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Abstract: - Supply chain analytics is focusing more and more attention on industrial logistics. Optimal allocation of assets is severely 

restricted by the timing inconsistency and geographical instability of industrial logistics assets brought by unpredictability and 

variability. Unnecessarily lengthy drive distances and lengthy delays are caused by the incapacity to acquire and utilize industrial 

logistics asset spatial-and-temporal (ST) qualities rationally, which affects the processes' potential to operate sustainably. Thus, for 

efficient usage of resources in industrial logistics, a novel machine learning (ML)-assisted knowledge graph (ML-KG) design is 

provided in this work. For evaluating the multi-modal data produced by widely deployed IoT devices, a novel customizable diversified 

kernelized support vector machine (CDK-SVM) approach is also suggested. After establishing the suggested ML-KG framework for 

ST integrity in the representation of the digital twin version, links are carried out and reasoning is performed using job data related to 

industrial logistics. The graph mechanism effectively distributes the industrial logistics resources. Lastly, the outcome proves that the 

suggested process is successful in the distribution of industrial logistics assets. 

Keywords: Industrial logistics, knowledge graph, digital twin, usage of resources, machine learning (ML)-assisted 

knowledge graph (ML-KG), customizable diversified kernelized support vector machine (CDK-SVM) 

 

 

I. INTRODUCTION 

In the age of the digital era, the crossbreeding of diverse technologies has set off the conceptual chain reaction 

in the human grasping of the systems’ complexity [1]. As these, knowledge graph construction and digital twin 

modelling become the leading methodologies that make it possible to create a complete representation and the 

construction of a simulacrum by reference to real-world entities. Work on making these technologies increasingly 

valuable, since they can not only combine disparate data sources but also provide unprecedented insights into smart 

cities, manufacturing, healthcare, along many other fields [2]. 

That is the semantic core of knowledge graph-building – assembling connected networks consisting of the 

respective entities and their attributes that are characterized as structured information using the semantically rich 

format [3]. Through this structured representation, searching and retrieving the data as well as analyzing data 

become quick and easy, so the knowledge becomes deeper about the complex relationships in the field. Data 

processing and advanced analysis capacities have their peak with knowledge graphs, which assist in one-of-a-kind 

extraction and transformation of data into useful and applicable knowledge from immense and diverse datasets [4]. 

The incorporation of varied data modalities into both knowledge graph constructions and a digital twin model 

brings additional dimensions to the analysis and helps to characterize more completely the complexities of the 

systems that are examined [5]. Multi-modal data sets the complexity and diversity of different types of information 

which includes textual, numeric, spatial, temporal and sensor-derived information, each providing a singular level 

into the different areas of the system and environment [6]. 

As a current example, in the smart city domain where the data from sources such as traffic sensors, weather 

forecasts, social media feeds and urban infrastructure databases is integrated, the probability for the creation of 

dynamic knowledge graphs that will capture the city in real-time becomes high [7]. The slight overlaying of these 

knowledge graphs with digital twin models of the strategic infrastructure components' systems will enable planners 

to perform various scenarios simulations, evaluate the intervention effects and enhance urban operations regarding 

live ability, sustainability and resilience [8]. 

In the same way, the infrastructure of industrial manufacturing systems can be upgraded to allow streaming of 

different data from devices, supply chain databases and production logs which can, in turn, provide a basis for the 

development of the complex models that replicate the entire plants [9]. Tying digital replicas of machines with 

material flows and quality-related standards, as well as with manufacturing processes knowledge graphs enables 
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manufacturers to be predictive in maintenance, provide scheduling optimization and minimize risks of failure or 

faulty products [10]. Despite its promise, knowledge graph and digital twin models confront difficulties with data 

integration, scalability and interoperability [11]. It might be difficult to coordinate disparate data sources and 

maintain consistency across changing systems. Furthermore, guaranteeing the security and privacy of sensitive 

data inside networked models remains a major challenge. 

The development of digital twin technology has created huge public interest, while there are evident logistical 

manufacturing obstacles. The large amount of data constituting IoT sensors with spatial-temporal value could result 

in environmental basics if it is not properly exploited. The main problem is the way of converting the dynamic data 

from IoT systems into a structured map with time information. Currently, the digital twin researches, to a small 

amount, are focused on single elements or processes, but the eternity and the links of time and space are separated 

although the phenomenon is taking place on the same matter. Along with this is forming the right type of spatial-

temporal model that has the detailed features of the global production logistics resources. The production logistics 

of allocation to resources are yet under developed as well. Efficient resource allocation is, therefore, all about 

thinking in advance and, mainly, about taking into account resource dynamics in the framework of activities. Thus, 

it is necessary to conduct broad-scale studies providing academic material distribution to cope with spatial-temporal 

dynamics as well as operational monitoring and control. This limitation motivates to solve the difficulty by 

providing a relational spatial-temporal knowledge graph model that enables optimal IL resources management. 

The model is initiated by defining the spatial-time variables by a customizable diversified kernelized support vector 

machine (CDK-SVM) built to use that specific parameter. Lastly, the knowledge graph is a dynamic one that 

encompasses all valuable information resources and connections that are involved. We design a resource allocation 

method (graph algorithm) that considers not only the geospatial distance bearing but also the constraints of time. 

A use case in real life in which we are to show the effectiveness of the proposed strategy could be applied. 

II. LITERATURE REVIEW 

We performed a thorough analysis of the most recent research on knowledge graphs, digital twin technologies 

and production logistics resource management in the manufacturing industry, with an emphasis on resolving the 

relevant issues involving such areas, table 1 illustrates the traditional study of digital twin, knowledge graph and 

industrial logistic. 

A. Manufacturing knowledge graph 

The goal of the research created a knowledge graph for manufacturing resources in cloud manufacturing 

settings by using a knowledge extraction and fusion technique [12]. It created an ontology model based on resource 

features and presented an interactive visualization analysis approach to validate resource-finding apps.  

They utilize multi-agent reinforcement learning and an industrial knowledge graph to create a Self-X cognitive 

industrial network [13]. While acknowledging its limits and urging more study for improved smart manufacturing 

systems, it shows encouraging results in accomplishing semantic-based self-configuration and decentralized self-

optimization. 

The framework outlined in article proposed a connective framework and an ontology-based MK graph to solve 

fragmented knowledge reuse in manufacturing, resulting in improved problem-solving decision-making [14]. It 

displays good integration and performance in tackling actual production challenges using semantics-based 

knowledge computing.  

B. Resource management and logistics for the industry 

Integrated planning model for the supply chain of sugar beets was created in [15], which maximizing industrial 

and agricultural choices to reduce operating expenses. To accomplish it made use of binary integer programming, 

recognizing the inherent complexity while showcasing its efficacy through a genuine case study. 

An enhanced ant colony algorithm and a fuzzy time window scheduling model were two of the real-time data-

driven methods employed in the research [16] to optimize production logistics in dynamic industrial situations. 

Although there can be some scalability and generalizability difficulties, the results demonstrated greater feasibility 

and distribution cost reduction in a machining workshop. 

By reducing uncertainty using improved VRPDP models and digital twin-driven designs, research [17] was to 

enhance decision-making in production logistics systems. It offered methods for dealing with dynamic disturbances 

in real-time synchronization, which were assessed via a case study, highlighting their applicability and utility in 

such instances. 
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The purpose of the study [18] addressed the dearth of quantitative methods for evaluating the effectiveness of 

production logistics caused by various production models. A case study comparing workshop efficiency before and 

after cellular manufacturing implementation demonstrated the usefulness of the evaluation indexes and fuzzy 

entropy model that were used to quantify operational efficiency. Applicability to different production situations 

could be one of the limitations. 

Mining anomalies from RFID data in production logistics was a challenging issue that the research paper [19] 

addressed using a novel approach that made use of clustering algorithms and multi-attribute views. According to 

experiments, the technology was valuable in improving logistics management and monitoring since it can detect 

over 90% of irregularities with accuracy. The use of exact RFID data collection techniques could be necessary and 

larger datasets can offer scalability issues. 

A novel model and method for real-time scheduling in dynamic workshops that includes predictive elements 

and an information updating mechanism was presented in the study [20]. When compared to existing approaches, 

the results show greater performance in terms of customer satisfaction, equipment usage and energy consumption, 

while maintaining acceptable schedule resilience. The suggested approach's capacity to scale to extremely large-

scale applications could prove limited. 

C. Digital twin 

A 5-dimensional model was used in the research [21] to examine and define supporting technologies and 

methodologies for digital twin deployment. The process consisted of investigating and evaluating prevalent 

techniques. The findings shed light on commonly utilized technology and methodologies, while also 

acknowledging the intricacies and present challenges of digital twin adoption. Limitations include the changing 

nature of technology and the need for ongoing adaptation. 

Improved in-house logistics by enabling agile decision-making with simulation-based tools was discussed in 

[22]. It evaluated two models through real-world operations, indicating that they were representative and relevant 

to a variety of logistical settings, but with possible limits in complicated scenarios. 

Using Axiomatic Design theory to maximize deployment strategies, the author in research [23] offered an 

implementation strategy for the physical component of Digital Twin technology in industrial systems. The 

strategy's operability and efficacy in improving manufacturing processes were demonstrated through a case study 

involving CNC machines. 

An SDT framework was introduced in research [24] that utilizes five-dimensional modeling, real-time 

monitoring and predictive analytics to overcome the difficulties associated with integrating Digital Twin (DT) 

technology during the manufacturing phase. Using an engineering case study, they develop a DT-VMPS for shop-

floor operations, noting future research topics and demonstrating the system's practicality and effectiveness. 

Digital twin-driven method was utilized by author in [25] to improve energy-efficient multi-crane scheduling 

while taking unpredictability in crane energy usage into account. The research showed possible energy savings by 

simulating crane operations, scheduling jobs and evaluating energy use using a DT framework. The realistic 

applicability and accuracy of the simulation might have limitations. 

Table 1: Summary of literature review main objective, method, advantage and disadvantage 

Reference Objective Method Advantage Disadvantage 

[12] In cloud manufacturing 

contexts, to build a 

knowledge graph for 

manufacturing resources. 

Using an ontology model, 

created an interactive 

visualization analysis 

technique and used a 

system for knowledge 

extraction and fusion. 

Effective resource 

identification, easy access 

to resources for 

processing tasks, and 

assistance with the 

creation of resource pools 

for cloud manufacturing. 

Possibility for ontology 

model development 

complexity, reliance on 

precise knowledge 

extraction, and scalability 

issues. 

[13] Utilizing MARL and IKG, 

create a Self-X cognitive 

manufacture network. 

 

Create Interactive 

Knowledge Graph (IKG), 

use graph neural network-

based embedding, and 

apply Multi-Agent 

Reinforcement Learning 

(MARL) into operation. 

Realizes decentralized 

self-optimization and 

semantic-based self-

configuration 

 

Self-X levels had limited 

preparedness; further 

research was needed to 

improve capabilities. 
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[14] Used the connectivism 

paradigm and the ontology-

based Manufacturing 

Knowledge(MK) graph to 

address the fragmented 

reuse of knowledge in 

manufacturing. 

Create semantic-based 

knowledge computation to 

improve decision-making 

while addressing 

problems. 

 

Provides an all-

encompassing method for 

combining manufacturing 

expertise with the 

resolution of production 

issues. 

Demands a substantial 

upfront outlay of funds 

for the creation and use of 

the suggested techniques. 

[15] Create an integrated supply 

chain management model 

for sugar beets. 

 

Create a sugar beet supply 

chain management model. 

 

Reduces operating costs, 

incorporates crop 

rotation, and takes spatial 

and temporal differences 

into effect. 

The binary integer 

programming technique 

may result in a 

computational load and 

complexity in both 

modeling and solution. 

[16] Utilize real-time, data-

driven techniques to 

optimize p in dynamic 

industrial environments. 

 

For optimization, use an 

upgraded ant colony 

algorithm combined with a 

fuzzy time window 

scheduling model. 

In real-time production 

situations, attain 

enhanced feasibility and 

cost reduction of 

distribution. 

Scalability issues and 

restrictions on 

extrapolating results are 

examples of potential 

drawbacks. 

[17] Using digital twins and 

enhanced VRPDP models, 

improve production 

logistics decision-making. 

 

Create real-time 

synchronization methods, 

then use a case study to 

validate them. 

 

Enhances flexibility and 

decision-making in the 

face of changing 

uncertainty 

Insufficient resources 

might make mass 

adoption more difficult 

due to implementation 

difficulty. 

[18] Address the absence of 

quantitative tools for 

evaluating manufacturing 

logistics efficiency. 

 

Establish a fuzzy entropy 

model and assessment 

indices to gauge 

operational efficiency. 

 

Provides a systematic 

method for assessing 

production logistics 

efficiency using 

quantitative measures. 

Could require to be 

modified because of its 

limited applicability to 

various manufacturing 

scenarios. 

[19] In manufacturing logistics, 

tackle the problem of 

identifying irregularities 

using RFID data. 

 

Offer an innovative 

approach that takes into 

consideration clustering 

methods and multi-

attribute perspectives. 

Over 90% of 

abnormalities are 

efficiently identified, 

improving logistics 

management and 

monitoring. 

Dependency on precise 

RFID data gathering 

procedures and possible 

scalability problems with 

bigger datasets 

[20] Improve the scheduling 

process in dynamic 

workshops in real-time. 

 

Introduce a novel 

algorithm and scheduling 

model that includes update 

mechanisms and predictive 

components. 

superior results in terms 

of energy usage, 

equipment utilization and 

customer satisfaction 

Possible restrictions on 

the scalability to 

extraordinarily large-scale 

situations 

[21] Investigate enabling 

technologies for the digital 

twin. 

 

Analyzed with a 5-

dimensional model. 

 

Provides insights on 

frequently utilized 

technology for digital 

twins. 

Complexity and 

continuing technological 

innovation are two 

significant challenges. 

[22] Improve internal logistics 

through rapid decision-

making. 

 

Develop and evaluate 

models using simulation-

based techniques. 

Offers representative 

digital-twinning 

technologies for 

operational development. 

Limitations may exist in 

complicated logistical 

settings. 

[23] Develop a strategy for the 

execution of the physical 

component of DT in 

industrial systems. 

 

For deployment strategy 

optimization, apply the 

philosophy of Axiomatic 

Design. 

improves production 

procedures by utilizing 

DT technology 

Limited study on the 

physical entity element, 

with possible 

implementation issues. 
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[24] Examine the difficulties in 

implementing SDT for 

production using the 

suggested framework. 

Make use of real-time 

tracking, predictive 

analytics and five-

dimensional modelling. 

Increase productivity and 

predictive skills on the 

shop floor by utilizing 

DT-VMPS. 

SDT system setup and 

maintenance might 

provide some challenges. 

[25] Enhance energy-efficient 

multi-crane scheduling by 

taking into account the 

unpredictability of crane 

energy use using a digital 

twin-driven strategy. 

Simulate crane operations, 

plan jobs, assess energy 

usage, and show possible 

energy savings by using 

the DT framework. 

Provides dynamic 

performance evaluation 

and real-time mapping to 

improve energy economy 

and the precision of crane 

scheduling. 

For real-world 

applications, simulation 

accuracy was required; 

nevertheless, the 

complexity of actual crane 

operations might not be 

adequately represented. 

 

III. SPATIAL AND TEMPORAL MAPPING OF DIGITAL TWINS 

A. Machine learning-assisted knowledge graph (ML-KG) 

Figure 1 depicts the four-layer design of ML-KG-driven industrial logistics (IL) resource allocation, which 

solves the issues raised above. We've built a cutting-edge IoT infrastructure across our industrial park, including 

indoor and outdoor areas, to gather actual ST data’s using ML. This physical configuration serves as the foundation 

for our digital operations analysis. Moving further, we intend to create digital twins to map spatial-temporal 

dynamics, create dynamic knowledge graphs and use graph algorithms to optimize resource allocation for accurate 

decision-making. These processes study together to thoughtfully address the research problems. 

 

Figure 1: Dynamic Allocation of Resources in Spatial and Temporal Knowledge Graph-based Machine 

Learning Systems 
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B. IOT-Empowered mobile IL resources in smart environments 

To efficiently manage operations in the industrial park, IL activities must be carried out with the continuous 

flow of resources such as persons, trucks and materials between production lines and workshops. Tracking these 

resources, however, is difficult due to their frequent movement and unpredictable nature. While the GPS and BDS 

are effective for outside locations, the majority of IL activities take place indoors over numerous levels, where 

satellite-based systems fail. To solve this, BLE tags are placed on mobile resources and continually broadcast 

signals. Gateways strategically placed across the park gather these signals and use edge computing to analyze and 

filter noisy data, compressing it before passing it to the cloud server. This integrated method provides real-time 

monitoring and administration of IL resources in indoor as well as outdoor environments. 

Objective: This layer is intended to extract geographical and temporal insights from signal data produced by 

IoT devices. Its goal is to correctly convert the spatial-temporal properties of physical-world resources with the 

digital domain, hence improving our knowledge of data logistics resources. 

CDK-SVM generates cyberspace location data to assure spatial and temporal consistency across physical and 

virtual worlds. Virtual copies of IL resources having spatial-and-temporal properties are created by the machine 

learning method, drawing influence from the real-world items in issue. The broadband signal strength of the 

gateway was noisy and fluctuated due to the impacts of multipath and attenuation. Among the most effective 

algorithms for de-noising data is the Kalman Filter. The Kalman Filter is used to filter the raw RSSI information 

from many gateways. To train a non-linear model using supervised learning, datasets are necessary. Signal strength 

is affected by the physical environment around it, which includes things such as walls, obstacles, humidity and 

temperature. An associated RSSI value and location labels reflecting local environmental data are among the 

training datasets that are developed for the signal fingerprint database. A CDK-SVM is built to be efficient as it 

responds to environmental changes, ensuring the durability and dependability of estimations of geographical 

information. To calibrate the CDK-SVM's parameters and weights, updated estimations of online spatial 

information will be resent into the model. 

C. Machine learning-assisted knowledge graph (ML-KG) modeling  

A KG is a different network where the edges represent links between items and the vertices represent subjects. 

Mapping IL resources and their characteristics, such as spatial and temporal data, enable the creation of a 

knowledge graph that accurately depicts the geographic distribution and the interactions among IL resources. In 

the graph, the entities of IL resources are mapped with attributes and the ontology-based knowledge of IL resources 

is conveyed. The entities build a relationship when pertinent IL resources are taken out of IL tasks. The IL task's 

logic construction, together with the progressive integration of IL resources, encourages association reasoning and 

completion inside the KG. The directional knowledge graph is then constructed. The KG graphically represents 

the resources' spatial-temporal values. Combine geographical and temporal data from the layer below to create a 

coherent ML-KG. Edges in a KG represent the logical relationship between objects, whereas vertices represent 

actual locations in the real world. The apparent spatial and temporal consistency between the virtual imitation and 

the actual thing is achieved through the use of KG modeling. 

D. Decision Making in IL Resource Allocation through Graph Mechanism 

This layer makes decisions based on graph algorithms and allocates IL resources to tasks depending on IL. 

When determining the weights on the edges produced by the layer below, two limitations were taken into account, 

time and transit capacity. The knowledge graph's weights are determined using the Euclidean distance, resulting in 

a directed graph having weighted edges. The cornerstone of IL task extraction lies in recognizing the perspective 

from the transportation endpoint to the task performer, known as the destination viewpoint. This transforms the 

challenge of allocating resources into a single-source shortest route problem concerning time constraints and 

transport capacity constraints. Refocus the task on completing the nearest available resource-utilizing action while 

prioritizing minimizing travel distance. First, the most efficient path is determined using Dijkstra's shortest route 

method. This process is then reversed to determine the direction of resource distribution. 

IV. MAKING RESOURCE ALLOCATION DECISIONS USING ML-KG ASSISTED BY DIGITAL TWIN 

A. CDK-SVM: To map digital twins spatial-and-temporal 

Because indoor localization resources are located in multi-level interior environments that are inoperable for 

satellite positioning systems, estimating spatial information about them is a difficult task. The spatial information 

of real-time IL resources can be estimated using the CDK-SVM that we present in this research. Remarkable 
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outcomes were demonstrated by indoor positioning systems including, TDOA, TOA and AOA, nevertheless, extra 

gear is required, which could result in significant costs when used on a big scale. RSSI, which is widely used in 

wireless devices, serves as a simple measure for determining the intensity of a signal from a transmitter to a 

receiving device, eliminating the need for extra supporting equipment. In this study, we use RSSI values as the 

primary characteristics for spatial information estimates. 

The performance of Support Vector Machines (SVM) is largely dependent on the kernel function selection, 

which is impacted by the data distribution characteristics of the feature space. Kernel functions are roughly divided 

into two types, local and global. Local kernel functions thrive in learning but can struggle with generalization, 

whereas global kernel functions excel at generalization but have lower learning capabilities. Common examples 

include the Gaussian radial basis kernel function (RBF) for the local type and the polynomial kernel function (Poly) 

for the global type. These kernels are often used in traffic flow prediction applications. Their respective equations 

are as follows:  

𝑚(𝑤, 𝑤𝑖) = [𝛾(𝑤 ∗ 𝑤𝑖) + 1]𝑞 (1) 

𝑚(𝑤, 𝑤) = ex p(−𝛾‖𝑤 − 𝑤𝑖‖2) (2) 

Poly is represented by Eq. (1), and RBF by Eq. (2). The kernel function, γ, determines how data is distributed 

after mapping to a new feature space, whereas q denotes power. 

𝑚(𝑤, 𝑤𝑖) = 𝛽. 𝑒𝑥𝑝(−𝛾‖𝑤 − 𝑤𝑖‖
2) + (1 − 𝛽) ∙ [𝛾(𝑤 ∗ 𝑤𝑖) + 1]𝑞 (3) 

𝛽 ∈ [0,1] represents the weight coefficient of the hybrid kernel function in Eq. (3). 

When 𝑚 =
𝑢𝑖−1−𝑢𝑖−2

𝑢𝑖−1−𝑢𝑖−2
, It reflects the slope of the latest two data points for traffic volume. As the absolute value 

of k declines, the traffic flow curve becomes smoother. To improve the model's global generalizability, we can 

either raise or reduce the relevance of the polynomial kernel function (β). Conversely, as the absolute value of k 

grows, the curve tends to sharpen. Increasing the value of β or the weight of the function known as the Gaussian 

kernel can improve the capacity of the model for local learning. 

B. Decision-making for resource distribution using ML-KG models 

The procedures for allocating IL resources using the ML-KG are displayed in Figure 2. The knowledge graph 

initially represents the entity of IL resources as vertices with different categories, encompassing their basic 

properties. Personnel expertise spans a wide range of positions, including operators experienced in specific 

machinery operations, driver’s adept in vehicle operation and technicians with specialized talents. These workers 

are responsible for moving products utilizing vehicles, which might include WIP, components, materials and tools 

that belong within the product category.  

The site group, which includes buffers and stations, serves as the start and finish point for IL procedures. The 

property layer's characteristics are associated with each item in the knowledge network to explain restrictions, 

execute spatial-temporal calculations and make determinations. Every IL mission includes thematic information 

regarding transporting personnel/products to a certain place. The site entity's task requirement attribute contains 

unstructured IL task data. The module-based connection extraction approach is used to generate directed linkages 

from the source to the target KG entities. The knowledge graph's core edges and vertices are well-defined. Section 

3's spatial-temporal estimate values are subsequently mapped to graph entities. The entity's location and timestamps 

are updated in real time on the graph databases and visualized on the spatial system, as illustrated in Figure 2. 

Finding the most economical resource to carry out a sequence of IL activities limited by capacity and time 

window using geographical data is the aim of the IL resource allocation process. Therefore, given certain 

limitations, we convert the IL logistics resource allocation issue into the single-source shortest pathfinding problem. 

Since all of the weights in the graph algorithm are nonnegative, Dijkstra is chosen. For each vertex in our set R, 

the distance is pre-established and accurate. Algorithm 1 determines the shortest path between the site entity, 

indicated as S and the final command unit. First, create the appropriate data structures by making the previous 

vertex on the optimal path from sources undefined and assigning a starting distance of infinite to all succeeding 

vertices. Q denotes all un-optimized vertices acquired by ML-KG. During each iteration, the method relaxes the 

exterior edges of all vertices, chooses the vertex outside R with the shortest distance from it, as well as inserts it 

into R. This procedure will continue until the shortest path is found. The decision about the location of the nearest 

vertex to the visitor is critical. Once recognized, each of its nearby vertices is removed from Q, and relaxation is 

applied accordingly. To determine if the moment of arrival falls within a specific time range, divide the Euclidean 

distance by the IL resource's velocity to calculate the duration. To effectively record and compute the best path, a 

variety of data structures such as Prev [], Dist [] and others are used. The knowledge graph's primary edges and 

vertices are preset, allowing for more efficient operations. The execution viewpoint with the appropriate cost is the 
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opposite of the optimum approach. Building the initial priority queue for |V| takes time. All of the ML-KG vertices 

can be explored through edges in time with the adjacency list. Since the vertex is deleted from Q once every loop, 

the loop's iterates. The minimal vertex is updated after that is taken out of Q.  

 

Figure 2: Process of dynamically allocating resources using spatial and temporal KG 

 

Algorithm 1: Process of ML-KG: 

Input: Ml-KG (V, E), S 

Output: prev[], dist[] 

I.  Dis[u]← ∞, 𝑝𝑟𝑒𝑣[𝑢] ← nil 

II. 𝐷𝑖𝑠𝑡[𝑆] 
III. Q ← 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 

IV.  while 𝑄 ≠ ∅: 
V. u←The lowest distance in Q is the vertex []  

VI. For all (𝑢, 𝑣)  ∈ 𝐸: 

VII. If 𝑑𝑖𝑠[𝑣] > 𝑑𝑖𝑠𝑡 [𝑢]  + 𝑤(𝑢, 𝑣) AND 

VIII. 𝑎𝑟𝑟𝑇𝑖𝑚𝑒[𝑣]  ∈ 𝑆.timeWindow AND 

IX. 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑣]  ≤  𝑆. capacity requirement 

X. 𝑑𝑖𝑠𝑡 [𝑣]  ← 𝑑𝑖𝑠𝑡 [𝑢] + 𝑤(𝑢, 𝑣) 

XI. prev [𝑣]  ←  𝑢 

XII. update Q 

XIII. Return 𝑝𝑟𝑒𝑣[], 𝑑𝑖𝑠𝑡[] 
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C. Scenario 

A company specializing in manufacturing washing machines is facing challenges in efficiently monitoring and 

allocating resources, leading to decreased productivity. Their operations span residential washing machines, 

intelligent equipment and home appliances. To enhance collaboration and reduce delivery costs, they've established 

an industrial park where various suppliers, including upstream and downstream partners, are invited to operate. 

The park houses multilevel plants for central washing machines, evaporators and condensers, equipped with 

assembly lines and machinery. Outdoor and semi-outdoor areas are designated for parking and injection, ensuring 

proper ventilation. However, the complex spatial-temporal dynamics of indoor, outdoor and semi-indoor 

environments pose challenges for resource management. Personnel, material carts, forklifts and merchandise are 

spread around the park. To overcome these difficulties, the organization needs an immediate digitization and 

intelligent transformation solution. To assess the success of their suggested solution, the study team developed a 

full software and hardware system in the collaboration firm. 

D. ML-KG deployments 

Real-time spatial-temporal data collection and filtering must first be done in an IoT smart environment before 

ML-KG can be used. For big-scale tracking, the research team investigates several technologies. "Large-scale" 

means tracking many things and covering a vast area of floor, which might provide maintenance issues if smart 

tech battery life is limited. Timing, expense and precision are crucial in this case. Offering minimal tag/gateway 

costs, up to three years of operation and meter-level accuracy, BLE stands out as a compromise. 

As indicated in the placement cell, the gateway is fixedly positioned close to the power supply. Forklifts, 

employees and material trolleys are just a few of the mobile IL resources that are connected to different BLE tags. 

BLE tags are carried by 234 employees, 522 vehicles and 38 different kinds of materials. There are 98 gates located 

both indoors and outside. Signal collecting using the typical fingerprinting signal collection strategy (TFSCS) 

requires a lot of time and effort since it splits monitoring regions into uniform location cells. Scalable location cell 

signal collection (SLCSC) is used as a countermeasure. To reduce effort, it dynamically modifies cell size. Cell 

size is reduced for accurate placement in high-accuracy locations, such as interior multi-layer situations. However, 

cell size increases in low-accuracy environments, such as outdoor regions, to minimize signal-gathering efforts. 

E. Performance analysis 

The industrial park uses 98 gateways. Input neurons correspond to gateway counts, resulting in input 

vector  �̂�  =  [𝑟1, 𝑟2, 𝑟3, . . . , 𝑟98] 𝑇  where the RSSI value obtained via the i-th gateway is represented by 𝑟𝑖 . 

Unreachable gates ways in a -110 value for constructing the input vector.  

Signal collection time in an illustration site refers to the timeframe when data is gathered from numerous 

sources or sensors at a single site for analysis or monitoring reasons. Figure 3 depicts the performance statistics for 

ML-KG. Initially, we track the IL resources before assigning them using the graph method. In the data set 

preparation phase, signal collection time is especially decreased in SLCSC compared to traditional fingerprinting 

signal collection strategy (TFOSC), particularly at FBA (s2), IBW (s3) and ECP (s4), owing to reduced accuracy 

demands. 

 

Figure 3: Signal collection time 
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Vehicle utilization rate is the ratio of the time a vehicle is actively employed for transportation to its total 

available time. Figure 4 shows a significant increase in vehicle utilization due to the ML-KG's capacity to locate 

each vehicle's location and integrate the data into the process of making decisions.  

 

Figure 4: Vehicle utilization rate comparison 

Waiting time is the amount of time that a unit or item is inactive or in a queue before that is processed or 

transferred to the following stage of a workflow or manufacturing process. It refers to the time when resources are 

not actively engaged in value-adding tasks, which can result in inefficiencies and delays. Figure 5 clearly shows 

the considerable reduction in wait times at both the logistics and M/WIP buffers before as well as after ML-KG 

implementation. This reduction in waiting times demonstrates a considerable increase in temporal synchrony 

throughout the site's logistical activities. 

 

Figure 5: Typical IL waiting time 

The average traveling distance task order in industrial logistics refers to the normal distance products travel 

from origin to destination in a logistical process, which is frequently quantified in kilometres. Significant reductions 

in average distance travelled by various resources for the IL task were accomplished by developing a Dijkstra-

based graph algorithm, thereby improving the way planning process, Figure 6. 
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Figure 6: Average traveling distance per IL order task (km) 

V. CONCLUSION 

This study focuses on the issues of efficient resource allocation in complex industrial contexts where spatial 

disorder and temporal asynchrony of resources impede sustainable development. Focusing on a real-world 

industrial park, we offer a strategy that begins with mapping spatial-temporal resource values using CDK-SVM 

and IoT sensor data. Then, our ML-KG model extracts information and relationships from IL procedures, 

generating virtual entities suitable for visualization. To represent these items, we construct a directed and weighted 

graph that incorporates edge reasoning and geolocation information. Finally, we offer a Dijkstra-based graph 

method for optimizing resource allocation, taking into account restrictions such as time windows and capacity, to 

reduce overall travel distance. This study enhances both the scientific understanding of digital twins in IL and the 

practical knowledge of resource allocation in the industrial sector. 
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APPENDIX -I 

RSSI received signal strength indicator 

ST Spatial-and-temporal  

AOA Angle of Arrival 

TDOA Time Difference of Arrival 

TOA Time of Arrival 

WIP Work-in-process 

FBA Freeboard Adjustment 

IBW: Ideal Body Weight 

ECP Estimated Contract Price 

LW Load Weight 

GPS global positioning system 

BDS BeiDou Navigation Satellite System 

BLE Bluetooth Low Energy 

DT-VMPS Digital twin-based visual monitoring and prediction system 

RFID Radio Frequency Identification 

VRPDP Virtual Reality Product Design and Presentation 

SDT System Dynamics Theory 
 


