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Abstract: - The purpose of this research is to improve the detection of Distributed Denial of Service (DDoS) attacks in systems that employ 

Software-Defined Internet of Things (SD-IoT). First, feature selection techniques such as PCA is used to improve the Deep Neuro Fuzzy 

Network (DNFN) model's detection accuracy of DDoS assaults. With an overall accuracy of 0.969, the findings show that the DNFN model 

has above average accuracy rates when applied to feature selection technique. To further improve the DDoS detection capabilities, 

optimization approaches like Elephant Herding Optimization (EHO) and the hybrid Elephant-Herding-Water-Cycle-Algorithm (EHWCA) 

are then developed. The EHWCA approach is superior than the current EHO method, as shown by a comparative study that compares the 

two. The DNFN model achieves an accuracy of 0.99 when optimized using EHWCA, whereas it only achieves 0.97 with EHO. The suggested 

system's scalability and efficiency are greatly enhanced by the inclusion of the water cycle in the optimization process. Overall, this research 

contributes to the development of strong cybersecurity solutions for IoT networks by demonstrating the efficacy of sophisticated optimization 

approaches, in particular EHWCA, in improving the detection of DDoS assaults in SD-IoT settings.    

Keywords: Software-defined networking, Distributed Denial-of-Service attack, Elephant Herding Optimization, Elephant 

Herding Plus Water Cycle, Machine learning, Optimization algorithm. 

1. Introduction 

 In today's interconnected digital age, the proliferation of Internet of Things (IoT) devices and the advent of 

Software-Defined Networking (SDN) have brought forth ground-breaking capabilities in data exchange and 

communication processes across various sectors. However, as these technologies usher in a new era of intelligent 

systems, they also unveil significant vulnerabilities, particularly in the domain of network security. Among the 

many cyber threats faced, Distributed Denial of Service (DDoS) attacks have emerged as one of the most pressing 

challenges. Such attacks, which involve inundating network resources to make them inaccessible, pose significant 

risks, not only to the integrity of individual devices but to the holistic functionality of expansive SDN-enabled 

networks and IoT ecosystems. 

Given the centralized nature of SDN and its ability to manage all OpenFlow switches, it offers an innovative 

platform for more flexible and strategic network management. However, the integration of IoT devices, known 

for their heterogeneous nature, with SDN architectures compounds the challenges, especially when discerning 

between legitimate traffic and malevolent DDoS requests. With DDoS attacks constantly evolving and adapting, 

traditional detection mechanisms, which often rely on predefined patterns or static rules, are becoming 

increasingly inadequate. 

As DDoS threats continue to evolve in complexity and scale, the quest for a robust, adaptive, and efficient 

detection mechanism becomes paramount. Through this research, we aspire to introduce a pioneering approach 

in DDoS attack detection, setting new standards in cyber security for our ever-expanding digital landscape. 

This study compares the Elephant Herding Optimisation (EHO) algorithm to a hybrid model that combines EHO 

with the Water Cycle Algorithm (WCA). EHO, modelled after the social dynamics of elephant herds, is presented 

as a method for identifying DDoS assaults in real-time network data. Recognising the limits of individual 

methodologies, this research seeks to investigate the possible advantages of combining EHO and WCA, therefore 

leveraging their respective strengths. The major goal is to examine the hybrid model's performance in terms of 

increased accuracy, complete confusion matrix evaluation, and detection efficiency over a range of time scales. 
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Background 

Elephant-Herding-Optimization 

EHO replicates elephant herd behavior as an optimization method. Elephants collaborate and communicate in 

herds to accomplish shared goals, such as seeking food or water. EHO method utilizes individual collaboration 

and communication to solve optimization challenges. 

( 1) ( ) ( )xi t xi t xi t+ = +      (1) 

( ) :xi t Position of the i-th elephant at iteration t. 

( ) :xi t Change in position of the i-th elephant at iteration t. 

( ) . . ( )xi t Ri Di t =              (2) 

 : Step size controlling the movement magnitude. 

:Ri Random number introducing stochasticity. 

( ) :Di t Direction vector influenced by the positions of other elephants. 

Elephant-Herding-Water-Cycle-Algorithm 

This study pioneers a unique way for identifying DDoS assaults using the Elephant Herding-Water-Cycle-

Algorithm (EWCA).  

Recognising the inherent limits of any single approach EHO, this research extends its investigation by combining 

EHO with the Water Cycle Algorithm (WCA), resulting in the invention of the Elephant-Herding-Water-Cycle-

Algorithm (EH-WCA). The EH-WCA hybrid model cleverly integrates the optimisation skills of both algorithms, 

attempting to capitalise on their unique strengths. 

The Elephant Herding Optimisation (EHO) algorithm is described by the following equations: 

Movement Equation: ( 1) ( ) ( 1)Xij t Xij t Vij t+ = + +                                                                   (3) 

Velocity-Equation:                          

1 2( 1) ( ) () ( ( ) ( )) () ( ( ) ( ))ij ij ij ij j ijV t w V t c rand p t X t c rand G t X t+ =  +   − +   −     (4) 

Where,  

( )X ij t represents the location of the j-th individual in the i-th herd at time t. 

( )Vij t represents the velocity of the j-th individual in the i-th herd at time t. 

W represents the inertia weight. 

Acceleration coefficients are denoted by c(1) and c(2). 

The personal best position of the j-th individual in the i-th herd at time t is denoted as P (ij). 

G j (t) represents the optimal location of the j-th member in the population at time t. 

The Water Cycle Algorithm (WCA) equations may be written as follows: 

Flow Calculation Equation: ( 1) ( ) ( )Fij t Fij t Fij t+ = +                                           (5) 

Rainfall Equation:  ( ) ( ) ( )Fij t Rij t Eij t = −                                                               (6) 
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Evaporation Equation: 
max

max min

( )
( ) ( ) (1 )

ij

ij ij

p t p
E t E t

p p


−
=  − 

−
                                (7) 

Where, 

( )F ij t represents the water level of the j-th reservoir in the i-th water cycle at time t. 

( )Rij t represents rainfall at the j-th reservoir in the i-th water cycle at time t. 

( )Eij t represents evaporation at the j-th reservoir in the i-th water cycle at time t. 

( )F ij reflects the change in water level. 

  represents the evaporation coefficient. 

maxP  and minP  represent the maximum and lowest water levels, respectively. 

The rand() function creates a random integer between 0 and 1. 

 

 

Elephant-Herding-Water-Cycle-Algorithm (EH-WCA) 

 

Initialization 

• Set parameters: 

– Number of individuals in each herd: H  

– Number of herds: N  

– Maximum number of iterations: MaxIter 

– Inertia weight: w  

– Acceleration coefficients: 1, 2C C  

– Evaporation coefficient:   

– Maximum and minimum water levels: max, minp p  

• Initialize populations: 

– Randomly initialize the locations of individuals in each herd: (0)ijX  

– Randomly initialize the velocities of individuals in each herd: (0)ijV  

– Randomly initialize the water levels of reservoirs: (0)ijF  

– Initialize personal best positions: (0)ijP for each ind (0)ijF invidual 

– Initialize global best position: (0)jG  
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Main Loop 

for 1t = to MaxIter do: Evaluate fitness: 

Evaluate the fitness of each individual in each herd 

Update personal best: 

Update personal best positions _{ }( )p ij t for each individual 

Update global best: 

Update the global best position _ ( )G j t based on the best fitness 

Update velocities and locations: for 1i = to N  do: 

for 1j = to H do: 

Calculate velocity _{ }( 1)V ij t + using Equation (4) Calculate location _{ }( 1)X ij t +

using Equation (3) Apply boundary constraints if necessary 

Update water   levels: for 1i = to N do: 

for 1j = to H  do: 

Calculate rainfall _{ }( )F ij t using Equation (6) Calculate evaporation _{ }( )E ij t using 

Equation (7) Update water level _{ }( 1)F ij t +  using Equation (5) Ensure water 

level constraints are satisfied 

Output Solution: 

Output the global best position G_j(MaxIter) 

 

Figure 1 EHWCA Algorithm 

Specifically, the EHO movement and velocity equations (Equations [3] and [4]) are combined with WCA's flow 

calculation, rainfall, and evaporation equations (Equations [5], [7], and [7]). The major goal is to evaluate the 

potential of this hybrid model in terms of increased accuracy, complete confusion matrix assessment, and 

detection efficiency across various temporal scales. 

Problem Statement  

The growing frequency of DDoS assaults presents a serious danger to the security of SD-IoT networks. However, 

present detection technologies are often ineffective and fail to offer timely countermeasures to counteract these 

threats. Due to a lack of comprehensive DDoS detection systems, SD-IoT networks are prone to interruption and 

compromise, affecting their dependability and performance. As a result, there is an urgent need for a sophisticated 

DDoS detection technique customized particularly to SD-IoT systems, capable of properly detecting and 

mitigating DDoS assaults in order to assure network security and operational continuity. 

2. Literature Survey 

The evolving landscape of cyber security has led researchers to explore innovative approaches for mitigating the 

challenges posed by Distributed Denial of Service (DDoS) attacks. In recent years, various techniques and 

algorithms have been proposed to enhance DDoS attack detection and mitigation. This literature survey presents 

a collection of notable research papers that delve into DDoS attack detection and mitigation strategies, setting the 
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context for the proposed study comparing the Elephant Herding Optimization (EHO) technique with the hybrid 

approach of Elephant Herding plus Water Cycle Method. 

SDN-based secure IoT framework uses session IP counter & IP Payload analysis to detect vulnerabilities and 

malicious traffic. Results and comparisons showed that the framework detected early DDoS attacks with 98% 

accuracy [1]. Collective source-side DDoS detection using LSTM. Accidental traffic-driven source-side networks 

benefit from LSTM-based adaptive thresholds. Combining network traffic data for source-side attack detection 

reduces false positives by 15% while maintaining high detection rates [2]. This study presents a cloud computing 

DDoS detection and mitigation approach. The model offers rapid detection and low storage. With a few false 

alarms, the system has 97% detection accuracy [3]. Applied the DoSD-MFOML approach to detect DoS assaults 

and apply the MFO algorithm for feature selection to enhance results. Ultra gradient boosting (XGBoost) 

classifier detects DoS attacks. Last, the DoSD-MFOML approach uses the grey wolf optimizer (GWO) algorithm 

for parameter optimization [4]. This study creates a deep belief network-inspired DDoS detection fuzzy with 

taylorelephant herd optimization (FT-EHO) classifier. The proposed FT-EHO surpassed previous approaches in 

accuracy (93.811%), rate of detection (97.200%), precision (94.981%), & recall(93.833%) [5]. This paper 

develops a FACVO-based DNFN to identify cloud DDoS. FACVO is created by combining ACVO with FC. The 

suggested technique obtained testing accuracy, TPR, TNR, and precision of 0.9304, 0.9088, 0.9293, and 0.8745 

for the NSL-KDD dataset without attack and 0.9200, 0.8991, 0.9015, and 0.8648 for the BoT-IoT dataset[6]. This 

research presents a hybrid metaheuristic methodology to boost IoT security. The approach uses elephant herding 

optimization (EHO) and grey wolf optimization (GWO). The suggested approach improves attack detection and 

mitigation by 8.3%, throughput by 5.9%, packet delivery ratio by 6.5%, and network consistency by 10.3% during 

attacks [7]. Information theory tri-entropy is used to identify domain DDoS in this paper. Even across domains, 

a blockchain smart contract detects and prevents assaults quickly. The technique enhanced detection and blocking 

under diverse attack intensities and comparable blows [8]. The Elephant Herding Optimized A finite Dirichlet 

Mixture Model (EHO-FDMM) was proposed. Both NSL-KDD and UNSW-NB15 datasets evaluate the 

technique.Empirical evidence suggests statistical analysis finds the optimum network data model [9].This study 

proposes effective deep learning Windows malware detection. FDA finds crucial features. Adequate LSTM-GRU 

malware detection follows. EHO works on Attention-based LSTM-GRU. Analysis proves effective[10]. This 

study introduces deep hybrid attack detection. CNN-DBN hybrid classifiers are recommended. CNN and DBN 

are weight-optimized for detection accuracy by SAEHO [11]. This work developed VANET security and sybil 

attack detection. The gradient-based GBO optimizes elephants.According to testing, the proposed approach 

increases security by 96% and reduces encryption time by 19(s) for 100(kb) data [12]. To practice streaming data 

from IoT networks, forensic skills analysts are crucial. The available solutions use cybercrime detection methods 

based on regular pattern deviation. A generalized model using Map Reduce is developed to identify cybercrime. 

This model aims to provide an autonomous model that detects misbehaviour in IoT devices, exposing 

vulnerabilities to assaults[13]. Malicious actors often target IoT devices due to their large number of active 

devices, making them perfect targets for resource exploitation. Distributed Denial of Service (DDoS) attacks 

sometimes use IoT devices as bots to send bogus requests to services, causing disruptions. A reliable detection 

system is necessary to identify and confirm network threats. Extensive results show the importance of the PHHO-

ODLC approach for detecting DDoS attacks in IoT platforms [14]. Recent years have seen the rise of DDoS as a 

very disruptive technique for attackers. DDoS attack detection using traditional machine learning methods is 

sometimes unsuccessful and unable to recognize real traffic features. The approach seeks to identify all DDoS 

attacks and their subcategories. We found that our model beat other machine learning and deep learning models 

in terms of true positive rate, accuracy, false alarm rate, average accuracy, and detection rate [15]. Recent years 

have seen the rise of DDoS as a very disruptive technique for attackers. This study presents a new deep learning-

based intrusion detection solution for IoT deployment at the Cloud or Fog level. We conclude with simulation 

and evolution findings to demonstrate the platform's efficiency, considering resource-constrained device 

restrictions [16]. 

 

Research Gaps 

The review of existing literature highlights a number of research gaps, such as issues with DDoS attack detection 

in IIoT using tri-entropy and blockchain, limitations in source-side DDoS attack detection, and scalability and 
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adaptability issues in intrusion detection techniques across a variety of dynamic attack scenarios. Furthermore, it 

is necessary to improve the capabilities of intrusion detection systems (IDS), specifically with regard to VANET 

security and Sybil attack detection. In order to bridge these gaps, we suggest contrasting EH optimization 

techniques with the Elephant Herding Water Cycle Algorithm (EHWCA) model. In order to provide guidance for 

future cybersecurity research and development, this analysis attempts to assess the efficacy and scalability of the 

EHWCA model in improving intrusion detection capabilities across a variety of network settings, including cloud, 

IoT, IIoT, and VANETs. 

3. Outline of Software defined internet of Things (SD-IOT) Architecture 

The Software-Defined Internet of Things (SD-IoT) architecture is a visionary framework designed to enhance the 

security, scalability, and flexibility of IoT systems. This succinct outline highlights the key components of the 

SD-IoT architecture, aimed at contributing to the discourse in reputable journals. 

3.1 Device Layer: 

• IoT Device Abstraction: Abstracting heterogeneous devices for unified management. 

• Device Virtualization: Enabling dynamic allocation and reallocation of resources. 

• Identity Management: Assigning unique digital identities to devices for secure interactions. 

3.2 Network Layer: 

• SDN Integration: Incorporating SDN principles for centralized network control. 

• Network Slicing: Partitioning networks to accommodate diverse IoT use cases. 

• Quality of Service (QoS): Prioritizing traffic and ensuring efficient resource utilization. 

3.3 Control Layer: 

• Software-Defined Control Plane: Implementing SDN-based control for IoT applications. 

• Orchestration and Automation: Dynamically managing IoT resources and services. 

• Policy Enforcement: Enforcing security and operational policies across the IoT ecosystem. 

 

Figure 2 Outline of SD-IoT 
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3.4 Key Advantages of SD-IoT: 

3.4.1 Scalability and Flexibility: 

• Elastic Resource Allocation: Efficiently scaling resources based on demand. 

• Dynamic Network Reconfiguration: Adapting to changing IoT requirements in real-time. 

• Reduced Complexity: Simplifying IoT network management through centralized control. 

3.4.2 Security and Privacy: 

• Segmentation and Isolation: Isolating IoT traffic to prevent lateral attacks. 

• Access Control and Authentication: Enforcing strict access policies for device communication. 

• Anomaly Detection: Implementing behavior-based intrusion detection systems. 

3.4.3 Interoperability: 

• Protocol Translation: Facilitating communication between heterogeneous devices. 

• Vendor-Agnostic Integration: Enabling seamless integration of diverse IoT technologies. 

• Cross-Domain Collaboration: Bridging gaps between different IoT domains. 

4. METHODOLOGY 

This section describes the methods for comparing the Elephant-Herding-Water-Cycle-Algorithm (EHWCA) to 

Elephant Herding Optimization (EHO) in identifying DDoS assaults in SD-IoT scenarios. It discusses data 

collection, pre-processing, feature extraction, and model creation using Deep Neuro-Fuzzy Network (DNFN) 

models. Both EHO & EHWCA are used for optimization, then followed by model training and assessment, with 

an emphasis on ethical and privacy implications. This comparison methodology seeks to discover the most 

effective way for improving cybersecurity in SD-IoT networks. 

4.1 Data Collection 

This study will gather a wide range of network traffic statistics from Software-Defined Internet of Things (SD-

IoT) scenarios. This dataset will include examples of both regular network behaviour and numerous DDoS assault 

situations. The dataset will be compiled from publically accessible sources, simulated settings, and real-world 

network traffic captures to ensure a complete representation of various network states and attack types in SD-IoT 

contexts. 

4.2 Data Pre-processing 

After data collection the next step is a pre-processing step which is very crucial step in the processing the data 

following are the very first steps that are used in the pre-processing. 

4.2.1 Data cleaning: 

Duplicate and redundant entries are deleted to avoid bias and maintain data integrity. Missing values are handled 

via imputation or deletion, depending on their type and extent. Irrelevant or noisy data that might disturb the 

analytical process is filtered away. 

4.2.2 Normalization/ Standardization 

Data normalization or standardization is a technique that involves adjusting the size of our data to ensure that all 

attributes are at the same level. This is particularly important for algorithms that depend on calculating distances 

between data points. By placing all characteristics on a same scale, we guarantee that no one feature dominates 

the study just because of its bigger size. This allows algorithms to better balance and understand each feature's 

contribution to the overall analysis, resulting in more accurate and dependable findings. 
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4.3 Feature Extraction and Selection 

4.3.1 Feature Extraction: 

This procedure entails detecting and retrieving useful information from the preprocessed data. Several strategies 

are used to capture key properties or patterns in the dataset. These strategies might include statistical 

methodologies, domain expertise, or algorithmic approaches adapted to the issue area. The objective is to convert 

raw data into a collection of relevant characteristics that may effectively describe the data's underlying structure 

and help identify DDoS assaults in SD-IoT scenarios. 

4.3.2 Feature Selection: 

Feature selection becomes essential for improving model efficiency and performance after feature extraction. By 

using Principal Component Analysis (PCA), our goal is to minimize dimensionality and processing costs by 

choosing the most relevant subset of features to maximize detection accuracy. This simplified method keeps just 

the most discriminative data for analysis and model training, hence increasing the effectiveness of SD-IoT DDoS 

detection systems. 

Principal Component Analysis (PCA): 

PCA is a multivariate approach used to minimize noise and complexity in data sets while maintaining the greatest 

variance. The genesis of PCA dates back over 100 years to Pearson, with a subsequent formulation by Hotelling. 

PCA uses eigenvectors to create orthogonal variables with decreasing variances, resulting in Principal 

Components (PC). The highest component captures most variance. 

In power measurements, PCA data sets have dimensionality equal to sample count and observation count equal 

to trace count 

4.4 Model Building  

During the model building phase, we create a complex Deep Neuro-Fuzzy Network (DNFN) to identify DDoS 

attacks in SD-IoT scenarios. A Neuro-Fuzzy system utilizes fuzzy logic for the interpretation of input values and 

neural networks for the purpose of learning. This combination allows the system to effectively capture intricate 

patterns and correlations within the data. Within the framework of a complex architecture, numerous layers of 

fuzzy rules may be used to augment the model's capacity for conveying information. 

4.4.2 Deep Neuro-Fuzzy Network (DNFN): 

A Neuro-Fuzzy system uses fuzzy logic to interpret the input values and utilizes neural networks for learning. In 

the context of a deep architecture, we might have multiple fuzzy-rule layers. 

DNFN Representation as, 

                                            ( ; , , , )Y f X W B M R=  (8) 

Where: 

Y is the output. 

X is the input data. 

W represents the weights of the neural connections. 

B is the bias term. 

M stands for the membership functions of the fuzzy system. 

R are the fuzzy rules. 

DNFN is trained with EHO and EWC, results are compared. 
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Figure 3 Flow Chart 

4.5 Training and Testing 

After model development, the Deep Neuro-Fuzzy Network (DNFN) model is trained and tested. Elephant Herding 

Optimization (EHO) and Elephant-Herding-Water-Cycle-Algorithm (EH-WCA) are used to alter DNFN model 

parameters such weights, biases, membership functions, and fuzzy rules during training. This optimization 

technique reduces the difference between expected and real outputs, improving SD-IoT DDoS attack detection. 

Once trained, the model is tested using a distinct dataset for accuracy, precision, recall, F1-score, and confusion 

matrices. This study trains and tests the DNFN model to create a reliable and effective DDoS detection system 

for SD-IoT settings to protect against cyberattacks. And We discussed about the hybrid method called EHWCA 

in background. 

4.6 Model Evaluation 

DNFN is rigorously tested to identify SD-IoT DDoS assaults after training. A dataset not used during training is 

used to evaluate the model's performance, providing an impartial review. Accuracy, precision, recall, F1-score, 

and confusion matrices quantify the model's prediction accuracy and DDoS attack detection. Additionally, cross-

validation may evaluate the model's resilience and generalizability across datasets and situations. This study tests 

the DNFN model to ensure its dependability and usefulness in securing SD-IoT settings against cyberattacks. 

4.6.1 Performance Metrics:   

Accuracy: Accuracy is defined as a straightforward measurement of how frequently the classifier makes accurate 

predictions. Accuracy may be defined as the ratio of the number of correct predictions to the total number of 

predictions made by the model. 

TP TN
Accuracy

S

+
=  
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Precision: Precision is the proportion of properly categorized cases relative to the total number of examples that 

have been classified. 

Pr
TP

ecision
TP FP

=
+

 

Recall: The proportion of right positive numbers relative to the total number of true and false negatives. 

Re
TP

call
TP FN

=
+

 

F1-Score: The F1 score is calculated by finding the harmonic mean of the recall and accuracy scores. 

2 Pr Re
1

Pr Re

ecision call
F

ecision call

 
=

+
 

4.7 Tools and Software for Analysis 

We extensively leaned on the programming language Python for our investigation, taking use of its vast ecosystem 

of analysis of data, machine learning, & deep learning modules. In addition, Google Colab served as our main 

computing platform. 

4.8 Ethical and Privacy Considerations: 

Ethical and privacy issues must be considered while using DDoS detection technologies. When sensitive or 

personal data is accidentally acquired, network traffic data gathering and analysis may pose privacy concerns. 

Protecting the privacy of persons and organizations whose data is being watched requires anonymization and data 

protection. DDoS detection systems should also follow ethical and legal principles for openness, fairness, and 

responsibility. DDoS detection false positives and negatives may cause unjustified suspicion or damage to 

innocent people, raising ethical concerns. Therefore, detection algorithms must be monitored, reviewed, and 

refined to reduce mistakes and unwanted effects. Stakeholders may build confidence, encourage responsible 

technology usage, and protect DDoS detection victims by addressing ethical and privacy issues. 

5. EVALUATION MEASURES AND COMPARATIVE ANALYSIS 

The results section compares Elephant-Herding-Water-Cycle-Algorithm (EHWCA) with Elephant Herding 

Optimization (EHO) in SD-IoT DDoS attack detection. This section covers model training and assessment 

performance measures including accuracy, precision, recall, F1-score, and confusion matrices. The data are 

provided and examined to assess how well each optimization strategy improves SD-IoT cybersecurity. The report 

also highlights noteworthy findings or patterns to compare EHWCA with EHO's DDoS mitigation effectiveness. 

Table 1 Hyper parameters of DNFN model 

Hyper 

parameter 

EHO-

Optimized 

Value 

EHWCA-Optimized 

Value 

Number of 

Layers 
5 6 

Number of 

Neurons 

Layer 1: 100 

<br> Layer 2: 

150 <br> Layer 

3: 100 <br> 

Layer 4: 50 

<br> Layer 5: 

10 

Layer 1: 120 <br> 

Layer 2: 180 <br> 

Layer 3: 120 <br> 

Layer 4: 70 <br> 

Layer 5: 20 <br> 

Layer 6: 10 

Learning Rate 0.001 0.0005 
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Activation 

Function 
ReLU Tanh 

Fuzzy 

Membership 

Functions 

Triangular MF 

with 

parameters 

a=0, b=1, c=2 

Gaussian MF with 

parameters mean=0, 

std=1 

Number of 

Rules 
50 60 

Regularization 
Dropout Rate: 

0.2 

L2 Regularization: 

0.001 

Batch Size 64 128 

Optimizer Adam RMSProp 

Loss Function 
Mean Squared 

Error 
Mean Absolute Error 

Initialization Glorot Uniform He Normal 

Fuzzy 

Aggregation 

Method 

Centroid 

Defuzzification 
Weighted Average 

Epochs 100 150 

Dropout Rate 0.2 N/A 

Learning Rate 

Schedule 

Exponential 

Decay 
Linear Decay 

The optimization of hyper parameters for the Deep Fuzzy-Neural Network (DFNN) model using Elephant 

Herding Optimization (EHO) and Elephant Herding-Water Cycle Algorithm (EHWCA) led to notable 

improvements in performance metrics. EHWCA outperformed EHO, achieving higher accuracy, recall, precision, 

and F1-score values. Key adjustments included increasing the number of layers and neurons, halving the learning 

rate, and switching to Tanh activation function. Additionally, the adoption of Gaussian membership functions, 

higher rule count, and batch size refinement contributed to better capturing data patterns. These changes, guided 

by EHWCA, resulted in a more robust DFNN model with improved overall performance. 

5.1 Comparative Analyses of DNFN model with EHWCA Vs EH 

 

 
Figure 4 DNFN_EHO confusion matrix 

 

 
Figure 5 DNFN_EHWCA confusion matrix 

 



J. Electrical Systems 20-7s (2024): 727-743 

 

  738  

From the above Confusion matrices show that Elephant Herding Optimization (EHO) and Elephant-Herding-

Water-Cycle-Algorithm (EHWCA) perform differently in SD-IoT DDoS detection. EHO's model had 17080 true 

positives (TP), 420 false positives (FP), 16880 true negatives (TN), & 620 false negatives. With just 10 false 

positives and 17490 TP counts, EHWCA performed better. EHWCA had 17254 true negatives and 246 false 

negatives, compared to EHO. EHWCA's greater TP rate and lower FP and FN rates show it detects DDoS assaults 

better than EHO. 

 

Figure 6 Comparison of DNFN_EHWCA with DNFN_EHO 

Comparing Receiver Operating Characteristic (ROC) curves for the DNFN model optimized using Elephant 

Herding Optimization (EHO) with Elephant-Herding-Water-Cycle-Algorithm (EHWCA) reveals their DDoS 

attack detection performance in SD-IoT environments. The Area Under the Curve (AUC) score of 0.97 for the 

DNFN model with EHO optimization approach indicates its ability to distinguish true and false positives. using 

an AUC value of 0.99, the DNFN model using EHWCA optimization strategy has a better ROC curve. A higher 

AUC value means the DNFN model with EHWCA can properly identify DDoS assaults, giving it a more resilient 

and dependable cybersecurity solution for SD-IoT networks. 

Table 2 Performance metrics of Model DNFN with EH and EHWCA 

Method Accuracy Recall Precision 
F1-

score 

Elephant 

Herding 

Optimization 

0.97 0.97 0.98 0.98 

Elephant 

Herding-

Water Cycle 

0.99 0.99 1 0.99 
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The table shows that various optimization strategies improve the model's DDoS detection in SD-IoT networks. 

The suggested EHWCA optimization method has the maximum accuracy (0.99), recall, precision, and F1-score. 

With 0.97 accuracy, Elephant Herding Optimization (EHO) was less accurate. This difference shows that 

EHWCA detects and mitigates DDoS assaults better. The comparison shows that EHWCA improves SD-IoT 

network DDoS attack detection model accuracy and reliability. 

Table 3  Comparision of  Increment and Decrement of the parameter values  EHWCA Vs EH 

Metrics EHWCA EH 

Accuracy 2.06186 2.0202 

Recall 2.06186 2.0202 

Precision 2.04082 2 

F1-Score 1.02041 1.0101 

 

 
 

When compared to Elephant Herding Optimization (EH), the Elephant Herding-Water Cycle Algorithm 

(EHWCA) produced considerable improvements in model performance. In terms of accuracy, recall, precision, 

and F1-score, among the assessed metrics, EHWCA showed significant increases of around 2.06 for accuracy 

and recall, 2.04 for precision, and 1.02 for F1-score. On the other hand, EH demonstrated commensurate declines, 

Accuracy Recall Precision F1-score

Elephant Herding

Optimization
0.97 0.97 0.98 0.98

Elephant Herding-Water

Cycle
0.99 0.99 1 0.99

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

2
.0

6
1

8
6

2
.0

6
1

8
6

2
.0

4
0

8
2

1
.0

2
0

4
1

2
.0

2
0

2

2
.0

2
0

2

2

1
.0

1
0

1

0

0.5

1

1.5

2

2.5

Accuracy Recall Precision F1-Score

EHWCA EH



J. Electrical Systems 20-7s (2024): 727-743 

 

  740  

averaging around 2.02 for accuracy and recall, 2.0 for precision, and 1.01 for the F1-score. These findings 

highlight how well EHWCA works to increase model robustness and accuracy, which makes it a viable option 

for optimizing complicated algorithms. 

 

 

  

 
 

 

  

 

Figure 7  Model Accuracy and Loss plot 

The accuracy and loss charts show that the DNFN model with EHWCA outperforms EH. The presented curves 

show that DNFN with EHWCA accuracy continuously climbs towards 0.99 while loss decreases. This 

performance trend confirms the excellence of the Enhanced Hybrid Convolutional Approach (EHWCA) over the 

classic EH approach in DDo’s detection. 

Table 4 Execution time Comparision of EH Vs EHWCA 

Method 
Execution Time 

(seconds) 

EH 
Less than 10 

seconds 

EHWCA 
More than 20 

seconds 

 

The Elephant Herding Optimization (EH) technique executes faster than the hybrid Elephant Herding-Water 

Cycle Algorithm (EHWCA), with an average completion time of less than 10 seconds. EHWCA, on the other 
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hand, takes longer—usually more than 20 seconds. The study's findings demonstrate that, even with a longer 

processing time, EHWCA performs better because of its increased accuracy in identifying DDoS assaults in SD-

IoT networks. 

 From the above comparative results we came to know that the EHWCA is superior method than EH in detecting 

the DDo’s attack’s in the SD-IoT networks. 

5.4 Integration with existing framework 

There should be a number of benefits from integrating the DNFN model with the EHWCA optimization approach 

into current network security frameworks and tools. By utilizing the advantages of both systems, the integration 

is expected to improve the DNFN_EHWCA model's detection capabilities, namely in spotting DDoS assaults and 

other harmful actions. Second, companies may anticipate quicker reaction times to security risks because to the 

EHWCA approach's real-time analysis and decision-making capabilities. It is also expected that the integrated 

technique would increase the consistency of threat detection, reduce false positives and negatives, and enhance 

detection accuracy. Additionally, it is important to take into account how to identify and mitigate DDoS assaults 

while preserving network speed. This will guarantee that the integration improves overall network operations and 

cybersecurity posture. 

5.5 User-friendly Interface Development 

Creating an easy-to-use interface for the EHWCA method is critical for network administrators and cybersecurity 

specialists. This interface should provide user-friendly controls, clear representations of DDoS detection metrics, 

and actionable insights. By emphasizing usability and accessibility, the interface enables users to make informed 

decisions and take quick measures to mitigate security concerns. Furthermore, features such as configurable 

dashboards and real-time alerts improve the user experience and simplify network security administration. A user-

friendly interface increases the usability of the EHWCA approach, hence improving network security in SD-IoT 

contexts. 

6. Conclusion 

In the context of detecting SD-IoT DDoS attacks, a comparison between Elephant Herding-Water Cycle 

Algorithm (EHWCA) & Elephant Herding Optimization (EHO) offers intriguing insights into their relative 

effectiveness. When compared to EHO, EHWCA performs much better on a number of criteria, including as 

accuracy, recall, precision, and F1-score. Notable hyper parameter changes, such adding more layers and neurons, 

cutting the learning rate in half, and using Gaussian membership functions, all help to improve EHWCA's 

performance. Confusion matrix study reveals that EHWCA is more effective at identifying DDoS attacks, as seen 

by its higher true positive rates and lower false positive and false negative rates. Furthermore, comparing the 

Receiver Operating Characteristic (ROC) curves shows that EHWCA outperforms EHO in terms of true and false 

positive detection, as shown by the greater Area Under the Curve (AUC) score. These results highlight how well-

suited and trustworthy EHWCA is as an optimization technique for SD-IoT cybersecurity, providing enhanced 

DDoS attack detection and mitigation capabilities. Additionally, EHWCA outperforms EHO in precisely 

detecting and thwarting DDoS assaults in SD-IoT networks, as seen by the accuracy values of 0.99 and 0.97 for 

EHWCA and EHO, respectively. 

Dynamic Threat Landscape Adaptation: 

Our DDoS detection technology adapts to changing cyber threats to defend network settings. Our system learns 

from new attack patterns and adjusts its detection methods using powerful algorithms and machine learning. To 

remain ahead of growing cyber threats and protect our system against the newest DDoS attack types, we commit 

to continuous upgrades and advancements. We protect network operations from evolving threat environments by 

proactive monitoring and adaptation. 

Limitations 

Our suggested DDoS detection method has significant drawbacks. First, static limits for anomaly detection may 

hamper adaptation to dynamic network environments and developing attack techniques, resulting to false 

positives or missed detections, particularly during quickly shifting assault patterns. Second, algorithms may 

behave differently across IoT device kinds and network infrastructures, causing detection accuracy discrepancies. 

Device heterogeneity, communication protocols, and network architecture cause variants. These restrictions must 

be overcome to improve SD-IoT DDoS detection system flexibility and efficacy. 

Future Scope 



J. Electrical Systems 20-7s (2024): 727-743 

 

  742  

Future advances in our DDoS detection system for SD-IoT contexts include incorporating machine learning for 

dynamic threshold adaption, improving scalability and resource optimisation, and fine-tuning feature extraction 

to increase accuracy against new attack variations. These enhancements are expected to increase the system's 

resilience and efficacy in detecting and mitigating DDoS assaults. 

References 

[1] J. Bhayo, R. Jafaq, A. Ahmed, S. Hameed, and S. A. Shah, “A Time-Efficient Approach Toward DDoS 

Attack Detection in IoT Network Using SDN,” IEEE Internet Things J., vol. 9, no. 5, pp. 3612–3630, 2022, 

doi: 10.1109/JIOT.2021.3098029. 

[2] S. Yeom, C. Choi, and K. Kim, “LSTM-Based Collaborative Source-Side DDoS Attack Detection,” IEEE 

Access, vol. 10, pp. 44033–44045, 2022, doi: 10.1109/ACCESS.2022.3169616. 

[3] M. Zareapoor, P. Shamsolmoali, and M. A. Alam, “Advance DDOS detection and mitigation technique for 

securing cloud,” Int. J. Comput. Sci. Eng., vol. 16, no. 3, pp. 303–310, Jan. 2018, doi: 

10.1504/IJCSE.2018.091765. 

[4] A. Thillaivanan, S. R. Wategaonkar, S. Duraisamy, R. Mishra, S. Nagaraj, and K. Singh, “Automated Denial 

of Service Detection Using Moth Flame Optimization With Machine Learning in Cloud Environment,” 2023 

2nd Int. Conf. Smart Technol. Syst. Next Gener. Comput. ICSTSN 2023, no. April, pp. 1–6, 2023, doi: 

10.1109/ICSTSN57873.2023.10151478. 

[5] S. Velliangiri and H. M. Pandey, “Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network 

for DDoS attack detection and comparison with state-of-the-arts algorithms,” Futur. Gener. Comput. Syst., 

vol. 110, no. Cc, pp. 80–90, 2020, doi: 10.1016/j.future.2020.03.049. 

[6] E. S. G.S.R., R. Ganeshan, I. D. J. Jingle, and J. P. Ananth, “FACVO-DNFN: Deep learning-based feature 

fusion and Distributed Denial of Service attack detection in cloud computing,” Knowledge-Based Syst., vol. 

261, p. 110132, 2023, doi: https://doi.org/10.1016/j.knosys.2022.110132. 

[7] K. Ashok and S. Gopikrishnan, “Improving Security Performance of Healthcare Data in the Internet of 

Medical Things Using a Hybrid Metaheuristic Model,” Int. J. Appl. Math. Comput. Sci., vol. 33, no. 4, pp. 

623–636, 2023, doi: 10.34768/amcs-2023-0044. 

[8] J. Su and M. Jiang, “A Hybrid Entropy and Blockchain Approach for Network Security Defense in SDN-

Based IIoT,” Chinese J. Electron., vol. 32, no. 3, pp. 531–541, 2023, doi: 10.23919/cje.2022.00.103. 

[9] V. S. Kumar, “A Big Data Analytical Framework for Intrusion Detection Based On Novel Elephant Herding 

Optimized Finite Dirichlet Mixture Models,” Int. J. Data Informatics Intell. Comput., vol. 2, no. 2, pp. 11–

20, 2023, doi: 10.59461/ijdiic.v2i2.58. 

[10] P. Awwal and S. Naval, “Optimized Attention-based Long-short-term memory and Gated Recurrent Unit 

for Malware Detection in Windows,” in 2022 International Conference on Disruptive Technologies for 

Multi-Disciplinary Research and Applications (CENTCON), 2022, pp. 217–222. doi: 

10.1109/CENTCON56610.2022.10051287. 

[11] A. Sagu, N. S. Gill, and P. Gulia, “Hybrid Deep Neural Network Model for Detection of Security Attacks 

in IoT Enabled Environment,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 1, pp. 120–127, 2022, doi: 

10.14569/IJACSA.2022.0130115. 

[12] K. Nova, U. A, S. S. Jacob, G. Banu, M. S. P. Balaji, and S. S, “Floyd–Warshalls algorithm and modified 

advanced encryption standard for secured communication in VANET,” Meas. Sensors, vol. 27, no. March, 

p. 100796, 2023, doi: 10.1016/j.measen.2023.100796. 

[13] S. Thapaliya and P. K. Sharma, “Optimized Deep Neuro Fuzzy Network for Cyber Forensic Investigation 

in Big Data-Based IoT Infrastructures,” Int. J. Inf. Secur. Priv., vol. 17, no. 1, pp. 1–22, 2023, doi: 

10.4018/IJISP.315819. 



J. Electrical Systems 20-7s (2024): 727-743 

 

  743  

[14] M. Ragab, S. M. Alshammari, L. A. Maghrabi, D. Alsalman, T. Althaqafi, and A. A. M. AL-Ghamdi, 

“Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure 

Internet of Things Environment,” Mathematics, vol. 11, no. 21, 2023, doi: 10.3390/math11214448. 

[15] A. Ahmim, F. Maazouzi, M. Ahmim, S. Namane, and I. Ben Dhaou, “Distributed Denial of Service Attack 

Detection for the Internet of Things Using Hybrid Deep Learning Model,” IEEE Access, vol. 11, no. August, 

pp. 119862–119875, 2023, doi: 10.1109/ACCESS.2023.3327620. 

[16]  by Yahya Sulaiman Al-hadhrami and F. Khadeer Hussain, “Intelligent Machine Learning Architecture for 

Detecting DDoS attacks in IoT networks,” 2020. 

 

 

 

 


