
J. Electrical Systems 20-3 (2024): 1111-1125

1111

1*
Ya Ma

1 Chunqiang Li

1 Yongfeng Wang

1 Yu Wang

An Analysis of Network Protocol

Vulnerability Mining Using Fuzz

Testing Combined with Deep

Learning Models

Abstract: - The protection of industrialized management systems and related network protocols is guaranteed by vulnerability mining

innovation. The inadequate receiving efficiency and insufficient vulnerability mining capacity of vulnerability mining strategies are

their drawbacks. So, this study analyzes the network protocol vulnerability mining using fuzz testing combined with deep learning

(DL). In this study, Modbus TCP is employed as a network protocol regarding vulnerability mining. This paper presents a unique

threshold-sample-driven deep neural network (T-s DNN) framework. Based on the TSDNN, we construct a fuzzing framework (T-s

DNN Fuzzer) for Modbus TCP protocols. The DNN algorithm is first trained to understand the meaning of the protocol's data unit

using this framework. The likelihood distribution of every value in the information is quantified using the softmax mechanism. The

technique then examines the highest likelihood and the random variable's threshold in deciding whether to use the information value

with the optimal likelihood in place of the existing information value. The MBAP header has been finished by the protocol standard.

Fuzz tests demonstrate that in addition to increasing sample receipt levels and exploitability, fuzzing devices can identify protocol

vulnerabilities rapidly. Experiments conducted with the T-s DNN fuzzer demonstrate that it can detect industrial control protocol

vulnerabilities greater in addition to increasing test case reception scores and exploitability.

Keywords: Network protocol, TCP, vulnerability mining, deep learning (DL), fuzz test, threshold-sample driven deep

neural network (T-s DNN)

I. INTRODUCTION

Modern communication systems are based on network protocols, which allow devices to transmit data across

networks with ease [1]. But as networks develop more intricate and associated, they also open themselves up to

other security risks. One of the most crucial parts of information systems and information products is software.

Software vulnerabilities are increasingly the factors that directly impact information system security [2]. It has been

demonstrated that a majority of information security events are started by attackers who take advantage of software

vulnerabilities. These kinds of instances have been worse over the past few years. As a result, identifying network

components that are susceptible and require more investigation to determine their degree of risk and if required,

rapidly assigning suitable patches was a growing and significant problem for software programmers [3].

A. Detection of Vulnerability

A vulnerability is characterized as an issue that might be exploited by a threat source in an information system,

system security protocols, internal controls, or implementation, whereas a fault or bug refers to a systemic

imperfection that might (or might not) result in a vulnerability [4]. As a result, software faults that can be utilized

maliciously are categorized as vulnerabilities. Because vulnerabilities are often ignored by users or programmers

during regular system operation, vulnerabilities need a whole different strategy to identification than flaws, which

can be found more easily and naturally [5]. Compared to usual faults, these make tackling vulnerabilities

considerably more difficult.

B. Comparison of Static and Dynamic Evaluation

The two conventional methods for identifying vulnerabilities are (a) static evaluation and (b) dynamic

evaluation [6]. Static analysis examined for vulnerabilities in the code without executing it. Consequently, during

evaluation, the possible influence of the executable environment that was, the hardware and operating system was

not considered [7]. To test whether the network will function in a run-time context, dynamic evaluation involves

executing code. However, they can only make assumptions about the observable implementation routes, not all

potential programming pathways [8]. Therefore, on their own, static and dynamic code evaluations both have

certain issues.

1 Zunyi Cigarette Factory of China Tobacco Guizhou Industrial Co., Ltd. Zunyi, 63000, China
Corresponding author: Ya Ma, maya_zunyi@163.com
Copyright © JES 2024 on-line : journal.esrgroups.org

J. Electrical Systems 20-3 (2024): 1111-1125

1112

C. Challenges for Detection of Vulnerability

The constant threat scenery, resource-intensive nature, absence of thorough specifications and complexity of

network protocols make mining vulnerabilities in them difficult [9]. Complicated relationships and lacking

requirements can enable such vulnerabilities to pass undetected. New hazards are brought forth by a shifting cyber

threat landscape, which makes vulnerability mining strategies more dynamic and demands constant monitoring.

Accessibility was restricted for academics or lesser numbers due to the resource-intensive characteristics. These

issues highlight the significance of constant improvement and teamwork to boost network security [10].

D. Contribution of the Study

The following are the article's primary contributions:

1. The article addresses the shortcomings of conventional vulnerability mining systems, which contain low

capacity for vulnerability mining and low receiving efficiency.

2. We proposed a threshold-sample-driven deep neural network (T-s DNN) architecture that is designed

specifically for evaluating vulnerabilities in network protocols, with an emphasis on Modbus TCP.

3. The algorithm evaluates a threshold for a random parameter along with its chances of the maximum

probability. Its evaluation assists in determining whether to replace existing information values with ones that offer

the highest probability, thus boosting vulnerability mining efficacy.

4. Results from experiments show that the Ts DNN fuzzer increases test case variation scores, running duration

and number of bugs while improving industrial control protocol detection of vulnerabilities significantly.

The rest of the article is arranged as follows. To provide a brief overview of many relevant vulnerability

assessment and management strategies in section 2. The background information for the suggested method is

provided in section 3. Section 4, provides a series of comparative experimental evaluations and our vulnerability

prediction methodology. Section 5 concludes with an assessment of the network's future.

II. LITERATURE REVIEW

The article [11] evaluated the effectiveness of Machine learning (ML) and Data Mining (DM) algorithms in

assessing the accuracy of vulnerability prediction in computer security, specifically in identifying and mitigating

computer software flaws. Potential tactics were identified via the literature assessment, but it also brought attention

to problems including database size, misconceptions and changing assault vectors. The detection of phishing with

ML techniques; the results showed that neural networks performed best in [12]. The IP address inclusiveness, URL

width and encryption key validity were found to be important aspects. However, to counteract phishing assaults as

they evolve, modifications to models regularly and user knowledge were crucial. The protocol analysis developed

[13] a variety of scenario tests and created a fuzzy testing vulnerability mining approach to improve network

security. The investigation [14] investigated using neural systems and DL techniques for software vulnerability

detection, emphasizing the latter were capacity to comprehend code semantics and spot susceptible patterns. As

this field developed, research was yet needed to address issues like the complexity of models and data scarcity;

even with encouraging gains. The DL approach to software vulnerability identification was examined in [15],

which discovered that the obstacles faced by traditional approaches include data duplication and erroneous class

distribution. Considerable increases in recall and precision were demonstrated by suggested improvements based

on practical scenarios, underscoring the necessity of more ethical data gathering and model building in DL-based

vulnerability forecasting research. Table 1 presents previous researcher’s studies on network protocol vulnerability.

Table 1: Previous Researcher’s Studies for Network Protocol Vulnerability

Reference Objective Findings Limitation

[16] Decawatt Package (D-PACK)

especially targets susceptible

Internet of Things (IoT) devices,

such as IP cameras, to

strengthen defensive systems

versus large-scale DDoS

assaults by effectively filtering

aberrant data at an early stage.

By examining only, the initial two

messages of each flow, D-PACK proves

effective in achieving approximately the

highest accuracy with a low false-

positive rate, based on the experimental

data. The strategy lowers the processing

load and makes it possible to stop

harmful flows in real-time.

D-PACK's dependence on

pre-defined characteristics

that are taken from the

original packets presents a

drawback since it might

miss minute irregularities

or change attack tactics.

[17] The article efficiently detected

defects in binary applications by

employing an adaptive fuzzing

framework known as V-Fuzz.

The framework prioritizes code

An evolutionary technique was used by

V-Fuzz to target locations of software

problems once a vulnerability

detection strategy has identified them.

Its efficacy was shown by the fact that it

The precision of the

vulnerability forecasting

algorithm and the intricacy

of the two-dimensional

applications under test

J. Electrical Systems 20-3 (2024): 1111-1125

1113

parts that are susceptible using a

flaw assessment algorithm.

effectively identified three new and 10

common Vulnerabilities and Exposures

(CVEs).

could have an impact on

the efficacy of V-Fuzz

performs.

[18] The study addressed the

deficiency of organized

knowledge concerning the

utilization of DL in C/C++

software vulnerability

identification. The goal of

Syntax-based, Semantics-based

and Vector Representations

(SySeVR) was to offer a

structured approach for

acquiring program

representations that are capable

of efficiently detecting

vulnerabilities.

Four software product tests show the

benefit of the framework, fifteen

vulnerabilities that had not been

disclosed before were found, seven of

which were unidentified and disclosed

to vendors.

One potential drawback of

SySeVR might be its

reliance on the caliber and

variety of the training data,

which could impair the

algorithm's ability to

effectively generalize to

new vulnerabilities.

[19] Bidirectional Graph Neural

Network for Vulnerability

Detecting (BGNN4VD), a

vulnerability recognition

technique that builds a

Bidirectional Graph Network

(BGNN) to overcome the

shortcomings of the DL-based

vulnerability detection

techniques presently in

operation.

Based on experiment data, BGNN4VD

improved F1-measure, accuracy and

precision by 4.9%, 11.0% and 8.4%,

respectively, when compared to these

baselines.

The use of vectorized

source code visualizations,

which could not adequately

capture subtle weaknesses

in intricate code structures,

was BGNN4VD's primary

drawback.

[20] They create Formal Fuzzer, an

emulation-based hybrids system

that integrates fuzz testing and

formal validation to effectively

identify known and new

vulnerabilities in SoCs,

overcoming the drawbacks of

conventional verification

methods.

Formal Fuzzer reduces the space for

fuzzing tests by using template-based

assertion generation and formal-

verification-based pre-processing. By

selecting mutation algorithms using

feedback from security-oriented cost

functions, it effectively finds

vulnerabilities in SoCs.

The precision of the

vulnerabilities samples and

requirements utilized for

determining the cost

function could have an

impact on the efficacy of

Formal Fuzzer performs.

[21] They build an ML-based

approach that can anticipate

software vulnerabilities from the

source code before they become

accessible, to improve software

security and avert possible

system damages.

They developed a way for expressing

source code that uses ML to intelligently

interpret Abstract Syntax Tree (AST)

representations of source code. Tests

conducted on a publicly accessible set of

function-level program segments show

the efficacy it can be in comparison to

other solutions.

The possible bias or

restrictions in the data set

with labels might be one of

the research's

shortcomings, impacting

the extent to which the

findings can be applied.

[22] A thorough analysis of SS7

assaults, they included

information on attack

techniques, sites of entry within

the SS7 core system, and

recommended defenses.

The study presented an anomaly

detection technique for SS7 systems that

was based on ML and suggested

defenses against these threats. The

outcomes demonstrate that when it

involves anomaly detection and

enhanced network security, the ML

structure works better than rule-based

filtering.

The intricacy and dynamic

character of SS7 assaults

could be a study constraint,

as it could provide

difficulties in creating all-

encompassing defenses

and detection techniques.

[23] To increase the effectiveness of

bug identification, the research

developed Suzzer, a

vulnerability-guided fuzzer,

with an emphasis on examining

code blocks that are more likely

to have vulnerabilities.

Suzzer was a lightweight static the

detector that effectively targets

susceptible code blocks and enhances

bug discovery performance by

extracting Abstract Control Flow Graph

(ACFG) channels from target

applications in 64.5% less time than

VUzzer.

The complexity and scale

of the target software could

have an impact on Suzzer's

effectiveness.

J. Electrical Systems 20-3 (2024): 1111-1125

1114

A. Research Gap

It is difficult for ML, DM, and DL techniques to anticipate computer security vulnerabilities with sufficient

accuracy, particularly when attack vectors change frequently and available data sets are limited. While conventional

techniques involving vulnerability tools for evaluation, fuzz evaluation and official verification have demonstrated

potential, they also have drawbacks, including false positives, dependence on pre-defined features and scaling

problems. The article develops and implement innovative techniques like T-s DNN fuzzer that have been identified

in recent research to address these issues. These solutions increase the accuracy of vulnerability identification,

lower false positives and strengthen system safety in the face of dynamic threats by utilizing advanced algorithms,

hybrid structures and improved data representations.

III. PROPOSED METHODOLOGY

Modbus TCP/IP, often known as Modbus TCP (Transmission Control Protocol), is essentially the Modbus

RTU (Remote Terminal Unit) protocol with an Ethernet-based TCP interface. The software protocol that

establishes standards for organizing and interpreting data regardless of the data transmission channel is called the

Modbus message structure. The Internet Protocol and Transmission Control Protocol, or IP/TCP, serve as the

Modbus TCP/IP messaging's communication channel. TCP/IP facilitates the transfer of binary data blocks between

computers. It is an international standard that forms the basis of the World Wide Web. Separate inputs, input

registers, Coils and holding registers are the four memories that make up the Modbus slave framework's approach.

A pattern of reading and writing of these memories, either via the physical procedures themselves or by remote

requests sent by the Modbus master, can be used to mimic the control loops and reporting. The seven-byte header

of the Modbus TCP/IP Application Unit (ADU) includes the protocol and transaction identifiers, protocol data unit,

length field and unit identifier which is made up of function data and code. The ADU is transmitted to system port

502 using TCP by embedding it within the data area of a typical TCP frame. All clients and servers that use Modbus

receive and attend for information over this port, which is only meant for use with Modbus applications. The

Modbus Application Protocol (MBAP) consists of a one-byte unit identification (set to 0𝑥𝐹𝐹, which is similar to

the slave tackle in the serial model of Modbus), a 2-byte transaction identifier, a two-byte protocol recognition (set

to 0𝑥0000 for Modbus) and a two-byte length field that indicates the number of subsequent bytes. A slave could

be corresponding with several masters in Modbus/TCP, and a master can have several pending transactions with

slaves. Figure 1 shows the Modbus frames in TCP segments.

Figure 1: Modbus frames in TCP segments

A. Distribution of Probabilities using deep neural network (DNN)

The deep neural network classifier is built in this stage. A deep neural network (DNN), is a type of neural

network that descended from the traditional artificial neural network. The architecture of a DNN is shown in Figure

2. The three layers that make up a DNN are the output, input, hidden and SoftMax layers.

J. Electrical Systems 20-3 (2024): 1111-1125

1115

Figure 2: Structure of DNN

The pre-processed input information is fed to the network via the input layer. The quantity of the Information

collected by a network of neurons is equal to the number of characters being input in the sample. Equation (1)

presents the expression for the input layer that has 𝐶 inputs.

𝑊 = [𝑤1, 𝑤2, … . , 𝑤𝐶] (1)

Since the DL network supports the addition of various hidden layers, the hidden layer comes next. The input

layer's input 𝑊 is mapped by the hidden layer using bias (𝑎𝑖) and random weights (𝑤𝑗). Hence, inputs from the

hidden layer are represented in equation (2).

𝑔𝑖 = ∑𝑥𝑗𝑤𝑗 + 𝑎𝑖
𝑗

(2)

Where𝑖-the total number of DNN's hidden units𝑖 = 1, 2, 3, . . . , 𝐿.There is an associated nonlinear activation

function with every hidden layer. The neurons perform better than Softmax and hyperbolic tangent neurons, despite

their high nonlinear dynamics and Discontinuity at 0. As a finding, producing real zeros in sparse representations

yields excellent outcomes suitable for data that is limited. For 100 epochs of binary categorization both the sigmoid

and tanh activation functions exhibit respectable detection rates compared to Softmax. Softmax beats out sigmoid

and tanh activation operates when the investigation is run for 500 epochs. We thus select to use Softmax activation

functions in the implementation of our suggested paradigm. Equation (3) expresses the hidden layer's outcomes.

𝑔 = 𝑒(𝑔𝑖) (3)

The hidden layer's inputs are processed by the output layer's stimulation function, which generates the outputs

of DNNs. The output layer's nonlinear activation function, Softmax, which adapts inputs towards a class of

likelihoods, is used for vulnerability detection, 𝜎(𝑊)𝑖. The DNN's output is represented in equation (4).

𝜎(𝑊)𝑖 =
𝑓𝑊𝑖

∑ 𝑓𝑊𝑙𝑙
𝑙=1

#(4)

Where 𝑖 is the total amount of output units, 𝑖 = 1, 2, . . . , 𝐿, and 𝑤 represents a vector of input to the output

layer. Using this DNN authentication, the inputs to each class output, example for normal 1 and abnormal 0 are

used to execute the network training. To decrease training errors, the large training sample is employed to train

DNN and each input connection's weight is adjusted repeatedly in Vulnerability detection. For the network to be

trained with greater speed and effectiveness, the DNN's model parameters are adjusted. During training with a

learning method, these tuning parameters also referred to hyper parameters are utilized to regulate softmax

optimization techniques and approach selection. These hyperparameters determine whether the strategy overfits

throughout the learning phase.

SoftMax function is one potential DNN method that approaches the issue as a multiclass vulnerability

estimation issue in which the user's inquiry is the input. The model transfers the final layer's 𝜑(𝑤) output to a

probability distribution 𝑃̂ = 𝑔(𝜑(𝑤)𝑈𝑆) via a SoftMax layer.

𝐺:ℚ𝑛 → ℚ𝑛 - threshold Softmax function is represented as 𝐺(𝑧)𝑗 =
𝑓
𝑧𝑗

∑ 𝑓𝑧𝑖𝑖
, 𝑈 ∈ ℚ𝑚∗𝑐 - threshold SoftMax

layer's weight matrix.

J. Electrical Systems 20-3 (2024): 1111-1125

1116

A vector of scores, commonly referred as logits, 𝑍 ∈ ℚ𝑚 is mapped to a probability distribution using the

threshold layer known as threshold soft-max, is represented in Figure 3.

Figure 3: Predicted Probability Distribution

A loss function that contrasts the subsequent threshold values. 𝑃̂, which is a probability distribution reflecting

the Softmax layer's output and 𝑃 which is the ground truth and represents the objects the user has interacted with

(e.g., selected or watched videos). A probability vector, or a normalized multi-hot distribution, can be used to

illustrate in equation (5).

𝑃̂ = 𝑇(𝜑(𝑤)𝑈𝑆) (5)

The probability that item 𝑖 shows in 𝑃̂𝑖 =
exp (<𝜑(𝑤)𝑈𝑖>)

𝑌
, where 𝑌 is an independent normalization constant

based on 𝑖. In another way, 𝑙𝑜𝑔(𝑃̂𝑖) =< 𝜑(𝑤), 𝑈𝑖 > −log (𝑌), meaning that the proportional likelihood of item 𝑖

is the dot product of two 𝑑-dimensional vectors, which are equivalent to queries and item-embedded data, up to an

additive constant.

𝜑(𝑤) ∈ ℚ𝑐- greatest hidden layer's output. It refers to the query 𝑤's embedding. 𝑈𝑖 ∈ ℚ
𝑐- weight vector that

links output𝑖 to the final hidden layer. This is referred as the item 𝑖's embedding. Equation (6) is used to determine

the probability output 𝑃𝑢𝑗 (provided by equation (6)) of the DNN for every value of the information𝑢𝑗 in

trajectory 𝑢. More probability indicates more accurate semantic training and a larger likelihood of the target's

output result. Equation (7) demonstrates the distribution of probability guidelines for information values and all

probabilities make up the output distribution of probability measures 𝑂 at a period of 𝑠.

0 ≤ 𝑃𝑢𝑗 = 𝑃(𝑂̂𝑠 = 𝑢𝑗) = 𝑃𝑢𝑗(𝑂̂𝑠|{𝑊1, 𝑂̂1, … , 𝑂̂𝑠−1}| ≤ 1 (6)

𝑂 = (𝑃0, 𝑃1, … , 𝑃255, 𝑃256) (7)

B. Threshold-sample Approach for Industrial Protocol Vulnerability Detection

The threshold-sample approach-based test instance generation technique for Modbus TCP maximizes

vulnerability identification by utilizing random threshold variables and distribution of probability measures. The

threshold sample space Ω𝑠(equation (8)) is made with all potential output outcomes of the resultant value 𝑂̂𝑠at

period 𝑡, where 𝑤𝑖𝑡 comprises an essential occurrence. Based on Equation (9), the output data value while the

fundamental event occurs is 𝑂̂𝑠,𝑗. The possibility that the data value 𝑂̂𝑠,𝑗equals 𝑂̂𝑠 is denoted by𝑃(𝑂̂𝑠 = 𝑒(𝑥𝑗
𝑠).

Ω𝑠 = {𝑥0
𝑠, ⋯ , 𝑥𝑗

𝑠, ⋯ , 𝑥256
𝑠 } (8)

𝑂̂𝑠,𝑗 = 𝑒(𝑥𝑗
𝑠) = 𝑗 (9)

The Softmax layer's output result is the chance that the projected threshold value vulnerability is within the

range of 257 information values. The highest likelihood is used to indicate the greatest level of DNN learning

semantics of message correctness and the statistics value that corresponds to the highest likelihood is employed to

forecast the input message's information value. By representing the constraints of data values in industrial

automation instrument records using a distribution of probabilities, the threshold sample approach generates the test

cases by using the information cost with the smallest likelihood as the output cost, thus exploiting protocol

vulnerability. Initially, DNN employs a Softmax layer to produce the supply of probabilities within the present

period based on the input data that is currently available, and the information is hidden and included in the message

J. Electrical Systems 20-3 (2024): 1111-1125

1117

that was learned. The probability of the learned message's semantic correctness is expressed by the Softmax layer.

Subsequently, the technique produces a random threshold variable that is not constant for every probability matrix

produced by DNN. Finally, a comparison is made among the maximum probability and the threshold variable. The

information's value was formed by standard message semantics at that precise instant based on the comparison

result, which is to increase the probability that an anomalous event would occur in the industrial hierarchy of

authority. The random threshold variable is between 0 and 1 while all the possible values in the distribution of

probability are also among 0 and 1. The generation strategy which generates test cases using the threshold sample

approach is simplified.

The threshold data is the Modbus TCP mining vulnerability fuzzer built with the threshold sample approach.

In the probability matrix, 𝑃𝑖 stands for the greatest and minimum probabilities. The random threshold variable is

𝐷𝑃𝑓𝑢𝑧𝑧, the distribution of probability measures of the result𝜁 is 𝑂, and 𝜁 is the DNN strategy in equations (10) to

(12).

𝑃𝑖 = 𝑃 (𝑂̂𝑠,𝑗 = 𝑒(𝑥𝑗
𝑠)) = max

𝜉
(𝑂) (10)

𝑃𝑖 = 𝑃 (𝑂̂𝑠,𝑗 = 𝑒(𝑥𝑗
𝑠)) = max

𝜉
(𝑂) (11)

𝐷𝑃𝑓𝑢𝑧𝑧 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) (12)

When 𝑃𝑖 is larger than or equal to 𝐷𝑃𝑓𝑢𝑧𝑧 in the threshold sample-generating method, it means that the

information values accessible by the register have defined uniformity and often exist in a specific location.

Performance in the exact opposite manner as a result at this moment, a message is generated by substituting the

data value of the smallest possibility for the information value of the highest likelihood. Although these test

scenarios are rarely employed in the industrial control apparatus, such as an industrial management analyzer

communication that has the potential to seriously compromise protocol security. For instance, to read the moisture

value in the industrial management analyzer, access the register at location 0𝑥002𝐵 . This moisture value is

represented by the information value 𝑇𝑠
+, demonstrated in Equation (13). If 𝑇𝑠

− (as given in equation (14) is chosen

as the moisture element at this point, the protocol can become vulnerable even though like test scenarios are seldom

employed in vulnerability detection.

𝑇𝑠
+ = 𝑒(𝑥𝑗

𝑠) = 𝑎𝑟𝑔max
𝜉
(𝑂) (13)

𝑇𝑠
− = 𝑒(𝑥𝑗

𝑠) = 𝑎𝑟𝑔max
𝜉
(𝑂) (14)

It doesn't need to alter the register's access mode when 𝑃𝑖 is smaller than 𝐷𝑃𝑓𝑢𝑧𝑧since this suggests that the

information threshold value employed by the register lacks some clear authority. For instance, to recite the point

of dew threshold value in the industrial management analyzer, access the register at location 0𝑥002𝐶. Usually, the

data threshold element𝑇𝑠
+ is the dew point threshold value. In these situations, using 𝑇𝑠

+as the dew point threshold

value for vulnerability detection outcome in anomalous or nonexistent responses from industrial mechanisms is for

control.

A complete test scenario requires both MBAP and PDU due to the relationships between the threshold variables

in the protocol message. Since the message created by the strategy for generation needs to be used to include the

header message portion of MBAP, it is important to create a standard test case and then monitor the status of the

object that is tested. The Modbus TCP message's PDU component is created using the model's generation strategy,

but the MBAP message header must be generated at random using the Modbus TCP protocol. The PDU and MBAP

header are combined in this manner to create a comprehensive validation scenario for the vulnerability detection

framework for the industrial management protocol.

C. Framework for Test Case Generation in Industrial Control Protocols

The learning phase and the case generation phase make up the two sections of the framework used in this study

to generate test cases. The learning step is used to ascertain the DNN's weight parameters and learn the training

dataset's message. Protocol evaluation and generation approach comprise the case generation phase. Considering

that TCP packet learning guidelines, DNN can ascertain the probability distribution connection of the subsequent

produced field when a new field is provided in protocol analysis. For generating the subsequent protocol field, the

generation method must modify the data associated with its probabilistic connection. Figure 4 depicts the protocol

for industrial control.

J. Electrical Systems 20-3 (2024): 1111-1125

1118

Figure 4: Protocol for Industrial Control

1) Learning Protocol Message Generation

The Function Data and Code of every protocol were chosen for every Modbus TCP message. Depending on

the low-byte and high-byte data, the 2-byte communication areas are separated between low-byte and high-byte

segments. Each byte's hexadecimal information points are transformed into decimal points. A function that

translates hexadecimal to decimal is represented by D. Since a byte's hexadecimal data range is 0𝑥00 to 0𝑥𝐹𝐹,

each data value's value range in decimal is 0– 255 and all of them are integers after the byte is converted. Assume

that there are 𝑛o messages of TCP and that the total length of all messages is 𝑚. Initially, the message is retrieved

using this format and each message terminates with the data value 256 for the termination flag. Each data item has

a value range of 0– 256, which is an integer. Therefore, 𝑚 − 𝑛𝑢𝑚 · 7 + 𝑛𝑢𝑚 · 1 is the total acquired message

length, with 7, where 1 is the length of the enhanced termination signal value and the MBAP message's header

byte. The sequence of the fields in each message is preserved throughout training when combining every message

to generate the huge matrix 𝑇 since the DNN model's input data matrix has the same size. During network learning,

each interval of 𝑚 information amounts, beginning with the initial information amount, symbolizes a message

input of 𝑇. Similarly, every interval of 𝑚 information represents an output of the message through the training

phase, beginning with the second data value. Consequently, {𝑇𝑗 , . . . , 𝑇𝑗+𝑛is the model's 𝑗𝑡ℎ input message., and the

message that appears on the 𝑗𝑡ℎ output is {𝑇𝑗+1, . . . , 𝑇𝑗+𝑛+1}, where there are ⌊(𝑛 − 𝑛𝑢𝑚 · 7 + 𝑛𝑢𝑚 · 1 − 1)/𝑛⌋

messages overall and each message has a length of 𝑛. The 𝑗𝑡ℎ message is represented by the subscript 𝑗. Based on

equations (15) and (16), the matrix made up of the set of input messages in the TCP instruction package is 𝑤, where

𝑤𝑗 stands for the 𝑗𝑡ℎinput message.

𝑊 = [𝑊0,𝑊1, … ,𝑊𝑗 , … ,𝑊⌊𝑛𝑢𝑚−
1
𝑛
⌋
] (15)

𝑊𝑗 = [𝑇𝑗 , 𝑇𝑗+1, … , 𝑇𝑗+𝑛−1,] (16)

Equations (17) and (18) illustrate that the intended output message is represented by the matrix Z. Z𝑗 stands for

the 𝑖𝑡ℎ message that should be produced.

Z = [Z0, Z1, … , Z𝑗, … , Z⌊𝑛𝑢𝑚−1
𝑛
⌋
] (17)

Z𝑗 = {𝑇𝑗+1,𝑇𝑗+2, … , 𝑇𝑗+1+𝑛−1} (18)

During the phase of learning, the supply strategy for determining the protocol information threshold point is

designed using a two-layer DNN. The message of input at every period is 𝑤𝑗 , the predicted message output is Z

and the message input is 𝑊 based on the time series expansion.

During the learning phase of this study, 𝑍, the predicted output, is transformed into Z[𝑗], the polynomial supply

matrix of single-hot encoding, representing the distribution of probability 𝜃 of the actual result Ẑ𝑗. The distance

among them is then described by a value and the total duration of every message is obtained to form the learned

loss function, which is provided in equation (19).

𝑙𝑜𝑠𝑠(Z, Ẑ) = −
∑ Z[𝑗] × 𝑙𝑜𝑔Z[𝑗]
⌊(𝑛−𝑛𝑢𝑚−7+𝑛𝑢𝑚1−

1
𝑛
⌋

𝑗=0

⌊(𝑛 − 𝑛𝑢𝑚. 7 + 𝑛𝑢𝑚1 −
1
𝑛
⌋

(19)

2) Protocol Evaluation with DNN Distribution of Probability

J. Electrical Systems 20-3 (2024): 1111-1125

1119

The primary components of the generation model, the case generation strategy and protocol evaluation, are

included in the case generation stage. The DNN model's internal weighted parameters for the network are

established following the learning phase. The information value of the 𝑗𝑡ℎtest case at time 𝑠 is represented by the

superscript (𝑠) when the 𝑗𝑡ℎtest case is generated. The threshold softmax function generates the distribution of

probability connection measures for each period in the protocol evaluation. 𝑤𝑗
[0]

 is the model's starting input. Every

time, the framework generates an information value that is used in the following iteration.

There is a probability output matrix for every time. The output value, 𝜃𝑖, represents the probability of each of

the 257 data values that are recorded in the matrix; the total probabilities added together equals one. Equations

(20) to (22) reflect these probabilities, with 𝜉 denoting a two-layer DNN network. Equation (20) is satisfied by the

real output probability measures 𝜃 of 𝜉; Equation (21) is satisfied by the information value associated to the highest

probability in the matrix, 𝑍̂𝑗
(𝑠)+

; and Equation (22) is satisfied by the information associated to the smaller

probability in the measures 𝑍̂𝑗
(𝑠)−

.

(𝜃0, 𝜃1, ⋯ , 𝜃256) =

(

𝑃 (Ẑ𝑗
(𝑠)+ = 0|{𝑊𝑗

(0), Ẑ𝑗
(0), Ẑ𝑗

(1)−, ⋯ Ẑ𝑗
(𝑠−1)})

𝑃 (Ẑ𝑗
(𝑠)+ = 1|{𝑊𝑗

(0), Ẑ𝑗
(0), Ẑ𝑗

(1), ⋯ Ẑ𝑗
(𝑠−1)})

⋮

𝑃 (Ẑ𝑗
(𝑠)+ = 256|{𝑊𝑗

(0), Ẑ𝑗
(0), Ẑ𝑗

(1)−, ⋯ Ẑ𝑗
(𝑠−1)}))

𝑆

(20)

Ẑ𝑗
(𝑠)+ = 𝑎𝑟𝑔max

𝜉
(𝜃) (21)

Ẑ𝑗
(𝑠)− = 𝑎𝑟𝑔max

𝜉
(𝜃) (22)

D. Threshold-Sample Approach for Test Case Generation

The phases that are specifically involved in generating the information value 𝑍̂𝑗
(𝑖)(𝑖 ∈ [0, 𝑠 − 1]) every time

using the threshold-sample generation approach are as follows.

1. Based on the current input (𝑤𝑗
(0)

or 𝑍̂𝑗
(𝑖−1)

and the learned semantics, the protocol analysis part's distribution

of probabilities relation matrix 𝜃 is produced.

2. Every probability matrix has a threshold 𝐷𝑃𝑓𝑢𝑧𝑧 that is randomly determined during generation. Equation

(23) provides the highest probability 𝜃𝑖 in the measures, which is the result of the constructed strategy framework.

If 𝜃𝑖 exceeds or is equivalent to𝐷𝑃𝑓𝑢𝑧𝑧, 𝑍̂𝑗
(𝑆)−

is chosen as the value to be output. Alternatively,𝑍̂𝑗
(𝑆)+

remains chosen

to be the variable of output.

𝜃𝑗 = max
𝜉
(𝜃) (23)

3. The termination signal information value of 256 is compared to the information created by the present period.

To repeat the phase (1) and (2), If the process has finished, it shouldn't be the termination signal information value.

The Function data and code portions of the validation cases are created according to the dependent connection

in TCP and then generate the entire test cases. Initially, a random generator creates the protocol ID (2 bytes), unit

ID (1 byte), and transaction ID. Length is then determined by dividing the total amount of bytes by Unit ID, Data

Function and Code into 2 hex numbers. As demonstrated by Algorithm 1, the threshold-sample algorithm obtains

as input the double-layer DNN network 𝜉 and the produced message [𝑍̂𝑗
(0), 𝑍̂𝑗

(1), . . . , 𝑍̂𝑗
(𝑠−1)] and outputs the

resulting PDU message 𝑍̂𝑗.

Algorithm 1: Threshold-sample Approach

𝒊𝒏𝒑𝒖𝒕: 𝜁 ← 𝑡ℎ𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑙𝑎𝑦𝑒𝑟 𝐷𝑁𝑁 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦;

[𝑍̂𝑗
(0)
, 𝑍̂𝑗
(1)
 , … , 𝑍̂𝑗

(𝑠−1)
] ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒;

𝒐𝒖𝒕𝒑𝒖𝒕: 𝑌̂𝑗 ← 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑃𝐷𝑈 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝛻 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

[𝑍̂𝑗
(0)
, 𝑍̂𝑗
(1)
 , … , 𝑍̂𝑗

(𝑠−1)
] 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝜁 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑖𝑡𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝜃.

1. 𝒅𝒐𝐷𝑃𝑓𝑢𝑧𝑧 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)𝜃𝑖 ←
𝑚𝑎𝑥(𝜃)
𝜁

2. 𝑍̂𝑗
(𝑠)+ ←

𝑎𝑟𝑔 𝑚𝑎𝑥 (𝜃)

𝜉
 , 𝑍̂𝑗

(𝑠)−𝑎𝑟𝑔𝑚𝑎𝑥 (𝜃)

𝜉

J. Electrical Systems 20-3 (2024): 1111-1125

1120

3. 𝐼𝑓 𝜃𝑖 ≥ 𝐷𝑃𝑓𝑢𝑧𝑧

4. 𝑡ℎ𝑒𝑛 𝑍̂𝑗
(𝑠)
 ← 𝑍̂𝑗

(𝑠)+

5. 𝑒𝑙𝑠𝑒 𝑍̂𝑗
(𝑠)
 ← 𝑍̂𝑗

(𝑠)+

6. 𝑍̂𝑗 ← 𝑍̂𝑗 + 𝑍̂𝑗
(𝑠)

7. 𝑠 ← 𝑠 + 1

8. 𝒅𝒐 𝒘𝒉𝒊𝒍𝒆 𝑍𝑗
(𝑠)
 ! = 256 𝛻 𝑇ℎ𝑒 𝑒𝑛𝑑 𝑓𝑙𝑎𝑔 𝑠𝑡𝑜𝑝𝑠 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝

9. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

IV. EXPERIMENTAL FINDINGS

To identify the network vulnerability in the control system equipment, this article uses the TCP as the validation

target. Test cases are sent to the industrial control system as part of the Modbus TCP vulnerability detection process

and the system either responds or returns an abnormal state. After that, the apparatus sends out fresh test cases and

it is monitored for indications if the initial experiment resulted in an unusual reaction. The system discards the case,

suggesting a protocol vulnerability, if it reacts to the test cases normally.

A. Dataset Acquisitions

This section assesses the suggested T-s DNN Fuzzer algorithm performs versus random Industrial Control

Systems (ICS) models using two separate ICS datasets. Secure Water Treatment (SWaT) and Gas Pipeline (GP) in

real and modeled industrial locations from which the SCADA training sample employed in this research was

selected due to its variety and distinctive features. This dataset was collected from a gas pipeline system and

includes a pre-processed Modbus validation frame in the Attribute Relation File Format (ARFF) to facilitate the

usage of specific preprocessing methods. Eleven days of nonstop operation are included in this dataset; seven of

those days were operated normally, while the other four days were attack scenarios. Attributes are gathered from

communication between network ports, detectors and motors, comprise SWaT [24].

B. Experimental Setup

Secure Water Treatment (SWaT) of ICS, Siemens programmable logic controller SIMATIC 𝑆7 − 300 ,

Modbus TCP 𝑉2.6 server and 𝐶𝑖𝑠𝑐𝑜 𝑊𝑆 − 𝐶2960 − 24𝑇𝐶 − 𝐿 switch was among the industrial control systems

in this set. An 𝑁𝑣𝑖𝑑𝑖𝑎 𝐺𝑇𝑋1050𝑇𝑖 𝐺𝑃𝑈, 64 −bit of RAM and an 8 GB operating system Windows 10 was used

to install the industrial control tester. 𝑃𝑦𝑡ℎ𝑜𝑛 3.6.6 , 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤 − 𝐺𝑃𝑈 1.8.0, 𝐶𝑈𝐷𝐴 9.0 and CUDNN 6.0

served as the foundation for the learning model.

C. Test Case Diversity Analysis in T-s DNN Fuzzer

As the study's learning data, all of the messages that were in the data set with typical replies had to be filtered

out and then the repetitive messages were eliminated. Eighty epochs were learned and 52,000 TCP messages in

total were chosen. The generation strategy was stored every ten epochs, the training proportion was 0.001, the

variable 𝜏 was 0.6 and the predicted size was 128 and 256. To maintain the capacity to generate test case diversity

in this study, the initial phase was to determine the appropriate hyper parameters, 𝜏 is (0.4, 0.6, and 0.7). The

validation then contrasted the instrument's reception proportion with a learning proportion (0.01, 0.001, 0.003 and

0.0003) and simulation size ((64 and 64), (128 and 256) and (256 and 256)). Figure 5 illustrated the comparison of

reception rate contains 5(a) 0.4, 5(b) 0.6, and 5(c) 0.7). The reception proportion of experiments produced by

various model sizes and learning proportion for ICS changed continuously and typically followed a trend of initially

growing, then 𝜏, as the parameter rose. The strategy size was 128 and 256, the learning proportion was 0.0001

and the reception proportion reached its extreme when the parameter was 0.6.

J. Electrical Systems 20-3 (2024): 1111-1125

1121

Figure 5: Comparison of reception rate under different values

Four hours of fuzzing tests were conducted throughout the experiment, as indicated in Figure 6, employing a

learning epoch to create 16700 instances of testing for 40, 60, 70 and 80, respectively. The industrial control system

was exposed to a test case every second to verify the effectiveness of the T-s DNN fuzzer. Every 20 minutes, the

industrial control system's vulnerability number and reception rate were recorded. No manual intervention or

deletion was used for the test instances produced by the T-s DNN fuzzer. The more training epochs the framework

had, the more accurate it was at detecting message meanings. The T-s DNN fuzzer test system learned 80 epochs

to provide sensor instances for vulnerability detection, with a learning proportion of 0.001 and strategy sizes of 128

and 256, resulting in 90% of the test instances receiving the actual message.

Figure 6: Learning Epochs' Impact on Reception Rate

D. Performance Evaluation

In this section, the proposed fuzzer is compared to traditional fuzzers such as APF Kitty [25], Peach Fuzzer

[26], Radamsa [26] and EU Fuzzer [26] in terms of running time and number of bugs.

Running Time (s): This measure describes the amount of time that a fuzzing tool requires to execute through

its test cases, create packets and communicate with the intended program or system. The proposed method is

J. Electrical Systems 20-3 (2024): 1111-1125

1122

compared to the existing fuzzers. Figure 7 represents the comparison outcome of the suggested method. The T-s

DNN fuzzer method is 8.79 attain current methods [26] like Radamsa is 16.58, Peach Fuzzer is 11.60 and EU

Fuzzeris 12.03. The T-s DNN fuzzer approach is very useful for the detection of vulnerability.

Figure 7: Comparison outcome of running time

Number of Bugs: This metric measures the flaws or vulnerabilities, the fuzzing tool found during the testing

stages. The proposed method is compared to current methods, shown in Figure 8. The suggested T-s DNN fuzzer

strategy (79.15) has lower numerical results compared to an existing method like Peach Fuzzer (93.53), Radamsa

(63.25) and EU Fuzzer (68.25). The T-s DNN Fuzzer is significant for the detection of vulnerability.

Figure 8: Result of Number of Bugs

E. Vulnerability Testing

In this section, each testing instance in the vulnerability process of mining has an identification number. Three

different vulnerabilities (𝑣) categories were discovered during the T-s DNN fuzzer experiment, along with the case

number and vulnerability categories. The case code denotes the test instance number from the initial discovery of

this vulnerability type.

V1 (Data Authentication - 3569): Vulnerabilities that make it possible for attackers to navigate around

authentication restrictions in Modbus TCP-based platforms and access vital data or resources without authorization.

V2 (Data Tampering - 2588): Vulnerabilities that let intruders alter or manipulate data sent back and forth

between Modbus TCP devices, potentially causing integrity of data difficulties or unauthorized device behavior

modifications.

V3 (Data Injection - 2863): Vulnerabilities in Modbus TCP requests messages permit attackers to include

execute arbitrary instructions, probably granting them access to or control over devices without authorization.

J. Electrical Systems 20-3 (2024): 1111-1125

1123

The T-s DNN fuzzer discovered the vulnerability, which was then examined by more conventional fuzzers

including APF Kitty [25] and Peach fuzzer [26] for calculating VMA and TCVR.

Vulnerability mining ability (VMA): The VMA calculated both the total amount of weaknesses detected in the

evaluation and the total amount of trail instances necessary to find these vulnerabilities, revealing an average

amount of trial instances need to create an exemption. The three approaches' APF Kitty fuzzer [25], Peach fuzzer

[26] and T-s DNN fuzzer respective VMAs were compared as the assessment indicator represented in Figure 9.

The efficiency of three distinct fuzzers in identifying vulnerabilities is during a four-hour VMA and their execution

times. Each fuzzer's initial vulnerability discovery time is displayed in the Fuzzer Period of Execution in Initial

Vulnerability. The total amount of vulnerabilities found by every fuzzer throughout the assessment is shown in the

Number of Vulnerabilities Identified in 4 h VMA. With a rate of detection of 0.09%, the APF Kitty Fuzzer spent

2689 seconds to identify 15 vulnerabilities. With a rate of detection of 0.06%, the Peach Fuzzer spent 4638 seconds

to identify 12 vulnerabilities. With a rate of detection of 0.21%, the T-s DNN Fuzzer spent 2588 seconds to identify

27 vulnerabilities.

Figure 9: Outcome of VMA

Test case variation rate (TCVR) (%): The TCVR identified as the proportion of anomalous validation incidents

to all test cases created, is another experimental evaluation indicator. For each test scenario, the TCVR using three

fuzzers was assessed in this investigation. Figure 10 shows the outcome of TCVR. T-s DNN fuzzer (86.99%) was

quite less than the APF Kitty fuzzer in contrast to all the test cases' variation rates, the Peach fuzzer (80.6 %) had

the smallest, while the Kitty fuzzer (88.1 %) had the greatest TCVR while.

Figure 10: Outcome of TCVR

J. Electrical Systems 20-3 (2024): 1111-1125

1124

V. CONCLUSION

The study improved the inadequacies of low reception efficiency and low mining capacity by improving the

vulnerability detection abilities of network protocols and industrial management systems. The approach integrated

DL with fuzz testing, with a focus on Modbus TCP protocols. To examine and identify vulnerabilities, a special

threshold-sample-driven deep neural network (T-s DNN) technology and fuzzing framework (T-s DNN Fuzzer)

was created. Using thresholds and probabilities, the DNN algorithm was trained to read protocol information units,

quantify probability variations via soft-max and select the most effective information values. The T-s DNN Fuzzer

was utilized to conduct fuzz testing, which demonstrated enhanced exploitability, faster protocol vulnerability

discovery and better sample receiving rates. The research findings underscore the efficacy of the T-s DNN

methodology in augmenting vulnerability detection for protocols in networks. The computing resource needs of

DL implementation in real-time applications could present issues. The T-s DNN technology should be improved

for flexibility and its application to a larger range of networking protocols through more study.

ACKNOWLEDGMENT

This research received no external funding.

REFERENCES

[1] Bansal, S. and Kumar, D., 2020. IoT ecosystem: A survey on devices, gateways, operating systems, middleware, and

communication. International Journal of Wireless Information Networks, 27(3), pp.340-364.

[2] Thota, M.K., Shajin, F.H. and Rajesh, P., 2020. Survey on software defect prediction techniques. International Journal of

Applied Science and Engineering, 17(4), pp.331-344.

[3] Dissanayake, N., Jayatilaka, A., Zahedi, M. and Babar, M.A., 2022. Software security patch management systematic literature

review of challenges, approaches, tools, and practices. Information and Software Technology, 144, p.106771.

[4] Tahmasbi, B., Haghshenas, H. and Birzhandi, S., 2021. Network vulnerability analysis is based on the overall inequity impacts

of the distribution of the added travel time to the network users. European Journal of Transport and Infrastructure Research,

21(1), pp.94-114.

[5] Shrestha, P., Sathanur, A., Maharjan, S., Saldanha, E., Arendt, D. and Volkova, S., 2020. Multiple social platforms reveal

actionable signals for software vulnerability awareness: A study of GitHub, Twitter, and Reddit. Plos one, 15(3), p.e0230250.

[6] Mateo Tudela, F., Bermejo Higuera, J.R., Bermejo Higuera, J., Sicilia Montalvo, J.A. and Argyros, M.I., 2020. On combining

static, dynamic, and interactive analysis security testing tools to improve the top ten security vulnerability detection in web

applications. Applied Sciences, 10(24), p.9119.

[7] Niu, W., Zhang, X., Du, X., Zhao, L., Cao, R. and Guizani, M., 2020. A deep learning-based static taint analysis approach for

IoT software vulnerability location. Measurement, 152, p.107139.

[8] Chatterjee, S. and Thekdi, S., 2020. An iterative learning and inference approach to managing dynamic cyber vulnerabilities

of complex systems. Reliability engineering & system safety, 193, p.106664.

[9] Pankajakshan, R., Biswal, S., Govindarajulu, Y. and Gressel, G., 2024. Mapping LLM Security Landscapes: A Comprehensive

Stakeholder Risk Assessment Proposal. arXiv preprint arXiv:2403.13309.

[10] Hussain, S., Nadeem, M., Baber, J., Hamdi, M., Rajab, A., Al Reshan, M.S. and Shaikh, A., 2024. Vulnerability detection in

Java source code using a quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based

hybrid feature extraction. Scientific Reports, 14(1), p.7406.

[11] Shah, I.A., Rajper, S. and ZamanJhanjhi, N., 2021. Using ML and Data-Mining Techniques in Automatic Vulnerability

Software Discovery. International Journal of Advanced Trends in Computer Science and Engineering, 10(3).

[12] Alloghani, M., Al-Jumeily, D., Hussain, A., Mustafina, J., Baker, T. and Aljaaf, A.J., 2020. Implementation of machine

learning and data mining to improve cybersecurity and limit vulnerabilities to cyber-attacks. Nature-inspired computation in

data mining and machine learning, pp.47-76.

[13] Liu, T., 2022. The application of machine learning models in network protocol vulnerability mining. Security and

Communication Networks, 2022.

[14] Lin, G., Wen, S., Han, Q.L., Zhang, J. and Xiang, Y., 2020. Software vulnerability detection using deep neural networks: a

survey. Proceedings of the IEEE, 108(10), pp.1825-1848.

[15] Chakraborty, S., Krishna, R., Ding, Y. and Ray, B., 2021. Deep learning-based vulnerability detection: Are we there yet?

IEEE Transactions on Software Engineering, 48(9), pp.3280-3296.

[16] Hwang, R.H., Peng, M.C., Huang, C.W., Lin, P.C. and Nguyen, V.L., 2020. An unsupervised deep learning model for early

network traffic anomaly detection. IEEE Access, 8, pp.30387-30399.

[17] Li, Y., Ji, S., Lyu, C., Chen, Y., Chen, J., Gu, Q., Wu, C. and Beyah, R., 2020. V-fuzz: Vulnerability prediction-assisted

evolutionary fuzzing for binary programs. IEEE transactions on cybernetics, 52(5), pp.3745-3756.

[18] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y. and Chen, Z., 2021. Sysevr: A framework for using deep learning to detect software

vulnerabilities. IEEE Transactions on Dependable and Secure Computing, 19(4), pp.2244-2258.

J. Electrical Systems 20-3 (2024): 1111-1125

1125

[19] Cao, S., Sun, X., Bo, L., Wei, Y. and Li, B., 2021. Bgnn4vd: Constructing bidirectional graph neural network for vulnerability

detection. Information and Software Technology, 136, p.106576.

[20] Dipu, N.F., Hossain, M.M., Azar, K.Z., Farahmandi, F. and Tehranipoor, M., 2024, January. FormalFuzzer: Formal

Verification Assisted Fuzz Testing for SoC Vulnerability Detection. In 2024 29th Asia and South Pacific Design Automation

Conference (ASP-DAC) (pp. 355-361). IEEE.

[21] Bilgin, Z., Ersoy, M.A., Soykan, E.U., Tomur, E., Çomak, P. and Karaçay, L., 2020. Vulnerability prediction from source

code using machine learning. IEEE Access, 8, pp.150672-150684.

[22] Ullah, K., Rashid, I., Afzal, H., Iqbal, M.M.W., Bangash, Y.A. and Abbas, H., 2020. SS7 vulnerabilities—a survey and

implementation of machine learning vs rule-based filtering for detection of SS7 network attacks. IEEE Communications

Surveys & Tutorials, 22(2), pp.1337-1371.

[23] Zhao, Y., Li, Y., Yang, T. and Xie, H., 2020. Suzzer: A vulnerability-guided fuzzer based on deep learning. In International

Conference on Information Security and Cryptology (pp. 134-153). Springer, Cham.

[24] Al-Abassi, A., Karimipour, H., Dehghantanha, A. and Parizi, R.M., 2020. An ensemble deep learning-based cyber-attack

detection in industrial control system. IEEE Access, 8, pp.83965-83973.

[25] Fu, G.Y., Liu, J.L., Cai, Y.N. and Li, H.L., 2017. APF-Kitty: A New Appropriate Protocol Fuzzy Testing Tool Based on Word

Embedding. Sci. Technol. Eng, 17, pp.82-88.

[26] Men, J., Xu, G., Han, Z., Sun, Z., Zhou, X., Lian, W. and Cheng, X., 2019. Finding sands in the eyes: vulnerabilities discovery

in IoT with EUFuzzer on human-machine interface. IEEE Access, 7, pp.103751-103759.

