar to 

the slave tackle in the serial model of Modbus), a 2-byte transaction identifier, a two-byte protocol recognition (set 

to 0𝑥0000 for Modbus) and a two-byte length field that indicates the number of subsequent bytes. A slave could 

be corresponding with several masters in Modbus/TCP, and a master can have several pending transactions with 

slaves. Figure 1 shows the Modbus frames in TCP segments. 

 
Figure 1: Modbus frames in TCP segments 

A. Distribution of Probabilities using deep neural network (DNN) 

The deep neural network classifier is built in this stage. A deep neural network (DNN), is a type of neural 

network that descended from the traditional artificial neural network. The architecture of a DNN is shown in Figure 

2. The three layers that make up a DNN are the output, input, hidden and SoftMax layers.  
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Figure 2: Structure of DNN 

The pre-processed input information is fed to the network via the input layer. The quantity of the Information 

collected by a network of neurons is equal to the number of characters being input in the sample. Equation (1) 

presents the expression for the input layer that has 𝐶 inputs. 

𝑊 = [𝑤1, 𝑤2, … . , 𝑤𝐶] (1) 

Since the DL network supports the addition of various hidden layers, the hidden layer comes next. The input 

layer's input 𝑊 is mapped by the hidden layer using bias (𝑎𝑖) and random weights (𝑤𝑗). Hence, inputs from the 

hidden layer are represented in equation (2). 

𝑔𝑖 = ∑𝑥𝑗𝑤𝑗 + 𝑎𝑖
𝑗

(2) 

Where𝑖-the total number of DNN's hidden units𝑖 =  1, 2, 3, . . . , 𝐿.There is an associated nonlinear activation 

function with every hidden layer. The neurons perform better than Softmax and hyperbolic tangent neurons, despite 

their high nonlinear dynamics and Discontinuity at 0. As a finding, producing real zeros in sparse representations 

yields excellent outcomes suitable for data that is limited. For 100 epochs of binary categorization both the sigmoid 

and tanh activation functions exhibit respectable detection rates compared to Softmax. Softmax beats out sigmoid 

and tanh activation operates when the investigation is run for 500 epochs. We thus select to use Softmax activation 

functions in the implementation of our suggested paradigm. Equation (3) expresses the hidden layer's outcomes. 

𝑔 = 𝑒(𝑔𝑖) (3) 

The hidden layer's inputs are processed by the output layer's stimulation function, which generates the outputs 

of DNNs. The output layer's nonlinear activation function, Softmax, which adapts inputs towards a class of 

likelihoods, is used for vulnerability detection, 𝜎(𝑊)𝑖. The DNN's output is represented in equation (4). 

𝜎(𝑊)𝑖 = 
𝑓𝑊𝑖

∑ 𝑓𝑊𝑙𝑙
𝑙=1

#(4) 

Where 𝑖 is the total amount of output units, 𝑖 = 1, 2, . . . , 𝐿, and 𝑤 represents a vector of input to the output 

layer. Using this DNN authentication, the inputs to each class output, example for normal 1 and abnormal 0 are 

used to execute the network training. To decrease training errors, the large training sample is employed to train 

DNN and each input connection's weight is adjusted repeatedly in Vulnerability detection. For the network to be 

trained with greater speed and effectiveness, the DNN's model parameters are adjusted. During training with a 

learning method, these tuning parameters also referred to hyper parameters are utilized to regulate softmax 

optimization techniques and approach selection. These hyperparameters determine whether the strategy overfits 

throughout the learning phase. 

SoftMax function is one potential DNN method that approaches the issue as a multiclass vulnerability 

estimation issue in which the user's inquiry is the input. The model transfers the final layer's 𝜑(𝑤) output to a 

probability distribution 𝑃̂ = 𝑔(𝜑(𝑤)𝑈𝑆) via a SoftMax layer. 

𝐺:ℚ𝑛 → ℚ𝑛  - threshold Softmax function is represented as 𝐺(𝑧)𝑗 =
𝑓
𝑧𝑗

∑ 𝑓𝑧𝑖𝑖
, 𝑈 ∈ ℚ𝑚∗𝑐 - threshold SoftMax 

layer's weight matrix. 
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A vector of scores, commonly referred as logits, 𝑍 ∈ ℚ𝑚  is mapped to a probability distribution using the 

threshold layer known as threshold soft-max, is represented in Figure 3. 

 
Figure 3: Predicted Probability Distribution 

A loss function that contrasts the subsequent threshold values. 𝑃̂, which is a probability distribution reflecting 

the Softmax layer's output and 𝑃 which is the ground truth and represents the objects the user has interacted with 

(e.g., selected or watched videos). A probability vector, or a normalized multi-hot distribution, can be used to 

illustrate in equation (5). 

𝑃̂ = 𝑇(𝜑(𝑤)𝑈𝑆) (5) 

The probability that item 𝑖 shows in 𝑃̂𝑖 =
exp (<𝜑(𝑤)𝑈𝑖>)

𝑌
, where 𝑌 is an independent normalization constant 

based on 𝑖. In another way, 𝑙𝑜𝑔(𝑃̂𝑖) =< 𝜑(𝑤), 𝑈𝑖 > −log (𝑌), meaning that the proportional likelihood of item 𝑖 

is the dot product of two 𝑑-dimensional vectors, which are equivalent to queries and item-embedded data, up to an 

additive constant. 

𝜑(𝑤) ∈ ℚ𝑐- greatest hidden layer's output. It refers to the query 𝑤's embedding. 𝑈𝑖 ∈ ℚ
𝑐- weight vector that 

links output𝑖 to the final hidden layer. This is referred as the item 𝑖's embedding. Equation (6) is used to determine 

the probability output 𝑃𝑢𝑗  (provided by equation (6)) of the DNN for every value of the information𝑢𝑗  in 

trajectory 𝑢. More probability indicates more accurate semantic training and a larger likelihood of the target's 

output result. Equation (7) demonstrates the distribution of probability guidelines for information values and all 

probabilities make up the output distribution of probability measures 𝑂 at a period of 𝑠. 

0 ≤ 𝑃𝑢𝑗 = 𝑃(𝑂̂𝑠 = 𝑢𝑗) = 𝑃𝑢𝑗(𝑂̂𝑠|{𝑊1, 𝑂̂1, … , 𝑂̂𝑠−1}| ≤ 1 (6) 

𝑂 = (𝑃0, 𝑃1, … , 𝑃255, 𝑃256) (7) 

B. Threshold-sample Approach for Industrial Protocol Vulnerability Detection  

The threshold-sample approach-based test instance generation technique for Modbus TCP maximizes 

vulnerability identification by utilizing random threshold variables and distribution of probability measures. The 

threshold sample space Ω𝑠(equation (8)) is made with all potential output outcomes of the resultant value 𝑂̂𝑠at 

period 𝑡, where 𝑤𝑖𝑡 comprises an essential occurrence. Based on Equation (9), the output data value while the 

fundamental event occurs is 𝑂̂𝑠,𝑗. The possibility that the data value 𝑂̂𝑠,𝑗equals 𝑂̂𝑠 is denoted by𝑃(𝑂̂𝑠 =  𝑒(𝑥𝑗
𝑠). 

Ω𝑠 = {𝑥0
𝑠, ⋯ , 𝑥𝑗

𝑠, ⋯ , 𝑥256
𝑠 } (8) 

𝑂̂𝑠,𝑗 = 𝑒(𝑥𝑗
𝑠) = 𝑗 (9) 

The Softmax layer's output result is the chance that the projected threshold value vulnerability is within the 

range of 257 information values. The highest likelihood is used to indicate the greatest level of DNN learning 

semantics of message correctness and the statistics value that corresponds to the highest likelihood is employed to 

forecast the input message's information value. By representing the constraints of data values in industrial 

automation instrument records using a distribution of probabilities, the threshold sample approach generates the test 

cases by using the information cost with the smallest likelihood as the output cost, thus exploiting protocol 

vulnerability. Initially, DNN employs a Softmax layer to produce the supply of probabilities within the present 

period based on the input data that is currently available, and the information is hidden and included in the message 
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that was learned. The probability of the learned message's semantic correctness is expressed by the Softmax layer. 

Subsequently, the technique produces a random threshold variable that is not constant for every probability matrix 

produced by DNN. Finally, a comparison is made among the maximum probability and the threshold variable. The 

information's value was formed by standard message semantics at that precise instant based on the comparison 

result, which is to increase the probability that an anomalous event would occur in the industrial hierarchy of 

authority. The random threshold variable is between 0 and 1 while all the possible values in the distribution of 

probability are also among 0 and 1. The generation strategy which generates test cases using the threshold sample 

approach is simplified. 

The threshold data is the Modbus TCP mining vulnerability fuzzer built with the threshold sample approach. 

In the probability matrix, 𝑃𝑖  stands for the greatest and minimum probabilities. The random threshold variable is 

𝐷𝑃𝑓𝑢𝑧𝑧, the distribution of probability measures of the result𝜁 is 𝑂, and 𝜁 is the DNN strategy in equations (10) to 

(12). 

𝑃𝑖 = 𝑃 (𝑂̂𝑠,𝑗 = 𝑒(𝑥𝑗
𝑠)) = max

𝜉
(𝑂) (10) 

𝑃𝑖 = 𝑃 (𝑂̂𝑠,𝑗 = 𝑒(𝑥𝑗
𝑠)) = max

𝜉
(𝑂) (11) 

𝐷𝑃𝑓𝑢𝑧𝑧 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) (12) 

When 𝑃𝑖  is larger than or equal to 𝐷𝑃𝑓𝑢𝑧𝑧  in the threshold sample-generating method, it means that the 

information values accessible by the register have defined uniformity and often exist in a specific location. 

Performance in the exact opposite manner as a result at this moment, a message is generated by substituting the 

data value of the smallest possibility for the information value of the highest likelihood. Although these test 

scenarios are rarely employed in the industrial control apparatus, such as an industrial management analyzer 

communication that has the potential to seriously compromise protocol security. For instance, to read the moisture 

value in the industrial management analyzer, access the register at location 0𝑥002𝐵 . This moisture value is 

represented by the information value 𝑇𝑠
+, demonstrated in Equation (13). If 𝑇𝑠

− (as given in equation (14) is chosen 

as the moisture element at this point, the protocol can become vulnerable even though like test scenarios are seldom 

employed in vulnerability detection. 

𝑇𝑠
+ = 𝑒(𝑥𝑗

𝑠) = 𝑎𝑟𝑔max
𝜉
(𝑂) (13) 

𝑇𝑠
− = 𝑒(𝑥𝑗

𝑠) = 𝑎𝑟𝑔max
𝜉
(𝑂) (14) 

It doesn't need to alter the register's access mode when 𝑃𝑖  is smaller than 𝐷𝑃𝑓𝑢𝑧𝑧since this suggests that the 

information threshold value employed by the register lacks some clear authority. For instance, to recite the point 

of dew threshold value in the industrial management analyzer, access the register at location 0𝑥002𝐶. Usually, the 

data threshold element𝑇𝑠
+ is the dew point threshold value. In these situations, using 𝑇𝑠

+as the dew point threshold 

value for vulnerability detection outcome in anomalous or nonexistent responses from industrial mechanisms is for 

control. 

A complete test scenario requires both MBAP and PDU due to the relationships between the threshold variables 

in the protocol message. Since the message created by the strategy for generation needs to be used to include the 

header message portion of MBAP, it is important to create a standard test case and then monitor the status of the 

object that is tested. The Modbus TCP message's PDU component is created using the model's generation strategy, 

but the MBAP message header must be generated at random using the Modbus TCP protocol. The PDU and MBAP 

header are combined in this manner to create a comprehensive validation scenario for the vulnerability detection 

framework for the industrial management protocol. 

C. Framework for Test Case Generation in Industrial Control Protocols 

The learning phase and the case generation phase make up the two sections of the framework used in this study 

to generate test cases. The learning step is used to ascertain the DNN's weight parameters and learn the training 

dataset's message. Protocol evaluation and generation approach comprise the case generation phase. Considering 

that TCP packet learning guidelines, DNN can ascertain the probability distribution connection of the subsequent 

produced field when a new field is provided in protocol analysis. For generating the subsequent protocol field, the 

generation method must modify the data associated with its probabilistic connection. Figure 4 depicts the protocol 

for industrial control.  
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Figure 4: Protocol for Industrial Control 

1) Learning Protocol Message Generation  

The Function Data and Code of every protocol were chosen for every Modbus TCP message. Depending on 

the low-byte and high-byte data, the 2-byte communication areas are separated between low-byte and high-byte 

segments. Each byte's hexadecimal information points are transformed into decimal points. A function that 

translates hexadecimal to decimal is represented by D. Since a byte's hexadecimal data range is 0𝑥00 to 0𝑥𝐹𝐹, 

each data value's value range in decimal is 0– 255 and all of them are integers after the byte is converted. Assume 

that there are 𝑛o messages of TCP and that the total length of all messages is 𝑚. Initially, the message is retrieved 

using this format and each message terminates with the data value 256 for the termination flag. Each data item has 

a value range of 0– 256, which is an integer. Therefore, 𝑚 −  𝑛𝑢𝑚 · 7 +  𝑛𝑢𝑚 · 1 is the total acquired message 

length, with 7, where 1 is the length of the enhanced termination signal value and the MBAP message's header 

byte. The sequence of the fields in each message is preserved throughout training when combining every message 

to generate the huge matrix 𝑇 since the DNN model's input data matrix has the same size. During network learning, 

each interval of 𝑚 information amounts, beginning with the initial information amount, symbolizes a message 

input of 𝑇. Similarly, every interval of 𝑚 information represents an output of the message through the training 

phase, beginning with the second data value. Consequently, {𝑇𝑗 , . . . , 𝑇𝑗+𝑛is the model's 𝑗𝑡ℎ input message., and the 

message that appears on the 𝑗𝑡ℎ output is {𝑇𝑗+1, . . . , 𝑇𝑗+𝑛+1}, where there are ⌊(𝑛 −  𝑛𝑢𝑚 · 7 +  𝑛𝑢𝑚 · 1 − 1)/𝑛⌋ 

messages overall and each message has a length of 𝑛. The 𝑗𝑡ℎ message is represented by the subscript 𝑗. Based on 

equations (15) and (16), the matrix made up of the set of input messages in the TCP instruction package is 𝑤, where 

𝑤𝑗  stands for the 𝑗𝑡ℎinput message.  

𝑊 = [𝑊0,𝑊1, … ,𝑊𝑗 , … ,𝑊⌊𝑛𝑢𝑚−
1
𝑛
⌋
] (15) 

𝑊𝑗 = [𝑇𝑗 , 𝑇𝑗+1, … , 𝑇𝑗+𝑛−1, ] (16) 

Equations (17) and (18) illustrate that the intended output message is represented by the matrix Z. Z𝑗 stands for 

the 𝑖𝑡ℎ message that should be produced. 

Z = [Z0, Z1, … , Z𝑗, … , Z⌊𝑛𝑢𝑚−1
𝑛
⌋
] (17) 

Z𝑗 = {𝑇𝑗+1,𝑇𝑗+2, … , 𝑇𝑗+1+𝑛−1} (18) 

During the phase of learning, the supply strategy for determining the protocol information threshold point is 

designed using a two-layer DNN. The message of input at every period is 𝑤𝑗 , the predicted message output is Z 

and the message input is 𝑊 based on the time series expansion. 

During the learning phase of this study, 𝑍, the predicted output, is transformed into Z[𝑗], the polynomial supply 

matrix of single-hot encoding, representing the distribution of probability 𝜃 of the actual result Ẑ𝑗. The distance 

among them is then described by a value and the total duration of every message is obtained to form the learned 

loss function, which is provided in equation (19). 

𝑙𝑜𝑠𝑠(Z, Ẑ) = −
∑ Z[𝑗] × 𝑙𝑜𝑔Z[𝑗]
⌊(𝑛−𝑛𝑢𝑚−7+𝑛𝑢𝑚1−

1
𝑛
⌋

𝑗=0

⌊(𝑛 − 𝑛𝑢𝑚. 7 + 𝑛𝑢𝑚1 −
1
𝑛
⌋

(19) 

2) Protocol Evaluation with DNN Distribution of Probability  
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The primary components of the generation model, the case generation strategy and protocol evaluation, are 

included in the case generation stage. The DNN model's internal weighted parameters for the network are 

established following the learning phase. The information value of the 𝑗𝑡ℎtest case at time 𝑠 is represented by the 

superscript (𝑠) when the 𝑗𝑡ℎtest case is generated. The threshold softmax function generates the distribution of 

probability connection measures for each period in the protocol evaluation. 𝑤𝑗
[0]

 is the model's starting input. Every 

time, the framework generates an information value that is used in the following iteration. 

There is a probability output matrix for every time. The output value, 𝜃𝑖, represents the probability of each of 

the 257 data values that are recorded in the matrix; the total probabilities added together equals one. Equations 

(20) to (22) reflect these probabilities, with 𝜉 denoting a two-layer DNN network. Equation (20) is satisfied by the 

real output probability measures 𝜃 of 𝜉; Equation (21) is satisfied by the information value associated to the highest 

probability in the matrix, 𝑍̂𝑗
(𝑠)+

; and Equation (22) is satisfied by the information associated to the smaller 

probability in the measures 𝑍̂𝑗
(𝑠)−

. 

(𝜃0, 𝜃1, ⋯ , 𝜃256) =

(

  
 

𝑃 (Ẑ𝑗
(𝑠)+ = 0|{𝑊𝑗

(0), Ẑ𝑗
(0), Ẑ𝑗

(1)−, ⋯ Ẑ𝑗
(𝑠−1)})

𝑃 (Ẑ𝑗
(𝑠)+ = 1|{𝑊𝑗

(0), Ẑ𝑗
(0), Ẑ𝑗

(1), ⋯ Ẑ𝑗
(𝑠−1)})

⋮

𝑃 (Ẑ𝑗
(𝑠)+ = 256|{𝑊𝑗

(0), Ẑ𝑗
(0), Ẑ𝑗

(1)−, ⋯ Ẑ𝑗
(𝑠−1)}))

  
 

𝑆

(20) 

Ẑ𝑗
(𝑠)+ = 𝑎𝑟𝑔max

𝜉
(𝜃) (21) 

Ẑ𝑗
(𝑠)− = 𝑎𝑟𝑔max

𝜉
(𝜃) (22) 

D. Threshold-Sample Approach for Test Case Generation 

The phases that are specifically involved in generating the information value 𝑍̂𝑗
(𝑖)(𝑖 ∈ [0, 𝑠 − 1]) every time 

using the threshold-sample generation approach are as follows.  

1. Based on the current input (𝑤𝑗
(0)

or 𝑍̂𝑗
(𝑖−1)

and the learned semantics, the protocol analysis part's distribution 

of probabilities relation matrix 𝜃 is produced. 

2. Every probability matrix has a threshold 𝐷𝑃𝑓𝑢𝑧𝑧 that is randomly determined during generation. Equation 

(23) provides the highest probability 𝜃𝑖 in the measures, which is the result of the constructed strategy framework. 

If 𝜃𝑖 exceeds or is equivalent to𝐷𝑃𝑓𝑢𝑧𝑧, 𝑍̂𝑗
(𝑆)−

is chosen as the value to be output. Alternatively,𝑍̂𝑗
(𝑆)+

remains chosen 

to be the variable of output. 

𝜃𝑗 = max
𝜉
(𝜃) (23) 

3. The termination signal information value of 256 is compared to the information created by the present period. 

To repeat the phase (1) and (2), If the process has finished, it shouldn't be the termination signal information value. 

The Function data and code portions of the validation cases are created according to the dependent connection 

in TCP and then generate the entire test cases. Initially, a random generator creates the protocol ID (2 bytes), unit 

ID (1 byte), and transaction ID. Length is then determined by dividing the total amount of bytes by Unit ID, Data 

Function and Code into 2 hex numbers. As demonstrated by Algorithm 1, the threshold-sample algorithm obtains 

as input the double-layer DNN network 𝜉 and the produced message [𝑍̂𝑗
(0), 𝑍̂𝑗

(1), . . . , 𝑍̂𝑗
(𝑠−1)]  and outputs the 

resulting PDU message 𝑍̂𝑗. 

 

Algorithm 1: Threshold-sample Approach 

𝒊𝒏𝒑𝒖𝒕:  𝜁 ← 𝑡ℎ𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑙𝑎𝑦𝑒𝑟 𝐷𝑁𝑁 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦;   

[𝑍̂𝑗
(0)
, 𝑍̂𝑗
(1)
 , … , 𝑍̂𝑗

(𝑠−1)
]  ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒;   

𝒐𝒖𝒕𝒑𝒖𝒕: 𝑌̂𝑗   ← 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑃𝐷𝑈 𝑚𝑒𝑠𝑠𝑎𝑔𝑒   

𝛻 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒   

[𝑍̂𝑗
(0)
, 𝑍̂𝑗
(1)
 , … , 𝑍̂𝑗

(𝑠−1)
]  𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝜁 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑖𝑡𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝜃.    

1. 𝒅𝒐𝐷𝑃𝑓𝑢𝑧𝑧  ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)𝜃𝑖  ←  
𝑚𝑎𝑥(𝜃)
𝜁

 

2. 𝑍̂𝑗
(𝑠)+   ←  

𝑎𝑟𝑔 𝑚𝑎𝑥 (𝜃)

𝜉
 , 𝑍̂𝑗

(𝑠)−𝑎𝑟𝑔𝑚𝑎𝑥 (𝜃)

𝜉
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3. 𝐼𝑓 𝜃𝑖  ≥   𝐷𝑃𝑓𝑢𝑧𝑧  

4.             𝑡ℎ𝑒𝑛  𝑍̂𝑗
(𝑠)
 ← 𝑍̂𝑗

(𝑠)+ 

5.              𝑒𝑙𝑠𝑒  𝑍̂𝑗
(𝑠)
 ← 𝑍̂𝑗

(𝑠)+ 

6. 𝑍̂𝑗  ← 𝑍̂𝑗 + 𝑍̂𝑗
(𝑠)

 

7.     𝑠 ← 𝑠 + 1    

8. 𝒅𝒐 𝒘𝒉𝒊𝒍𝒆  𝑍𝑗
(𝑠)
 ! = 256 𝛻 𝑇ℎ𝑒 𝑒𝑛𝑑 𝑓𝑙𝑎𝑔 𝑠𝑡𝑜𝑝𝑠 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝  

9. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

 

IV. EXPERIMENTAL FINDINGS  

To identify the network vulnerability in the control system equipment, this article uses the TCP as the validation 

target. Test cases are sent to the industrial control system as part of the Modbus TCP vulnerability detection process 

and the system either responds or returns an abnormal state. After that, the apparatus sends out fresh test cases and 

it is monitored for indications if the initial experiment resulted in an unusual reaction. The system discards the case, 

suggesting a protocol vulnerability, if it reacts to the test cases normally. 

A. Dataset Acquisitions 

This section assesses the suggested T-s DNN Fuzzer algorithm performs versus random Industrial Control 

Systems (ICS) models using two separate ICS datasets. Secure Water Treatment (SWaT) and Gas Pipeline (GP) in 

real and modeled industrial locations from which the SCADA training sample employed in this research was 

selected due to its variety and distinctive features. This dataset was collected from a gas pipeline system and 

includes a pre-processed Modbus validation frame in the Attribute Relation File Format (ARFF) to facilitate the 

usage of specific preprocessing methods. Eleven days of nonstop operation are included in this dataset; seven of 

those days were operated normally, while the other four days were attack scenarios. Attributes are gathered from 

communication between network ports, detectors and motors, comprise SWaT [24].  

B. Experimental Setup 

Secure Water Treatment (SWaT) of ICS, Siemens programmable logic controller SIMATIC 𝑆7 − 300 , 

Modbus TCP 𝑉2.6 server and 𝐶𝑖𝑠𝑐𝑜 𝑊𝑆 − 𝐶2960 − 24𝑇𝐶 − 𝐿 switch was among the industrial control systems 

in this set. An 𝑁𝑣𝑖𝑑𝑖𝑎 𝐺𝑇𝑋1050𝑇𝑖 𝐺𝑃𝑈, 64 −bit of RAM and an 8 GB operating system Windows 10 was used 

to install the industrial control tester. 𝑃𝑦𝑡ℎ𝑜𝑛 3.6.6 , 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤 − 𝐺𝑃𝑈 1.8.0, 𝐶𝑈𝐷𝐴 9.0  and CUDNN 6.0 

served as the foundation for the learning model. 

C. Test Case Diversity Analysis in T-s DNN Fuzzer 

As the study's learning data, all of the messages that were in the data set with typical replies had to be filtered 

out and then the repetitive messages were eliminated. Eighty epochs were learned and 52,000 TCP messages in 

total were chosen. The generation strategy was stored every ten epochs, the training proportion was 0.001, the 

variable 𝜏 was 0.6 and the predicted size was 128 and 256. To maintain the capacity to generate test case diversity 

in this study, the initial phase was to determine the appropriate hyper parameters, 𝜏 is (0.4, 0.6, and 0.7). The 

validation then contrasted the instrument's reception proportion with a learning proportion (0.01, 0.001, 0.003 and 

0.0003) and simulation size ((64 and 64), (128 and 256) and (256 and 256)). Figure 5 illustrated the comparison of 

reception rate contains 5(a) 0.4, 5(b) 0.6, and 5(c) 0.7). The reception proportion of experiments produced by 

various model sizes and learning proportion for ICS changed continuously and typically followed a trend of initially 

growing, then 𝜏, as the parameter rose. The strategy size was 128 and 256, the learning proportion was 0.0001 

and the reception proportion reached its extreme when the parameter was 0.6. 
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Figure 5: Comparison of reception rate under different values 

Four hours of fuzzing tests were conducted throughout the experiment, as indicated in Figure 6, employing a 

learning epoch to create 16700 instances of testing for 40, 60, 70 and 80, respectively. The industrial control system 

was exposed to a test case every second to verify the effectiveness of the T-s DNN fuzzer. Every 20 minutes, the 

industrial control system's vulnerability number and reception rate were recorded. No manual intervention or 

deletion was used for the test instances produced by the T-s DNN fuzzer. The more training epochs the framework 

had, the more accurate it was at detecting message meanings. The T-s DNN fuzzer test system learned 80 epochs 

to provide sensor instances for vulnerability detection, with a learning proportion of 0.001 and strategy sizes of 128 

and 256, resulting in 90% of the test instances receiving the actual message. 

 
Figure 6: Learning Epochs' Impact on Reception Rate 

D. Performance Evaluation 

In this section, the proposed fuzzer is compared to traditional fuzzers such as APF Kitty [25], Peach Fuzzer 

[26], Radamsa [26] and EU Fuzzer [26] in terms of running time and number of bugs.  

Running Time (s): This measure describes the amount of time that a fuzzing tool requires to execute through 

its test cases, create packets and communicate with the intended program or system. The proposed method is 
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compared to the existing fuzzers. Figure 7 represents the comparison outcome of the suggested method. The T-s 

DNN fuzzer method is 8.79 attain current methods [26] like Radamsa is 16.58, Peach Fuzzer is 11.60 and EU 

Fuzzeris 12.03. The T-s DNN fuzzer approach is very useful for the detection of vulnerability. 

 
Figure 7: Comparison outcome of running time 

Number of Bugs: This metric measures the flaws or vulnerabilities, the fuzzing tool found during the testing 

stages. The proposed method is compared to current methods, shown in Figure 8. The suggested T-s DNN fuzzer 

strategy (79.15) has lower numerical results compared to an existing method like Peach Fuzzer (93.53), Radamsa 

(63.25) and EU Fuzzer (68.25). The T-s DNN Fuzzer is significant for the detection of vulnerability. 

 
Figure 8: Result of Number of Bugs 

E. Vulnerability Testing 

In this section, each testing instance in the vulnerability process of mining has an identification number. Three 

different vulnerabilities (𝑣) categories were discovered during the T-s DNN fuzzer experiment, along with the case 

number and vulnerability categories. The case code denotes the test instance number from the initial discovery of 

this vulnerability type.  

V1 (Data Authentication - 3569): Vulnerabilities that make it possible for attackers to navigate around 

authentication restrictions in Modbus TCP-based platforms and access vital data or resources without authorization. 

V2 (Data Tampering - 2588): Vulnerabilities that let intruders alter or manipulate data sent back and forth 

between Modbus TCP devices, potentially causing integrity of data difficulties or unauthorized device behavior 

modifications. 

V3 (Data Injection - 2863): Vulnerabilities in Modbus TCP requests messages permit attackers to include 

execute arbitrary instructions, probably granting them access to or control over devices without authorization. 
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The T-s DNN fuzzer discovered the vulnerability, which was then examined by more conventional fuzzers 

including APF Kitty [25] and Peach fuzzer [26] for calculating VMA and TCVR. 

Vulnerability mining ability (VMA): The VMA calculated both the total amount of weaknesses detected in the 

evaluation and the total amount of trail instances necessary to find these vulnerabilities, revealing an average 

amount of trial instances need to create an exemption. The three approaches' APF Kitty fuzzer [25], Peach fuzzer 

[26] and T-s DNN fuzzer respective VMAs were compared as the assessment indicator represented in Figure 9. 

The efficiency of three distinct fuzzers in identifying vulnerabilities is during a four-hour VMA and their execution 

times. Each fuzzer's initial vulnerability discovery time is displayed in the Fuzzer Period of Execution in Initial 

Vulnerability. The total amount of vulnerabilities found by every fuzzer throughout the assessment is shown in the 

Number of Vulnerabilities Identified in 4 h VMA. With a rate of detection of 0.09%, the APF Kitty Fuzzer spent 

2689 seconds to identify 15 vulnerabilities. With a rate of detection of 0.06%, the Peach Fuzzer spent 4638 seconds 

to identify 12 vulnerabilities. With a rate of detection of 0.21%, the T-s DNN Fuzzer spent 2588 seconds to identify 

27 vulnerabilities. 

 
Figure 9: Outcome of VMA 

Test case variation rate (TCVR) (%): The TCVR identified as the proportion of anomalous validation incidents 

to all test cases created, is another experimental evaluation indicator. For each test scenario, the TCVR using three 

fuzzers was assessed in this investigation. Figure 10 shows the outcome of TCVR. T-s DNN fuzzer (86.99%) was 

quite less than the APF Kitty fuzzer in contrast to all the test cases' variation rates, the Peach fuzzer (80.6 %) had 

the smallest, while the Kitty fuzzer (88.1 %) had the greatest TCVR while. 

 
Figure 10: Outcome of TCVR 
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V. CONCLUSION 

The study improved the inadequacies of low reception efficiency and low mining capacity by improving the 

vulnerability detection abilities of network protocols and industrial management systems. The approach integrated 

DL with fuzz testing, with a focus on Modbus TCP protocols. To examine and identify vulnerabilities, a special 

threshold-sample-driven deep neural network (T-s DNN) technology and fuzzing framework (T-s DNN Fuzzer) 

was created. Using thresholds and probabilities, the DNN algorithm was trained to read protocol information units, 

quantify probability variations via soft-max and select the most effective information values. The T-s DNN Fuzzer 

was utilized to conduct fuzz testing, which demonstrated enhanced exploitability, faster protocol vulnerability 

discovery and better sample receiving rates. The research findings underscore the efficacy of the T-s DNN 

methodology in augmenting vulnerability detection for protocols in networks. The computing resource needs of 

DL implementation in real-time applications could present issues. The T-s DNN technology should be improved 

for flexibility and its application to a larger range of networking protocols through more study. 
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