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Abstract: - Game theory provides a mathematical framework for analyzing the tactical choices of rational decision makers. The idea 

of equilibrium, which states that no player has a motivation to change their existing approach given the strategies of other players, is 

one of the core ideas of game theory. This study examines a type of undirected graph-based distributed quadratic game. The problem 

of communication topology constraints is presented and nonlinear dynamics with uncertain time-dependent perturbations are present 

in the participant's dynamics. Based on a high-gain observer approach, a distributed Nash equilibrium (NE) finding technique is given, 

and the Lyapunov stability theory is used to study the convergence. It represents that every player approximates the positions of their 

rival players and that there are differences between the NE and the placements of the minor limitation that finally restricts the players. 

In addition, chattering problems are eliminated since the offered theory's formulation employs the hyperbolic tangent function to 

control the perturbation rather than the signum function. In an imitation of the oligopoly match, five enterprises manufacture identical 

materials in a duopoly market framework; this is done to confirm the effectiveness of the recommended strategy. Our results provide 

novel perspectives and methods for understanding complicated strategic situations, helping to close the gap between mathematical 

theory and real-world applications. 
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I.  INTRODUCTION 

Game theory's equilibrium analysis explores the strategic connections between decision-makers by utilizing 

nonlinear efficient analysis methods. The numerical foundation for model concerned, energetic systems where 

player strategies network is provided by nonlinear functional analysis [1]. This systematic method explores for 

equilibrium points while altering a player's strategy unilaterally results in a loss of advantage. It provides insight 

into possible dynamics and stable outcomes in environments that are either competitive or cooperative. 

A. Game theory 

A field of applied math called game theory is widely studied and used in an assortment of real-world situations, 

counting invest and trading. It provides logical methods for analyze scenario in which numerous people, referred 

as players, make related choices. When decide on a course of action in this situation, each person must take other 

people's potential decisions or plans into thought [2]. In doing so, a game solution outlines the best options for 

players with equivalent, at variance, or conflicting welfare as well as the many outcomes that can result from these 

choices. Game theory is useful in a wide range of scenario where choices made by individuals affect their outcomes. 

By emphasizing the strategic aspects of decision making by participants rather than random events, it enhances and 

expands the conventional theory of chance [3]. 

B. Equilibrium 

The NE is a key theorem in game theory that influences decision-making, which states that a player can achieve 

their desired outcome by adhering to their starting strategy without deviation. Every player's approach in the NE is 

effective while considering other players' choices. All participants benefit as their desired results are achieved [4]. 

The definition of NE in current times refers to mixed strategies, during which participants select a probability 

distribution over potential pure approach. 

C. Equilibrium analysis in game theory 

NE is a tool used by game theorists to examine how several decision-makers interact strategically. Each 

decision-maker in a strategic interaction must consider both their own and the decisions of each other to attain an 

outcome [5]. Nash's concept is based on the straightforward realization that analyzing individual decision-makers 

actions in isolation fail to enable one to forecast their choices. Instead, it's necessary to consider what each player 

could accomplish if they were to assume that the other players would do the same approach [6]. Consistency in 
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decision-making is necessary for Nash equilibrium since no player would want to change their choice in light of 

that is the other players are deciding. 

D. Nonlinear functional analysis techniques 

The smart area of nonlinear investigation in the twenty-first century is a compelling combination of numerical 

modeling, topology, nonlinear operative assumption, nonlinear serviceable analysis and real-world applications 

[7]. Its wide-ranging application encompasses anything from investigating the geometric characteristics of infinite-

dimensional function spaces to solving practical problems in a variety of multidisciplinary fields. This covers 

disciplines including hydromechanics, astronomy, stochastic game theory, theoretical mechanics and the field [8]. 

Game theory provides a numerical structure to investigate strategic connections between normal decision-

makers. The idea of equilibrium is crucial to assert that no performer has a motivation to change their plan in light 

of the devices of others. This theory is critical for sympathetic stable outcomes and decision-making processes in 

a variety of settings, including economics, political negotiations and evolutionary biology. It explains how those 

or entity make decisions in aggressive or cooperative contexts, ensuing in cost that affect not just themselves but 

also the larger system or humanity [9]. Game theory has become widely used in several fields of research through 

the past ten years, counting computer science, financial side, biology and more. The advancement of game theory 

has highlighted the significance of NE search in non-cooperative game, both in theory and in real-world 

applications [10]. Contributions of game theory to multi agent system manage embrace optical networks, smart 

grids, mobile sensor networks and more. The objective of this study investigates game theory NE through the 

application of nonlinear functional analysis methods. Particularly, the study offers a mathematical framework that 

can accurately represent and analyze strategic interactions between rational decision-makers. 

E. Motivation of the study 

This study is motivated by the difficulty of strategic interactions in game theory and the need for higher 

analytical techniques to identify and describe these dynamics with reliability [11]. This study employs nonlinear 

functional analysis techniques for NE analysis to offer a more thorough knowledge of rational agents' decision-

making process. This approach is forced by the essential of bridging theoretical concepts with real-world 

application to offer a more nuanced understanding of planned behaviors and to assist in the development of 

strategies that are robust and adaptable in these conditions [12]. 

F. Contribution of the study 

1. To analyze the strategic interactions among rational decision-makers using game theory as a mathematical 

framework. 

2. To explore the implications and applications of a distributed quadratic game utilizing undirected graphs in 

network interactions. 

3. To analyze the restrictions of communication topology and nonlinear dynamics with intermittent, with time-

dependent disturbances in participant dynamics. 

4. To enhance comprehension and applicability in strategic analysis by providing fresh perspectives and 

methods for interpreting complex strategic environments and bridging the gap between theoretical mathematics 

and real-world application. 

II. RELATED WORKS 

Game theory was impacted by the dissipative and passivity theories, particularly learning in online games that 

showed in [13] and the game theoretic field has put out a wide range of methods and dynamics over the years for 

determining the Nash equilibrium. Study [14] Nash Stackelberg Nash (NSN) games were a kind of two-stage 

hierarchy game with various leaders and followers. They specifically examine NSN games in the presence of 

Decision Dependent Uncertainties (DDUs). Game equilibrium analysis has seldom dealt with DDUs, or decision-

maker uncertainties, that were influenced by the strategy. The history of generalized implicit vector equilibrium 

problems (GIVEP) and equilibrium problems (EP) was first provided in [15]. A selection of GIVEP existence 

theorems was presented, along with the necessary conditions for the GIVEP solution set to be convex and compact 

for set-valued mappings that were a subset of values in topological space [16]. In the non-cooperative scenario and 

even after a while, the participants' personal reward values were the only ones accessible [17], calculate the strong 

NE and suggest a method for establishing the Pareto frontier. The process used the Newton optimization approach 

to identify the strong NE that was advantageous for ill-conditioned problems.  Study [18] used the Proof of Work 

(PoW) a consensus process to develop a pool of mining game play models and examine its NE from two angles. 
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Numerical simulations were used to examine the effects of mining pool power, infiltrated power percentage terms 

and deployment miner defection rate on the selection and revenue of the rate at which infiltration occurs. Adaptive 

graphics games on fixed communication graphs for linear multi-agent systems with a leader investigated in [19]. 

The goal was getting every agent to synchronize with the leader while simultaneously optimizing a performance 

index based on neighboring and own control rules. The related works summary regarding the equilibrium analysis 

in game theory is presented in Table 1. 

Table 1: Output of the related work 

Reference Objective Findings Limitation 

[20] 

A differential game model for 

N people that was not 

cooperative. 

Where each player tries to 

individually optimize their 

income by just keeping 

updated on power prices. 

A differentiable game model 

becomes increasingly 

complex as the number of 

participants rises. 

[21] 

A generalized method for 

determining the ideal 

Bayesian-NE (BNE). To 

enable realistic network 

defense and assault. 

Role-shifting in network 

attack and defensive 

contexts was taken into 

consideration by combining 

the NE issue with a reward 

maximization problem in the 

suggested method. 

Complicated computations 

and generating reliable 

probabilistic evaluations 

were the reasons behind the 

limits of the BNE. 

[22] 

Established the limits on the 

empirical game theory 

examination of intricate 

relationships between several 

agents. 

 

To offer many theoretical 

outcomes for empirical 

game theory. 

Quantitative game theory 

has challenges while 

examining intricate 

relationships with various 

individuals, including 

finding a balance between 

accessibility and reliability. 

[23] 

Create a prospective game to 

find the non-cooperative 

game's NE with complete 

knowledge, then use the 

adaptive expectations 

approach to examine the 

consumer system dynamics in 

a situation with imperfect 

information. 

Recognizing the 

aggregator's worth in terms 

of information and 

flexibility aggregation. 

 

Meticulous planning and 

computing efficiency 

required powerful processing 

resources and sophisticated 

techniques for instantaneous 

analysis. 

[24] 

The authors proposed and 

solved a non-quadratic 

dynamic game model to 

explain the energy trade 

between prosumers and stable 

Nash equilibrium. 

The framework was 

modeled as an infinite 

strategy, non-cooperative 

multiplayer game in which 

players have non-quadratic 

reward functions. 

Possess restrictions such as 

greater computing load, 

discontinuity and difficulty. 

[25] 

To provide a transmission 

system expansion planning 

issue for the power sector 

based on cooperative game 

theory (CGT). 

An emphasis on coordinated 

collaboration among players 

to improve the power grid. 

Emotions, prejudices and 

cognitive constraints 

frequently cause human 

conduct to diverge from 

rigorous logic. 

A. 2.1 Problem statement 

Game theory deals with the strategic interactions between rational decision-makers. It is intended to look at 

situations when decisions made by one person affect those made by others. Because games involve players, 

strategies and rewards, they are used to illustrate these interactions. To maximize their utility, players take into 

account the methods chosen by others when making their own decisions. The study presents a high-gain observer 

strategy-based approach for calculating the distributed Nash equilibrium. It's shown that every player makes an 

assessment of the states of their competitors and that the variations between player positions and the NE are 

eventually limited by a small restriction. 

III. MATERIALS AND METHODS 

The main purpose of the dispersed NE search problem is to design a distributed control strategy that allows 

players to find NE in a scenario with directs access to other players' states or cost functions. The conditions for 
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Lipschitz continuity, the existence of specific integers and stringent diagonally dominating matrices, respectively 

are given by assumptions 2, 3 and 4, ensuring the stability and uniqueness of solutions for Nash equilibrium. The 

study of convergence and uniqueness of the solution in the generalized NE search problem is based on these 

assumptions. 

A. Preliminaries and Problem Formulation 

1) Graph Theory 

To study a graph with no direction=  (𝒱, ℰ) , where the edge set is 𝜀 ⊂ 𝑣 × 𝑣 and the node set is 𝑊 =

 {1, 2, . . . , 𝑁} . It describes the information exchange inside a network system. Where  (𝑖, 𝑗)  ∈  ℰ  denotes the 

possibility that player 𝑗 can acquire anything from player 𝑖. Given the undirected nature of 𝐺∗, while (𝑖, 𝑗)  ∈  ℰ 

consequently (𝑖, 𝑗)  ∈  ℰ obtains. A route is made up of several edges having the pattern(𝑗, 𝑖), (𝑖, 𝑙) .. . If every pair 

of nodes in an undirected network has a route linking them, the graph is said to be connected. Matrix of adjacency 

𝐵 =  [𝑏𝑗𝑖] ∈ ℜ𝑀×𝑀for graph 𝒢  is established in a way that 𝑏𝑗𝑖  =  0alternatively and 𝑏𝑗𝑗 =  0, 𝑏𝑗𝑖 >  0 𝑖𝑓 (𝑖, 𝑗) ∈

𝐸 . Assuming that  𝑘𝑗𝑗 = ∑ 𝑏𝑗𝑖 , 𝑎𝑛𝑑𝑀
𝑖=1 𝑘𝑗𝑖 = −𝑏𝑗𝑖  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 ≠  𝑗 , the Laplacian matrix 𝐾 =  [𝑘𝑗𝑖] ∈ ℜ𝑀×𝑀 is 

obtained. 

Assumption 1: There is connectivity in Graph 𝒢. 

Remark 1: Assumption 1 is widely used in distributed games to assure that each additional player has access to 

every player's information. 

Lemma 1: Assume that 𝐵 =  𝑑𝑖𝑎𝑔{𝑏11, . . . , 𝑏1𝑀, 𝑏21, . . . , 𝑏𝑀𝑀}in graph 𝐻 and that 𝐾 is its Laplacian matrix. 

Assume that point one is true. While this occurs, the matrix (𝐾 ⊗ 𝐽𝑀×𝑀  +  𝐴) is positively definite. 

Proof: Use 𝑗 =  1, . . . , 𝑀 and let 𝐴𝐽  =  𝑑𝑖𝑎𝑔{𝑏𝑖1, . . . , 𝑏𝑖𝑀}as the evidence. For that reason, (𝐾 ⊗ 𝐽𝑀×𝑀  +

 𝐴)  =  𝑑𝑖𝑎𝑔{(𝐾 +  𝐴𝑗)}. One gets the idea from assumption 1 that for any matrix  𝐴𝑗𝑗, there is at least one 𝑏𝑗𝑖 >

 0. It needs to be noted that the connected, undirected graph G* has a Laplacian matrix. The matrix 𝐾 + 𝐴𝑗 is 

symmetric positive definite. Therefore, the proof is finished and the matrix 𝑑𝑖𝑎𝑔{(𝐾 + 𝐴𝑗)} is positive definite. 

2) Problem Formulation 

Imagine a quadratic game with 𝑁 players. Where𝒱 =  {1, . . . , 𝑁} indicates the set of players. These are the 

general nonlinear form values for each player's dynamics expressed as in equation (1). 

𝑦𝑗̇ = 𝑓𝑗(𝑦) + 𝜃𝑗(𝑠) + 𝑢𝑗 ,   𝑗 ∈ 𝒱 (1) 

Where the player's action is represented by 𝑦 =  𝑐𝑜𝑙(𝑦1 , . . . , 𝑦𝑀), the known map that is nonlinear is 𝑓𝑗(𝑦)*, 

the unidentified phrase of disturbance is 𝜃𝑗(𝑠) and the states are represented by 𝑦𝑗 ∈ ℜand𝑢𝑗 ∈ ℜ. The presence of 

uncertainty and disruptions, deterioration, or forecasting mistakes are likely the causes of the time-varying 

disturbance component 𝜃𝑗(𝑠). To describe the information transfer in this game, utilize the undirected graph 𝒢 =

 (𝒱, ℰ). The goal of the 𝑗𝑡ℎ player is to reduce its cost function. Where 𝐼𝑗 is expressed in quadratic form in equation 

(2). 

𝐼𝑗(𝑦) =
1

2
∑ ∑ 𝐷𝑖𝑙

𝑗
𝑦𝑖𝑦𝑙 + ∑ 𝑑𝑖

𝑗
𝑦𝑖 + 𝑒𝑗 ,

𝑀

𝑖=1

𝑀

𝑙=1

𝑀

𝑖=1

        𝑗 ∈ 𝒱 (2) 

Where 𝐷𝑗𝑗
𝑗

<  0 and 𝐷𝑖𝑙
𝑗

=  𝐷𝑙𝑖
𝑗
 for all𝑖, 𝑗, and𝑙 ∈ 𝒱, are constants and 𝐷𝑖𝑙

𝑗
, 𝑑𝑖

𝑗
, and 𝑒𝑗. For a 𝑁 player game, a 

state profile 𝑦∗  =  𝑐𝑜𝑙(𝑦1
∗, . . . , 𝑦𝑀

∗ ) is considered to be Nash equilibrium in equation (3). 

𝐼𝑗(𝑦1
∗,   .  .   .  , 𝑦𝑗

∗,   .  .  .  , 𝑦𝑀
∗ ) ≤  𝐼𝑗(𝑦1

∗,   .  .   .  , 𝑦𝑗
∗,   .  .  .  , 𝑦𝑀

∗ ),    𝑗 ∈ 𝒱 (3) 

By unilaterally altering its state, a player could further lower its associated cost function, resulting in exactly 

what is meant by Nash equilibrium. 

3) Dispersed NE Search Issue 

Examine games (1) and (2) for 𝑁 players. The conditions and financial aspects of other participants aren't 

directly accessible to the 𝑗𝑡ℎplayer. The neighbors of the 𝑗𝑡ℎ player is defined in Graph 𝒢. A dispersed command 

method 𝑢𝑗 for the 𝑗𝑡ℎplayer was devised to determine the NE of games (1) and (2). 

Remark 2: Equation (2) illustrates the cost functions that are quadratic, which are of significant importance in 

theory of games. Initially, it is used for various games. A generic model termed game (1) and (2) that used to 

illustrate a wide range of practical situations in which the quadratic cost function (2) has real-world implications. 

In the Oligopoly game for instance, (2) stands in for each company's profit. It also indicates the formation error in 

a formation control and engagements issue. Additionally, it serves as a second-order approximation for various 

nonlinear cost function classes. For the following analysis, a few presumptions are assumed. 
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Assumption 2: The Lipschitz constant  𝐾𝑓 is used to globally Lipschitz the function𝑓𝑗(𝑦) ∀𝑗 ∈  𝑉. 

Assumption 3: Certain integers 𝜃𝑗̅are positive and exist such that equation (4). 

|𝜃𝑗(𝑠)| ≤ 𝜃𝑗̅  ∀𝑗 ∈ 𝒱 (4) 

Assumption 4: Strictly diagonally dominating is the matrix𝐷 expressed in equation (5). 

𝐷 = (

𝐷11
1 𝐷12

1    ⋯ 𝐷1𝑀
1

𝐷21
2 𝐷22

2    ⋯ 𝐷2𝑀
2

⋮                           ⋱          
𝐷𝑀1

𝑀 𝐷𝑀2
𝑀    ⋯ 𝐷𝑀𝑀

𝑁

) (5) 

Remark 3: In the stability issue for a nonlinear system, assumptions 2 and 3 are frequently used. Every player's 

state converges throughout the world 𝑦𝑗 to the relevant NE and it is sufficiently conditioned by them. Furthermore, 

a consensus-based method is used to establish a comparable Lipschitz condition for a distributed NE searching 

issue. 

Remark 4: The reality and distinctiveness of the NE solution are ensured by assumption 4. Specifically claim 

that once simply in the event there exists 𝑦𝑗 such that the games with cost function permit Nash equilibrium form 

equation (6). 

𝐷𝑗𝑗
𝑗

𝑦𝑗
∗ + ∑ 𝐷𝑗𝑖

𝑗
𝑦𝑖

∗ + 𝑑𝑗
𝑗

𝑖≠1

= 0,        𝑗 ∈ 𝒱 (6) 

Furthermore, matrix 𝐷 is implied to be nonsingular by assumption 4. Consequently, there is a singular Nash 

equilibrium in equation (7). 

𝑦∗ = −𝐷−1𝑑 (7) 

Here 𝑑 = 𝑐𝑜𝑙(𝑑1
1, . . . , 𝑑𝑀

𝑀). 

IV. RESULT AND DISCUSSION 

By using distributed NE searching theory, an oligopoly game is analyzed by specifying the market structure, 

simulating market demand and figuring out profit. A game with five players is employed to verify the theory. A 

distributed observer strategy is proposed for obtaining the states and cost functions of other participants, ensuring 

convergence towards Nash equilibrium. Simulation results demonstrate the effectiveness and boundedness of 

observer error. However, nonlinear dynamics and communication topology render existing NE search methods 

useless. 

In this part, to provide a distributed NE search approach based on distributed observers for the quadratic games 

(1) and (2). First, a preliminary lemma is put forward. For y = ℜ and η >  0, we have that Lemma 2 expressed as 

in equation (8). 

|y| − y tanh (
y

η
) ≤ lη (8) 

Where lη is a constant that, when applied to lη =  c−(l+1), satisfies l = 0.2785. Assuming Iiand Γik are all in𝒱, 

define Γik  =  (
[∂Ii(x)]

∂yi
) (

[∂2Ii(y)]

[∂yiyk]
)andΓj =  ∑ Γij

M
i=1 . Take note that player 𝑗  is the only one with access to the 

𝑖𝑡ℎplayer to search for the Nash equilibrium, function Γj, and state, 𝑖 ∈  𝒱are required since system (1) contains the 

nonlinear map fj(y)  and the perturbation term θj(s). Thus, they will create a distributed observer. Player j′s 

estimates for function Γik and state yi are denoted by ˆΓik,  Γj and yi state. Consider system (1) with strategy from 

equation (9) to (10). 

Γjik̂
̇ =  −δ−1 (∑ bjl(Γ̂jik − Γ̂lik

M

l=1

) + bji(Γ̂jik − Γ̂ik)) (9) 

yjî
̇ =  −δ−1 (∑ bjl(Ŷji − ŷlk

M

l=1

) + bji(ŷji − ŷi)) (10) 

ui = −fj(yî) −  αjΓ̂j − βjtanh (
Γ̂j

η
) (11) 

Here j, i, k ∈ 𝒱, Ŷj = col(Ŷjk, .  .   .   .  ,  ŶjM), Γ̂j = ∑ Γ̂jij
M
i=1 with α0 and β0 as a few positive constants and 𝛿 as 

the desired positive parameter. 

Theorem 1: Assuming that premises 1-4 are true. In light of approach (4, 10, and 11), consider system (2). 

Then, for any αj ≥ αj,β0 ≥ βj ≥ θjand η> 0, there are positive constantsδ∗, α0
∗  ands0 from equation (12). 



J. Electrical Systems 20-3 (2024): 1099-1110 

1104 

‖y −  y∗‖ ≤  q0∀s ≥  s0 (12) 

Using s0 as the border. Furthermore, the convergence barrier s0 can be adjusted to any small value by either 

rising or reducing parameter  αi  can at the moment provide the proof of Theorem 1. Evaluate (13-

14).Γ̅jik(s)Γ̂jik(s) − Γik(s) and Γ̅k col(Γ̅11k, . . . . , Γ̅1Mk,   Γ̅21k, . . . . , Γ̅MMk), j, i, l ∈ 𝒱. Then there is that equation (13). 

Γ̅k
̇ =  − 

1

δ
(L ⊗ JM×M  +  A)Γ̅k − JM ⊗ φk (13) 

Where φk  is equal to col(Γ1k
̇ , . . . ,  Γ̇1Mk).  Examine y̅ji(s) =  ŷji(s)yi(s)j, i ∈ 𝒱,  and y̅  =

 col(y̅11, . . . , y̅1M, y̅21, . . . , y̅MM, )are defined. Then there is equation (14), 

y ̅̇  =  −
1

δ
( L ⊗ JM×M  +  A)y̅ − JM ⊗ ϕ (14) 

In Lemma 1, A is defined, 𝐿  is graph 𝐺  Laplacian matrix and y ̃  = col(ỹ1,   .  .  .  , ỹM. Take (11) into 

consideration, for each j in possible to rewrite system (2) using strategy (11) expressed as equation (15) to (17). 

ỹj̇ =  fj(y) − fj(yĵ) − αjΓĵ − βj tanh (
Γĵ

η
) + θj(s) = − αjΓj −  βj tanh (

Γj

η
) + θj(s) + cj (15) 

Where, 

𝑐𝑗 = 𝑓𝑗(𝑦) − 𝑓𝑗(𝑦̂𝑗) + 𝛼𝑗𝛤𝑗 + 𝛽𝑗𝑡𝑎𝑛ℎ (
𝛤𝑗

𝜂
) − (𝛼𝑗𝛤̂𝑗 + 𝛽𝑗𝑡𝑎𝑛ℎ (

𝛤̂𝑗

𝜂
)) (16) 

Then there is that, 

yj̇̃ =  − αjΓj − βjtanh (
Γj

η
) + θj(s) + cj (17) 

Remark 5: The coordinate transformation ỹj = yj − yj
∗ where yj

∗ represents the Nash equilibrium, is how the 

system (17) is formed. Thus, the challenge of obtaining NE is transformed into the system (17). Stabilization 

problem, the stabilization issue of system (17) can be solved by using the signum function to handle the 

disturbance θj(s). Lemma 2 states that the hyperbolic tangent function is continuous and behaves similarly to the 

signum function found in formula (16) for the sliding form control. 

Remark 6: The coordinate transformations are used to obtain systems (13) and (14) which should be 

noted Γ̅jik(s) =  Γ̂jik(s) − Γik(s)  and y̅ji(s) = ŷji(s) −  yi(s). The observers (17) and (18) will thus acquire the 

states and cost functions of other players assuming systems (13) and (14) are stable. 

Proposition 1: There is a constant γ that exists for systems (13), (14) and (17). 

‖𝑐𝑜𝑙(𝐽𝑀 ⊗  𝜑𝑙, 𝐽𝑀 ⊗ 𝜙, 𝑐𝑗‖ ≤ 𝛾‖𝑐𝑜𝑙(𝑦̃, 𝑦̅, Γ̅, 𝜃̅‖ (18) 

Here𝜃̅  =  𝑐𝑜𝑙( 𝜃1
̅̅̅, . . . , 𝜃̅𝑀), Γ̅  =  𝑐𝑜𝑙(Γ̅𝑖 , . . . , ¯𝑁) 𝑤𝑖𝑡ℎ ¯𝑖 = 𝑖 −  ˆ𝑖, 𝑖 ∈  𝑉. 

The proof involves using 𝐾Γ =   max {𝛼𝑗 + (𝛽𝑗/𝜂}to represent the Lipschitz constant for the function (𝛼𝑗Γ𝑗 +

(𝛽𝑗  𝑡𝑎𝑛ℎ(Γ𝑗/𝜂))aboutΓ𝑗. Assumption 2 implies that functions 𝑓𝑖(x) have a global Lipschitz constant; they have 

equation (19), 

𝜕𝐼𝑙

𝜕𝑦𝑙

= 𝐷𝐿𝐿
𝐿 𝑦𝐿 + ∑ 𝐷𝑙𝑖

𝑙 𝑦𝑖 +  𝑑𝑙
𝑙 ,     Γ𝑖𝑙 = 𝐷𝑖𝑘

𝑖
𝜕𝐼𝑙

𝜕𝑦𝑙
𝑖≠𝑙

(𝑦) (19) 

Assume that Γ =  𝑐𝑜𝑙(Γ1, . . . , Γ𝑀) =  𝑐𝑜𝑙(∑ Γ𝑖1
𝑀
𝑖=1 , .  . . , ∑ Γ𝑖𝑀

𝑀
𝑖=1 ) consequently, according to Remark 4, where 

is the unique Nash equilibrium, develops in equation (20). 

Γ = 𝐷𝑆(𝐷𝑥 + 𝑑 − 𝐷𝑦∗ − 𝑑) =  𝐷𝑆𝐷𝑦̃ (20) 

Observe that ‖𝜑𝑘‖ ≤  ‖Γ̇‖as equation (21) they have that: 

‖𝐼𝑀 ⊗ 𝜑𝑘‖ ≤  𝑀‖Γ̇‖  ≤ 𝑀𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)‖𝑦̃̇‖  ≤  𝑀𝐾Γ𝜆𝑚𝑎𝑥
2 (𝐷𝑆𝐷) + 𝑀2𝐾𝑓𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)‖𝑦̅‖ 

+ 𝑀2𝐾Γ𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)‖Γ̅‖ + 𝑀𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)‖𝜃̅‖  (21) 

To construct the last inequality in (22) one uses the knowledge that, 

∑ ‖𝛼𝑗Γ𝑗 + 𝛽𝑗 (
Γ𝑗

𝜂
)‖    ≤  𝐾Γ‖Γ‖

𝑀

𝑗=1

(22) 

By (23) they have that, 

‖𝐼𝑀 ⊗ 𝜙‖ ≤  𝑀‖𝜙‖  ≤ 𝑀𝐾Γ𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)‖𝑦̃‖  + 𝑀2𝐾𝑓‖𝑦̅‖ +  𝑀2𝐾Γ‖Γ̅‖ + 𝑀‖𝜃̅‖ (23) 

Using (14), the last inequality in (15) is also obtained. Thus, by using (23), (24) and (25), (26) is produced and 

𝛾 is dependent on constants matrix 𝑀. 

Proof of theorem 1: By demonstrating of closed-loop systems (27) and (28), they can currently demonstrate 

Theorem 1. By using Remark 4, one can easily determine the existence and uniqueness of the Nash equilibrium 
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solution. Assumption 1 suggests that matrix 𝐾⨂𝐽𝑀×𝑀 + 𝐴 is positive definite based on Lemma 1. Let 𝑂 has the 

property that, as a symmetric positive-definite matrix, 

𝑂(𝐾⨂𝐽𝑀×𝑀 + 𝐴) + (𝐾⨂𝐽𝑀×𝑀 + 𝐴)𝑆𝑂 = 𝐽 

𝑉2 = (1 2)⁄ 𝑦̅𝑆𝑂𝑦̅   

𝑉2 = −
1

𝛿

̇
𝑦̅𝑆𝑦̅  + 𝑦̅𝑆𝑂(𝐽𝑀⨂∅) 

≤ −
1

𝛿
‖𝑦̅‖2 + 𝜆𝑚𝑎𝑥(𝑂)‖𝑦̅‖‖𝐽𝑀⨂∅‖ 

≤ − (
1

𝛿
− 𝜆𝑚𝑎𝑥(𝑃)𝑀2𝐾𝑓) ‖𝑦̅‖2 

+𝜆𝑚𝑎𝑥(𝑃)𝑁𝐿Γ𝜆𝑚𝑎𝑥
2 (𝐷𝑆𝐷)‖𝑦̅‖‖𝑦̅‖ 

+𝜆𝑚𝑎𝑥(𝑃)𝑁2𝐿Γ𝜆𝑚𝑎𝑥
 (𝐷𝑆𝐷)‖𝑦̅‖‖Γ̅‖ (24) 

Let ∑ (−
1

𝛿
Γ̅𝑘

𝑆𝑂(𝐽𝑀⨂𝜑𝑘))𝑀
𝑘=1 . It follows from (24) that: 

𝑉3 = (1 2) ∑ Γ̅𝑘
𝑆𝑂

𝑀

𝐽=1
⁄ Γ̅𝑘 

𝑉̇3 = ∑ (−
1

𝛿
Γ̅𝑘

𝑆𝑂(𝐽𝑀⨂𝜑𝑘))

𝑀

𝑘=1

 

≤ −
1

𝛿
‖Γ̅ ‖

2 + 𝜆𝑚𝑎𝑥
 (𝑂) ∑ Γ̅𝑘

𝑆(𝐽𝑀⨂𝜑𝑘)

𝑀

𝑘=1

 

≤ −
1

𝛿
‖Γ̅ ‖

2 + 𝜆𝑚𝑎𝑥
 (𝑂)𝑀‖Γ̅ ‖ 

× (𝑁𝐿Γ𝜆𝑚𝑎𝑥
2 (𝐷𝑆𝐷)‖𝑦̃‖ + 𝑀2𝐾𝑓𝜆𝑚𝑎𝑥

 (𝐷𝑆𝐷)‖𝑦̃‖ 

+𝑀2𝐾𝑓𝜆𝑚𝑎𝑥
 (𝐷𝑆𝐷)‖Γ‖ + 𝑀𝜆𝑚𝑎𝑥

 (𝐷𝑆𝐷)‖𝜃̅‖ 

≤ −(
1

𝛿
− 𝜆𝑚𝑎𝑥

 (𝑂)𝑀3𝜆𝑚𝑎𝑥
 (𝐷𝑆𝐷)𝐾Γ‖Γ̅ ‖

2 

+𝜆𝑚𝑎𝑥
 (𝑂)𝑀2𝜆2

𝑚𝑎𝑥
 

(𝐷𝑆𝐷)𝐾Γ‖Γ̅ ‖
 ‖𝑦̃‖ 

+𝜆𝑚𝑎𝑥
 (𝑂)𝑀3𝜆 

𝑚𝑎𝑥
 (𝐷𝑆𝐷)𝐾f‖Γ̅ ‖

 ‖𝑦̃‖ 

+𝜆𝑚𝑎𝑥
 (𝑂)𝑀2𝜆 

𝑚𝑎𝑥
 (𝐷𝑆𝐷)‖Γ̅ ‖

 ‖𝜃̅‖ (25) 

Assume that 𝑈 = 𝑈1 + 𝑈2 + 𝑈3𝑦 = 𝑐𝑜𝑙(‖𝑦̃‖, ‖𝑦̅‖, ‖Γ̅ ‖. We have that based on (24) and (25). 

𝑈́ ≤ −𝑧𝑆𝐿𝑧 + 𝜇𝑧 + 𝑀𝛽0𝐿𝜂 (26) 

Where 𝜇 = 𝜆 
𝑚𝑎𝑥
 (𝑂)𝑀2𝜆 

𝑚𝑎𝑥
 (𝐷𝑆 𝐷)‖𝜃̅‖. 

And𝐿 is a symmetric matrix as:  

𝐿 = (

𝐿11

𝐿21

𝐿31

𝐿21

𝐿22

𝐿32

𝐿31

𝐿32

𝐿33

) (27) 

With, 

𝐿11 =∝0 𝜆𝑚𝑖𝑛
2 (𝐷𝑆 𝐷) 

𝐿11 =
1

𝛿
− 𝜆𝑚𝑎𝑥(𝑂)𝑀2𝐾𝑓 

𝐿33 =
1

𝛿
− 𝜆𝑚𝑎𝑥(𝑂)𝑀3𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)𝐿Γ 

𝐿21 = −
𝑀𝜆𝑚𝑎𝑥

2 (𝐷𝑆𝐷)𝐾Γ + 𝜆𝑚𝑎𝑥(𝑂)𝑀𝐾Γ𝜆𝑚𝑎𝑥
2 (𝐷𝑆𝐷)

2
 

𝐿31 = −
𝑀𝜆𝑚𝑎𝑥

2 (𝐷𝑆𝐷)𝐾Γ + 𝜆𝑚𝑎𝑥(𝑂)𝑀2𝐾𝜆𝑚𝑎𝑥
2 (𝐷𝑆𝐷)𝐿Γ

2
 

𝐿32 = −
1

2
(𝜆𝑚𝑎𝑥(𝑂)𝑀3𝐿Γ𝜆𝑚𝑎𝑥(𝐷𝑆𝐷) + 𝜆𝑚𝑎𝑥(𝑂)𝑀3𝐿Γ𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)𝐾𝑓) (28) 

Furthermore, by increasing the parameters ∝0  and decreasing 𝛿 , they can select 𝐿  as a strictly diagonally 

dominating matrix. After that, matrix  𝐿 is positive definite for any 𝛿 ∈  (0, 𝛿∗)and α0 >. 𝛼0
∗ This is because there 

are constants 𝛿∗and 𝛼0
∗. Thus, it follows that 0 < 𝜎 <  1 exists such that equation (29): 

𝑈́ ≤ −𝜆𝑚𝑖𝑛(𝐿)‖𝑦 ‖
2 + 𝜇‖𝑧‖ + 𝑁𝛽0𝑟𝜂 

= −(1 − 𝜎)𝜆𝑚𝑖𝑛(𝐿)‖𝑧‖2 − (𝜎𝜆𝑚𝑖𝑛(𝐿)‖𝑧‖2 − 𝜇‖𝑧‖ − 𝑀𝛽0𝑟𝜂) 

≤ −(1 − 𝜎)𝜆𝑚𝑖𝑛(𝐿)‖𝑧‖2∀‖𝑧‖ ≥ 𝑞0
∗ (29) 
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As 𝑞0
∗ = (𝜇 +

√𝜇2+4𝜎𝜆𝑚𝑖𝑛(𝐿)𝑀𝛽0𝑟𝜂)

2𝜎𝜆𝑚𝑖𝑛(𝐿)
, is the formula for according to Remark 4. After that using equation (30), 

𝜀1‖𝑧‖2 ≤ 𝑈 ≤ 𝜀2‖𝑧‖2 (30) 

In which 𝜀1 = 𝑚𝑖𝑛{(1 2⁄ )𝜆𝑚𝑖𝑛(𝑂), (1 2⁄ )𝜆𝑚𝑖𝑛(𝐷𝑆𝐷)} and 𝜀2 𝜀1⁄ =

𝑚𝑎𝑥{(1 2⁄ )𝜆𝑚𝑎𝑥(𝑂), (1 2⁄ )𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)} are found. Exists with equation (31): 

‖𝑧‖ ≤ √
𝜀2

𝜀1

𝑞0
∗∀𝑠 ≥ 𝑠0 (31) 

Assume that 𝑞0 = √(𝜀2 𝜀1)⁄ 𝑞0
∗. Based on ‖𝑦 − 𝑢∗‖ ≤ ‖𝑧‖there exists 𝑡0 such that equation (32). 

‖𝑦 − 𝑢∗‖ ≤ 𝑞0 ∀𝑡 ≥ 𝑠0
∗ (32) 

Remember that by raising 𝑠0  and reducing. Hence, by raising parameter 𝑠0
∗  and reducing parameter δ, the 

convergence border 𝑞0 could be set arbitrarily small. 

Remark 7: The high-gain observer concept is borrowed into the design of the distributed algorithm (4). 

Specifically, 𝛿 − 1 and αj  are selected to be big enough such that player 𝑗 estimate follows player I state quickly 

and matrix 𝐿  is strictly diagonally dominating. The constants and the matrices  𝑃  𝑎𝑛𝑑 𝐷  determine the lower 

boundaries δ∗ andα0
∗ . Here the starting time is denoted by 𝑠0

∗. Therefore system (2) and strategy (4) are integrating 

more quickly at the moment. With Theorem 1, they will show how simple it is to construct the distributed NE 

search approach to N-player no-cooperative game with an unpredictable temporally variable disturbance. 

Corollary 1: Think about the next single-player N-player game. 

Using the cost function in equation (34), the disseminated NE, where 𝑗 provides a few uplifting constants and 

δ is a positive parameter. Furthermore, by raising or lowering parameter𝛿, one can control the convergence border 

𝑞1 to an arbitrarily small value. 

Proof: The following proof, which is skipped here, is based on Theorem 1. They also demonstrate that Theorem 

1 can be quickly extended to derive the standard NE-seeking procedure for quadratic games with unknown time-

varying disturbance.  Corollary 2: Consider for this time that premises 3 and 4 are accurate. Think about system 

(2) and its methodology as provided in equation (33). 

𝑢𝑗 = −𝑓𝑗(𝑦) − 𝛼𝑗Γ𝑗 − 𝛽𝑗𝑡𝑎𝑛ℎ (
Γ𝑗

𝜂
) , 𝑗 𝜖 𝜈 

Subsequently, 𝑠2 and 𝑞2(𝜂)occur such that equation (34). 

‖𝑦 − 𝑦2‖ ≤ 𝑞2(𝜂)   ∀𝑠 ≥  𝑠2 (34) 

Furthermore, by reducing parameter 𝜂, the convergence boundary𝑞2(𝜂) could be set indefinitely narrow. In 

instance, let 𝜂 =  𝑐−𝜂0𝑠  with𝜂0 >  0, then 𝑙𝑖𝑚𝑡 → ∞(𝑦(𝑠)  − 𝑦∗)  =  0. 

Proof: System (2) and method (23) can be modified as equation (35). 

𝑦̇𝑗 =  −𝛼𝑗Γ𝑗 − 𝛽𝑗𝑡𝑎𝑛ℎ (
Γ𝑗

𝜂
) + 𝜃𝑗(𝑠) (35) 

Comparable to (9), they have that expressed equation (36). 

𝑦̇̃𝑗 =  −𝛼𝑗Γ𝑗 − 𝛽𝑗𝑡𝑎𝑛ℎ (
Γ𝑗

𝜂
) + 𝜃𝑗(𝑠) (36) 

𝑉 = (1 2⁄ ) ∑ ([𝜕𝐼𝑖 𝜕𝑦𝑖⁄ ](𝑦))
2𝑀

𝑖=1 is defined.2. Take note that (12) suggests: 

𝜆𝑚𝑖𝑛(𝐷𝑆𝐷)‖𝑦̃‖ ≤ ‖Γ‖ ≤ 𝜆𝑚𝑎𝑥(𝐷𝑆𝐷)‖𝑦̃‖ (37) 

By (37) to (40), they have that, 

𝑉̇ ≤ −𝛼0‖Γ‖2 + Ν𝛽0𝑘𝜂 ≤ −𝛼0𝜆𝑚𝑖𝑛
2 (𝐷𝑆𝐷)(‖𝑦̃‖2 − (𝑞2

∗)2) (38) 

Where: 

𝑞2
∗ = √

(Ν𝛽0𝑘𝜂)

(𝛼0𝜆𝑚𝑖𝑛
2 (𝐷𝑆𝐷))

(39) 

According to (3), they have that: 

𝑉 =
1

2
‖(𝐷𝑥 + 𝑑‖2 =

1

2
‖𝐷𝑥̃‖2 (40) 

Following that, 𝜀3‖𝑦̃‖2 ≤   𝑉 ≤  𝜀4‖𝑦̃‖2where 𝜀3  = (1/2)𝜆𝑚𝑖𝑛(𝐷𝑆𝐷)and𝜀4  = (1/2) 𝜆𝑚𝑎𝑥(𝐷𝑆𝐷). Let𝑞2 =

√(𝜀4 𝜀3⁄ )𝑞2
∗. It follows that there exists 𝑠2 such that equation (41), 

‖𝑦 − 𝑦2‖ ≤ 𝑞2   ∀𝑠 ≥  𝑠2 (41) 
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According to equation (25), reducing parameter η allows for the tuning of the convergence border 𝑞2(𝜂) to an 

arbitrarily tiny value. Let𝜂 =  𝑐−𝜂0𝑠with in particular, when𝜂0 >  0, next up, there expresses as in equation (42), 

𝑉̇ ≤ −𝛼0𝜆𝑚𝑖𝑛
2 (𝐷𝑆𝐷)‖𝑦̃‖2 + Ν𝛽0𝑘𝜂−𝜂0𝑠 (42) 

It suggests that 𝑉 is withinℒ∞. Given (26), we can conclude that𝑉 ∈ ℒ∞. From (24) it is evident that𝑦̃̇ ∈ ℒ2. It 

follows that 𝑙𝑖𝑚→ ∞𝑦̃(𝑠)  =  0 by Barbalat Lemma. This also suggests that𝑙𝑖𝑚→ ∞ (𝑦(𝑠) − 𝑦∗  =  0. 

A. Oligopoly game theory 

The market structure of an oligopoly is a small number of businesses manufacture a uniform good and each 

firm is aware of its markets, which is usually examined with oligopoly game theory. Examining a five-player game, 

served as validation for the distributed NE searching theory. In a duopoly market structure, for instance, take five 

participants, or five companies manufacturing the same goods. It is assumed that the product's price never changes 

whilst playing the game. The market demand for their items (𝑟𝑗 , 𝑗 =  1, . . . , 5) is provided by equation (43). 

𝑟𝑖 = 𝑟0 + 𝜖0 (𝜔𝑗
2 −

1

5
∑ 𝜔𝑖

2

5

𝑖=1

) +  𝜖𝑗𝜔𝑗 (43) 

Where𝑟0 represents the degree of product diversification, 𝜔𝑗 represents the fundamental market demand and 

𝜖0 > 0 and 𝜖𝑗 > 0 represent the criteria for demand differentiation. Furthermore, 𝑘𝑗 , 𝑗 =  1, . . ., 5 are modeled by 

equation (44). 

𝜔̇𝑟𝑖 = −
𝛾1

5
∑ 𝜔𝑗

5
𝑖=1 + 𝛾2(𝑒0(𝑠) + 𝑒𝑗 (44) 

Where the input benefit coefficient 𝛾1 > 0, the basic production cost (c0 (t) 3*), the slowly increasing cost 

𝛾2 > 0 of the degree of differentiation are all present. Here 𝐼𝑗 =  (𝑂𝑖  −  𝑛𝑖)𝑟𝑗represents each company's profit, 

denoting the product's pricing and marginal cost respectively. 

𝑙𝑖 = −
𝛾1

5
∑ 𝑙𝑗

5

𝑖=1

+ 𝛾2(𝑒0(𝑠) + 𝛾2𝑒𝑗 

𝐼𝑗 =  (𝑂𝑖  −  𝑛𝑖) (𝑟0 + 𝜖0 (𝜔𝑗
2 −

1

5
∑ 𝜔𝑖

2

5

𝑖=1

) + 𝜖𝑗𝜔𝑗) (45) 

Actually, (45) creates a dynamic mapping between the actions (𝑂𝑖 ) of the players and the corresponding 

payment functions (𝐼𝑗). Consider as the disturbance due to its gradual changes and difficulty in determining in 

practical applications. Let the additional expense Ϸ2ci* represent the corporation activity. The goal of the game is 

to create a variable control approach 𝑂𝑖  for the ith* corporation to find the NE of the game. Game is thus 

represented by (2) and (3). Figure 1 provides the communication topology; the proof of assumption 1's validity is 

not difficult. The cost function is quadratic in game (45), whereas the map is linear. Assumptions 2-4 are true and 

possibly thus be easily verified.  

 

Figure 1: Network topology among players 

Assume that 𝜔 =  𝑐𝑜𝑙({𝜔1
 , . . . , 𝜔5

 }.  Let 𝜔 ∗= 𝑐𝑜𝑙({𝜔1
∗, 𝜔2

∗ , . . . , 𝜔5
∗}) =  [1, 1.4, 1.2, 1.6, 0.8]𝑇  by Remark 

4. The distinct NE is 𝑇. Next, the algorithm for searching is presented as: 
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Γ𝑗𝑖𝑘̂
̇ =  −𝛿−1 (∑ 𝑏𝑗𝑙(Γ̂𝑗𝑖𝑘 − Γ̂𝑙𝑖𝑘

𝑀

𝑙=1

) + b𝑗𝑖(Γ̂𝑗𝑖𝑘 − Γ̂𝑖𝑘)) (46 − 𝑎) 

ω𝑗𝑖̂
̇ =  −𝛿−1 (∑ 𝑏𝑗𝑙(ω̂𝑗𝑖 − ω̂𝑙𝑘

𝑀

𝑙=1

) + b𝑗𝑖(ω̂𝑗𝑖 − ω̂𝑖)) (46 − 𝑏) 

𝑒𝑖 = −𝑓𝑗(𝜔𝑖̂) −  𝛼𝑗Γ̂𝑗 − 𝛽𝑗𝑡𝑎𝑛ℎ (
Γ̂𝑗

𝜂
) (46 − 𝑐) 

Remark 6 and Theorem 1 provide the distribution spectator in (29) with the states and cost functions of the 

other players, accordingly. The observer errors produced by algorithms (36a) and (36b) are shown in Figures 2 (a) 

and (b) as well as 3 (a) and (b).  

 
Figure 2: 𝝎̂𝒋𝒊 − 𝝎𝒊 with 𝒋 =  𝟏 (Observer error) 

The simulation findings demonstrate the boundedness of the observer errors. Furthermore, by raising parameter 

α0
∗  and lowering parameter δ∗, the observer boundary can be set arbitrarily tiny. Space constraints prevent the 

inclusion of the simulation figure 3 (a) and (b). 

 
Figure 3: 𝚪̂𝒊𝒋𝒌 − 𝚪𝒊𝒌with i = 1 (observer error) 

Figure 4 (a) and (b) display every state that each player has created using the searching algorithm (36). All of 

the player states converge to the distinct NE with a narrow border, as can be seen in the image. This attests to the 

suggested method's efficacy. 

 
Figure 4: State 𝝎𝒊 with 𝒊 =  𝟏, . . . , 𝟓 
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It should be noted that game (35) is insoluble using the current solutions on the NE search issue. There are two 

primary causes. First, the communication topology limitation makes the conventional NE search technique 

inapplicable. For instance, since the game (35) necessitates that every Players' states and actions should be visible 

to all other players, the strategy selection in a symmetric oligopoly game is inapplicable. Second, due to game 

(35)'s nonlinear dynamics, the distributed NE searching strategies presently in use are similarly inapplicable, 

specifically the states of every player produced by the consensus-based method shown in Figure 5 (a) and (b). As 

a result, 𝝎𝒊 does not converge to the Nash equilibrium and games cannot benefit from the consensus-based method 

(35). 

 
Figure 5: A consensus-based approach with state 𝝎𝒊 

V. CONCLUSION 

A mathematical framework referred to as game theory is used to examine the strategic interactions among 

rational decision-makers. This study presents a comprehensive analysis of strategic interactions among logical 

decision-makers using game theory, focusing on distributed quadratic games represented by undirected graphs. It 

addresses communication topology constraints and nonlinear dynamics with uncertain time-dependent 

perturbations within player’s strategies. By employing a high gain observer approach and Lyapunov stability 

theory, a distributed NE finding technique is proposed, ensuring convergence. Notably, the utilization of the 

hyperbolic tangent function effectively manages perturbations, mitigating chattering concerns. In other situations, 

such as the oligopoly games in China's broadband access marketing, they demonstrated that the player's interaction 

with the system is exponential. Through simulation of a duopoly market structure involving five companies 

producing identical commodities, the efficacy of the suggested strategy is validated. These findings offer novel 

perspectives and methodologies for navigating complex strategic scenarios, bridging the divide between theoretical 

frameworks and practical applications. Overall, this study contributes significantly to the understanding and 

management of strategic interactions in real-world contexts, providing valuable insights for decision-makers across 

various domains. 

A. Limitation 

The limitations derive from its assumptions on continuity, differentiability and convexity, which are not 

applicable in real-world scenarios. The complexity of games and the challenge of capturing their dynamic aspects 

are further barriers. 

B. Future Research 

The use of nonlinear functional analysis methods in game theory will greatly improve equilibrium analysis 

research in the future. This method improves one's capacity for making strategic decisions by offering a more 

thorough grasp of evolutionary game dynamics, mixed tactics and non-cooperative games. 
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