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Abstract 

We introduce an algorithm based on local search for “Uniform Capacitated Facility Location Problem with Penalties (UCFLPP)” and analyze the same. 
The algorithm is same as given by Korupolu et al. for the “Uniform Capacitated Facility Location Problem (UCFLP)”. Aggarwal et al. in their work proved 

that the algorithm given by Korupolu et al. is a 3-factor approximation algorithm for UCFLP. We extend idea of Aggarwal et al. to show that the same 

algorithm works for the problem with penalty incorporated. It has the same approximation guarantee for UCFLPP, as given by them. This improves 
upon the current best of 5.732 factor for the problem, which is an LP based algorithm by Lv and Wu. 
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1. Introduction 

Many attempts have been made to study facility location problem in the  various fields of Computer Science and 

Operations Research. Its application lies in logistics and supply chain management. In classical facility location problem 

(FLP), our input includes  n facilities  F = {1, . . , n};  m clients C = {1, . . , m} and a metric cij  which is the cost associated 

with  assigning client j’s  unit demand to facility i. 

A client j belonging to set C has a demand dj to be served. Our goal is to identify a subset S of facilities F that serve all 

clients while optimizing both the overall client service cost and the total facility cost of all the facilities that make up S. 

This problem has been explored to almost close the gap between the hardness result [1] and the best approximation factor 

achieved so far [2]. 

There is another variant of FLP in which we may choose to leave some of the clients unserved. For each client that remains 

unserved, a penalty cost pj  per unit of the demand unserved for client j is added to the solution cost. The problem is named 

as “uncapacitated facility location problem with penalties (FLPP)”. Charikar et al. [3] gave a 3-factor approximation 

algorithm for FLPP. It was improved to 2-factor in [4]. Approximation factor achieved so far is 1.5148 for the case of 

linear penalties by Li et al. [5]. Further we assume dj to be 1. Arbitrary demands can be easily handled, details of which 

can be found in [6]. 

A local search algorithm for the capacitated variant of FLPP is proposed in our work. In this variant, a facility i ∈ F has 

a capacity ci, a limited capacity, resulting in a constraint on the clients that can be served by a facility. This problem is 

named as “capacitated facility location problem with penalties (CFLPP)”. In many natural settings, when similar types of 

facilities are required to be set up, they also have similar/same capacities. For example, consider the case of a soft drink 

company that wants to install bottle dispensers in different locations of a city. All the dispensers are of same type, size, 

and capacity. This variant of CFLPP is called Uniform capacitated FLPP (UCFLPP), and ci = c for every facility. This 

problem has not been explored much. Lv and Wu [7] have proposed an approximation algorithm with a 5.732-factor. 

Another approximation algorithm based on local search technique with a 5.83-factor has been proposed by Xu et al. in 

[8] for “universal facility location problem with penalties” which is a general form of CFLPP. 

A solution for UCFLPP is proposed in this work which is same as given by Korupolu et al. in [9] for UCFLP. We show 

that the proposed local search algorithm is a 3-approximation for UCFLPP. We build on the analysis of Aggarwal et al. 

in [10] to prove the result. To maintain continuity and completeness of the paper we have rephrased some key arguments. 

The local search algorithm for UCFLPP is discussed in section 2. Section 3 describes the  algorithm. It is shown  that the 

algorithm is a 3-factor approximation algorithm. 

 

2. Local Search Algorithm 

In “uniform capacitated facility location problem with penalties (UCFLPP)”, the input includes F, which is a “set of 

facilities”. A uniform capacity “c” is defined for facility i belonging to F. The input also includes a set of clients denoted 

by C. Metric cij, a cost incurred to serve each client j by a facility i. A penalty cost pj is associated with client j if it remains 

unserved in the solution.  Similar to the approach put forth by Korupolu et al. [9], a local search algorithm has been 

presented for the problem. Their algorithm does not incorporate penalty cost. The algorithm is described ahead: 

To start with, a solution having a subset of facilities S of set F are opened. A min-cost flow problem along with penalties 

is used to assign the clients belonging to C to the facilities belonging to S.  
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It is done by considering a dummy facility N having capacity |C|, and an edge from each client j to N having cost pj. Since 

there are only incoming edges coming into N, N does not affect the distances between the facilities and clients, defined 

by the distance metric. Now solve a min-cost flow problem. We abuse the notation and call S a solution. The cost of this 

solution S, (P (S)) is given by sum total of its facility cost (Pf (S)), its service cost (Ps(S)) and its penalty cost (Pp(S)) and 

is denoted by P (S) = Pf (S) + Ps(S) + Pp(S). If possible, to improve the solution, the following operations are performed: 

 

• add(f )  : S ← S ∪ {f }  ; f not belongs to S 

• delete(f ) : S ← S − {f }  ; f  belongs to S 

• swap(f, t) : S ← S ∪ {t} − {f } ; t not belongs to S,  f  belongs to S 

 

Repeatedly we perform the operations on the current solution till the cost of the solution S is decreasing. We stop when 

none of the operations are able to reduce the cost. The solution thus obtained is  locally optimal. 

 

3. Bounding cost of the solution 

Consider an optimal solution O and a locally optimal solution S. In S, assume a facility  ρ(j) assigned to a client j which 

belongs to  C. And in solution O assume j  is assigned facility ρ′(j). Let Sj be the servicing cost of client j in S. Let Oj be 

the servicing cost of client j in O. Consider two hypothetical facilities N and N*. For the purpose of analysis, we will 

assume N to be a part of S and N* to be a part of O. A bipartite graph G is constructed on F ∪ {N, N*} ∪ C in a similar 

manner as done by Chudak and Williamson in [11]. An edge is drawn from every client j ∈ C to facility ρ′(j) or N* (if  j  

is paying penalty in O). Also, an edge is drawn to every client j ∈ C from facility ρ(j) or N (if j is paying penalty in S). 

Due to this, there is an incoming edge for every client and an outgoing edge in G. Next, perform a path decomposition on 

G to break it up into maximal paths and cycles. Assume  P is the maximal paths set. Assume Y is the maximal cycles set. 

For a path p belonging to P beginning at facility s ∈ S and ending at facility t ∈ O, p = s, j1, s2, j2, ...sk−1, jk , t. Recall that 

N ∈ S and N* ∈ O. Note that s2, ..., sk−1 ∈ S ∩ O. The following are defined with respect to p 

 

• front(p)   =  j, such that ρ(j) equal to s   Note that j = j1 

• end(p)     =  j′, such that ρ′(j′)  equal to  t               Note that j′ = jk 

• move(p)  = ∑ (𝑂𝑗 − 𝑆𝑗  )𝐽∈𝐶∩𝑝
 

• length(p) = ∑ (𝑂𝑗 +  𝑆𝑗  )𝐽∈𝐶∩𝑝
 

 

move(p) represents the cost of reassignment of clients on a path p if one client is to be shifted from facility s to facility t. 

So, ji is reassigned to si+1 for i = 1, 2, ...k−1 and jk is reassigned to t. Set of paths P is further partitioned into three sets 

 

• swap paths (Ps) : s − t is swap path if s ∈ S and t ∈ O − S 

• transfer paths (Pt)  : s − t is transfer path if s, t ∈ S ∩ O 

• penalty paths (Pp) : s − t is penalty path if either s = N or t = N* or both.  

       Note that a penalty path is a swap path as well. 

 

move(p) is defined a little differently if p is a penalty path. Let j be front(p) and j′ be end(p). If 

• p begins at N and ends at t ≠ N* ∈ O − S: On path p after N let there be a facility s. Let p′ be  the path that begins at  s 

and ends at t. Then move(p) = −pj + Oj + move(p′). 

• p begins at s≠ N ∈ S and ends at N*: Assuming t be the facility that is just before N* on the path. Let p′ be the path that 

begins at  s and ends at t . Then move(p) = move(p′) − Sj′ + pj′. 

• p begins at N and ends at N*: Assuming s  be the facility that is  after N on p path. Assuming t be the facility that is 

just before N* on the path. Let p′ be the path that begins at  s and ends at t. Then move(p) = −pj + Oj + move(p′) − Sj′ + pj′. 

 

To bound solution S cost, we separately prove the bound on all the three costs, i.e. the “service cost”, “penalty cost” and 

cost of facilities for S. 

 

3.1. Bounding Cost of service and Cost of penalty  

To prove a bound on the cost of service and cost of penalty, we use add operation. Let the set of paths (NO(o)) terminate 

at a facility o belonging to O whereas set of paths (NS(s)) begin at a facility s belonging to S and the set of paths (Ns
o) 

begin at facility s and end at facility o. Consider a facility o ∈ O − S. We can write the following inequality with respect 

to adding a facility o ∈ O − S:           

𝑓𝑜   + ∑ 𝑚𝑜𝑣𝑒(𝑝) ≥ 0

𝑝 ∈𝑁𝑂(𝑜)  

 

Since S is locally optimal, therefore adding a facility o and reassigning some clients to o cannot decrease the cost of S. 

We write such inequalities for all o ∈ O−S.  

Let o be a facility belonging to O∩S. Then we can write the following inequality with respect to o:   

      ∑ 𝑚𝑜𝑣𝑒(𝑝) ≥ 0𝑝 ∈𝑁𝑂(𝑜)     
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And, for such a facility, moving |NO(o)| more clients to o will not violate the capacity constraint at o. This is because, if 

that many paths are terminating at o then this implies that o is serving that many more clients in O. For p ∈ NO(N* ), we 

can write the following inequalities:   

 

    ∑ 𝑚𝑜𝑣𝑒(𝑝) ≥ 0𝑝 ∈𝑁𝑂(𝑜)     

 

Due to this move, few clients will be reassigned to other facilities on the path and tail client pays the penalty. The solutions 

cost will not be decreased because of this reassignment.  

A move along a cycle can also be defined. Consider a cycle y ∈ Y, then 

 

                                          move(y) = ∑ (𝑂𝑗 − 𝑆𝑗  )𝑗∈𝐶∩𝑦
= 0 

 

Above equality is due to the fact that the assignment of clients in O and in S is done optimally.  

 

Assume C1 ⊆ C  is the subset of clients that pay a penalty in both solutions solution S and O.  

Let C2 ⊆ C be a subset of clients that pay a penalty  in  S only. Let C3 ⊆ C be the subset of clients that pay  penalty in O 

only. Then, adding all the inequalities with respect to:  

(1) add operation for o ∈ O − S  

(2) move along paths in NO(o) ∀ o ∈ O ∩ S and in NO(N* )   

(3) move along cycles in Y  

 

we get : 

 ∑  𝑓𝑜 𝑗 𝑜∈𝑂−𝑆
   + ∑ (𝑂𝑗 − 𝑆𝑗 )𝑗∈𝐶−(𝐶1+𝐶2+𝐶3)

+ ∑ (𝑂𝑗 − 𝑃𝑗 )𝑗∈𝐶2
∑ (𝑃𝑗 − 𝑆𝑗 )𝑗∈𝐶3

≥ 0  

 

Thus,  

 

∑  𝑆𝑗  𝑗∈𝐶−(𝐶1+𝐶2)
+ ∑  𝑃𝑗  𝑗∈𝐶2

≤ ∑ 𝑓𝑜𝑜∈𝑂−𝑆 + ∑ 𝑂𝑗  𝑗∈𝐶−(𝐶1+𝐶3)
+ ∑  𝑃𝑗 𝑗∈𝐶3

  

 

Or 

 

∑  𝑆𝑗  
𝑗∈𝐶−(𝐶1+𝐶2)

+ ∑  𝑃𝑗  
𝑗∈𝐶2

+  ∑  𝑃𝑗  
𝑗∈𝐶1

  ≤ ∑  𝑓𝑜 𝑗 
𝑜∈𝑂−𝑆

+ ∑ 𝑂𝑗  
𝑗∈𝐶−(𝐶1+𝐶3)

+     ∑  𝑃𝑗  
𝑗∈𝐶3

+∑  𝑃𝑗  
𝑗∈𝐶1

 

                                          ≤ ∑  𝑓𝑜 𝑗 
𝑜∈𝑂−𝑆

+ ∑  𝑓𝑜 𝑗 
𝑜∈𝑂∩𝑆

+   ∑ 𝑂𝑗  
𝑗∈𝐶−(𝐶1+𝐶3)

+   ∑  𝑃𝑗 
𝑗∈𝐶3

+∑  𝑃𝑗  
𝑗∈𝐶1

 

 

Which results into the following inequality 

 

Ps(S) + Pp(S)    ≤ Pf (O) + Ps(O) + Pp(O) 

       = P(O)                                      (1) 

 

3.2. Bounding Facility Cost 

 

Facility cost of the solution S is bounded separately. For that, we require only those paths that begin at facilities in S −O. 

Therefore, all the paths that begin at facilities in S ∩ O and those that begin at N are not considered, and are removed 

from the various sets of paths defined in the previous sections. The clients that belong to these paths are also removed 

from C. The cycles and the clients belonging to cycles are also removed from C, due to the same reason. For an s ∈ S−O, 

NS(s) consists of swap paths, transfer paths and penalty paths. Let S(s), T(s), P(s) ⊆ NS(s) denote the set of swap paths, 

transfer paths and penalty paths, respectively, in NS(s). 

To identify the inequalities for bounding facility cost, we will consider delete/swap operation for each facility f ∈ S −O. 

The clients of f will be reassigned to various facilities belonging to S other than f and/or to a facility o ∈ O − S. S being a 

locally optimal solution, none of these operations help in improving the solution , which gives us desired inequalities. 

To reassign the clients served by facility f, that lie at the front of a transfer path or a penalty path, we will perform a move 

along that path. So, consider one such path, say p. If p ∈ T(f), then a move(p) is performed along that path, which results 

in reassignment of clients on the path p. Facilities along the path would lose and receive a client. And the facility, say t, 

at the end of the transfer path would receive an additional client. The facility t may receive at most as many clients through 

such moves as is the number of transfer paths terminating at that facility.  

Recall that t ∈ S ∩ O. If r number of transfer paths terminate at t, then t would be serving r more clients in O than in S. 

Therefore, it can receive r more clients through such shifts without violating the capacity constraint at t. If p is a penalty 

path, then the facility at the end of p is the hypothetical facility N
∗
. All the clients on the path are reassigned to facilities 

on the path, as explained earlier, except tail(p) which will now be paying penalty cost. 
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We will also use a fractional mapping π, as discussed in Aggarwal et al. [10] to reassign the clients of f to other facilities 

in S. For that define init_ms(p), ms(p) and rem_ms(p), for a swap path p, as follows: 

 

                                       𝑖𝑛𝑖𝑡_𝑚𝑠(𝑝) = 𝑚𝑖𝑛(1,
𝑐−|𝑆(𝑠)|

|𝑆(𝑠)|
) 

 

Consider a facility o ∈ O − S. ms(p) is defined for paths in S(o) as follows. If init_ms(𝑁𝑠
𝑜) ≤ init_ms(S(o))/2 then ms(p) = 

init_ms(p) for p ∈ 𝑁𝑠
𝑜. Otherwise, init_ms(p) is reduced to obtain ms(p). Note that there can be at most one facility s ∈ S 

− O for which init_ms(𝑁𝑠
𝑜) > init_ms(S(o))/2. Thus ms(p) ≤ init_ms(p) and is such that for every s ∈ S − O and o ∈ O − 

S, ms(𝑁𝑠
𝑜) ≤ ms(S(o))/2. Mass of all the paths in a set equals mass of set as a whole. rem_ms(p) denotes the remainder 

mass of a swap path p and is equal to 1−ms(p). 

    Fractional mapping, π, is defined for o ∈ O − S, πo: S(o) × S(o) → R+ having following properties: 

 

•    πo(p, q) > 0 , if the paths p and q begin at distinct facilities in S − O 

• ∑
𝑞∈𝑆(𝑜)

𝜋𝑜(𝑞, 𝑝) = ∑
𝑞∈𝑆(𝑜)

𝜋𝑜(𝑝, 𝑞) = 𝑚𝑠(𝑝)  for all  𝑝 ∈ 𝑆(𝑜) 

 

Consider a delete/swap operation to close a facility s ∈ S−O. It is necessary to reassign the clients that  s serves. Recall 

that the clients that lie at the head of a “transfer path” or a “penalty path” in NS(s), are reassigned using a move on that 

path. For a path p ∈ S(s), if π(p, q) > 0, then we perform a move along the path p and assign end(p) to s′, both upto an 

extent of π(p, q). Note that s′ is the facility at which p′ begins. end(p) client is assigned to additional facilities belonging 

to S up to an overall extent of total of ms(p). Let μ(s) denote the cost of reassignment of clients of s due to fractional 

mapping. Then 

 

                           ∑
𝑠

𝜇(𝑠) ≤ ∑
𝑠

∑
𝑝∈𝑆(𝑠)

∑
𝑞∈𝑃𝑠

𝜋(𝑝, 𝑞)(𝑚𝑜𝑣𝑒(𝑝) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞)) 

                                                 = ∑
𝑝∈𝑃𝑠

𝑚𝑠(𝑝)(𝑚𝑜𝑣𝑒(𝑝) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑞))                                                      (2) 

 

We also perform a move on the transfer paths and penalty paths in 𝑁𝑆(𝑠′). This is done to avoid any violation of capacity 

constraint at facility s′ when additional clients are received by s′ due to fractional mapping. For all the transfer paths and 

penalty paths q belonging to union of T(𝑠′), P(𝑠′), we perform a move along q, up to π(p, 𝑝′)/ms(S(𝑠′)) extent. Due to 

this, total move along q is done up to a maximum of 1. So, if s′ receives x more clients due to fractional mapping, it also 

loses y clients due to moves on transfer paths and penalty paths in N S(𝑠′). Therefore s′ gets x−y additional clients. Now 

 

                   𝑦 = |𝑇(𝑠′) + 𝑃(𝑠′)|  ∑
𝑝

 ∑
𝑞∈𝑆(𝑠′)

𝜋(𝑝,𝑞)

𝑚𝑠(𝑆(𝑠′))
= |𝑇(𝑠′) + 𝑃(𝑠′)|   

𝑥

𝑚𝑠(𝑆(𝑠′))
 

 

    Also, x ≤ ms(S(s′)). Therefore, 

 

                  𝑥 − 𝑦 = 𝑥(1 +
|𝑇(𝑠′)+𝑃(𝑠′)|

𝑚𝑠(𝑆(𝑠′))
≤ 𝑚𝑠(𝑆(𝑠′)) − |𝑇(𝑠′) + 𝑃(𝑠′)|  

                                                              ≤ 𝑐 − |𝑆(𝑠′)| − 𝑇(𝑠′) − 𝑃(𝑠′)                                                                (3) 

 

Before getting x − y additional clients, 𝑠′ was serving |𝑆(𝑠′)| + |𝑇(𝑠′)| + |𝑃(𝑠′)| clients. Therefore, capacity constraint 

will not get violated on s′ due to these additional clients.  

 

Capacity is also not violated at any of the facility 𝑠′′∈ S ∩ O that receives additional clients because of transfer paths 

shifts. The reason being that if t transfer paths terminating at s′′are there, then s′′would be serving t less clients in S then 

in O and can take in that many more clients in the process of reassignment within S. 

 

Let Γ(s) denote the total cost of shifts on the transfer paths and penalty paths beginning at s. Shifts on p∈ T(s)∪ P(s) 

happen once when s is considered in a close/swap operation and once when transfer paths originating at s are used to 

make room for additional clients received by s due to fractional mapping. Therefore 

 

                                       𝛤(𝑠) ≤ 2 ∑
𝑝∈𝑇(𝑠)∪𝑃(𝑠)

𝑚𝑜𝑣𝑒(𝑝)                                                                                         (4) 

When a facility s is closed, a swap path p originating at s is used up to an extent of ms(p) for fractional assignment and a 

move is performed up to that extent on this path. This way, ms(S(s)) amount of clients get reassigned to other facilities in 

S. To accommodate remaining rem_ms(S(s)) clients of s, we open a facility o∈ O − S when s is closed. Let j be front(p), 

p ∈ S(s) then j is assigned up to an extent of rem_ms(p) to o. This reassignment leads to total increment in service cost 

𝑐𝑠,𝑜rem_ms(S(s)). Note that 𝑐𝑠,𝑜 ≤  length(p), 𝑝 ∈ 𝑁𝑠
𝑜 
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When o∈ O−S is opened in a swap < 𝑠, 𝑜 >  operation, o receives rem_ms(S(s)) clients and is still left with 

c−rem_ms(S(s)) vacant capacity. To utilize this capacity, we will also perform a move along the swap paths in S(o), up 

to an extent of 𝛽𝑠,𝑜, where 𝛽𝑠,𝑜 is defined as follows: 

 

                                      𝛽𝑠,𝑜 = 𝑚𝑖𝑛(1,
𝑐−𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑜))
) 

 

 Let 𝜇′(𝑠, 𝑜) be the increment in cost of service because of this reassignment, then 

 

                                    𝜇′(𝑠, 𝑜) = 𝛽(𝑠, 𝑜) ∑
𝑝∈𝑆(𝑜)

𝑟𝑒𝑚_𝑚𝑠(𝑝)  𝑚𝑜𝑣𝑒(𝑝) 

 Now that we have considered all the reassignments due to swap < 𝑠, 𝑜 >, the inequality can be written w.r.t. < 𝑠, 𝑜 > as     

 

                                𝑓𝑜 − 𝑓𝑠 + 𝑐𝑠,𝑜𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠)) + 𝜇(𝑠) + 𝛤(𝑠) + 𝜇′(𝑠, 𝑜) ≥ 0                                                    (5) 

 

A linear combination of the inequalities resulting from each swap < 𝑠, 𝑜 >, for s ∈ S − O, o ∈ O − S with a mass 𝜙𝑠,𝑜 
results into the following inequality: 

 

                ∑
𝑠,𝑜

𝜙𝑠,𝑜𝑓𝑜 − ∑
𝑠,𝑜

𝜙𝑠,𝑜𝑓𝑠 + ∑
𝑠,𝑜

𝜙𝑠,𝑜𝑐𝑠,𝑜𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠)) + ∑
𝑠,𝑜

𝜙𝑠,𝑜𝜇(𝑠) + ∑
𝑠,𝑜

𝜙𝑠,𝑜𝛤(𝑠) + ∑
𝑠,𝑜

𝜙𝑠,𝑜𝜇′(𝑠, 0) ≥ 0        (6) 

 

  where,  

                                            𝜙𝑠,𝑜 =
𝑟𝑒𝑚_𝑚𝑠(𝑁𝑠

𝑜)

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))
 

and is 0 if rem_ms(S(s)) = 0 

 

We will now separately simplify the terms of inequality (6). Consider second term of (6), 

 

 ∑
𝑠,𝑜

𝜙𝑠,𝑜𝑓𝑠 = ∑
𝑠

∑
𝑜

𝑟𝑒𝑚_𝑚𝑠(𝑁𝑠
𝑜)

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))
𝑓𝑠 = ∑

𝑠

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))
𝑓𝑠 = ∑

𝑠
𝑓𝑠                                                                                 (7) 

 

We will simplify the third term of (6) now  

 

       ∑
𝑠,𝑜

𝜙𝑠,𝑜𝑐𝑠,𝑜𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠)) = ∑
𝑠,𝑜

𝑐𝑠,𝑜𝑟𝑒𝑚_𝑚𝑠(𝑁𝑠
𝑜) ≤ ∑

𝑝∈𝑃𝑠

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)                                               (8) 

 

    Since, cs,o ≤ length(p), ∀p ∈ Ns
o 

 

    Fourth term of (6) can be written as 

 

                     ∑
𝑠,𝑜

𝜙𝑠,𝑜𝜇(𝑠) = ∑
𝑠

𝜇(𝑠) ≤ ∑
𝑝∈𝑃𝑠

𝑚𝑠(𝑝)(𝑚𝑜𝑣𝑒(𝑝) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝))                                                              (9) 

 

    where the last inequality is obtained due to (2). Fifth term of (6) can be written as: 

 

    ∑
𝑠,𝑜

𝜙𝑠,𝑜𝛤(𝑠) = ∑
𝑠

𝛤(𝑠) ≤ 2∑
𝑠

∑
𝑝∈𝑇(𝑠)∪𝑃(𝑠)

𝑚𝑜𝑣𝑒(𝑝) = 2 ∑
𝑝∈𝑃𝑇∪𝑃𝑃

𝑚𝑜𝑣𝑒(𝑝)                                                                (10) 

 

where the second inequality is due to (4). First term and last term of (6) will be handled together. Now, we can write (6) 

as follows, using (7), (8), (9) and (10). 

 
    ∑

𝑠∈𝑆−𝑂
𝑓𝑠 ≤ ∑

𝑠,𝑜
𝜙𝑠,𝑜𝑓𝑜 + ∑

𝑠,𝑜
𝜙𝑠,𝑜𝜇′(𝑠, 𝑜) + ∑

𝑝∈𝑃𝑠

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) + ∑
𝑝∈𝑃𝑆

𝑚𝑠(𝑝)(𝑚𝑜𝑣𝑒(𝑝) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)) + 2 ∑
𝑝∈𝑃𝑇∪𝑃𝑃

𝑚𝑜𝑣𝑒(𝑝) 

                               ≤ ∑
𝑠,𝑜

𝜙𝑠,𝑜𝑓𝑜 + ∑
𝑠,𝑜

𝜙𝑠,𝑜𝜇′(𝑠, 𝑜) + ∑
𝑝∈𝑃𝑠

𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) + ∑
𝑝∈𝑃𝑆

𝑚𝑠(𝑝)(𝑚𝑜𝑣𝑒(𝑝)) + 2 ∑
𝑝∈𝑃𝑇∪𝑃𝑃

𝑚𝑜𝑣𝑒(𝑝)                 (11) 

 

    The first and second term of the equation on the RHS (11) are simplified next. 

 

Lemma 3.1  ∀𝑓 ∈ 𝑂, ∑
𝑠

𝜙𝑠,𝑓 ≤ 2. 

Proof: Note that ∀𝑠, 𝑓, 𝜙𝑠,𝑓 ≤ 1. 

(1) Let A ⊆ S − O be the facilities s such that i𝑛𝑖𝑡_𝑚𝑠(𝑁𝑠
𝑓

) ≤ 𝑖𝑛𝑖𝑡_𝑚𝑠(𝑆(𝑓))/2 and |𝑆(𝑠)| ≤ 𝑐/2. Let 𝑠 ∈ 𝐴 and 𝑝 ∈

𝑁𝑠
𝑓
 then ms(p) = init_ms(p) = 1 and so  rem_ms(p) = 0. This implies that rem_ms(Ns

f ) = 0 and so for all s ∈ A, ϕs,f = 0 
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(2) Let s be a facility not in A and init_ms(Ns
f ) ≤ init_ms(S(f))/2. For 𝑝 ∈ 𝑁𝑠

𝑓
 

                    𝑟𝑒𝑚_𝑚𝑠(𝑝) = 1 − 𝑚𝑠(𝑝) = 1 − 𝑖𝑛𝑖𝑡_𝑚𝑠(𝑝) = 2 −
𝑐

|𝑆(𝑠)|
 

  However, for 𝑝 ∈ 𝑆(𝑠) we have that 

 

             𝑟𝑒𝑚_𝑚𝑠(𝑝) = 1 − 𝑚𝑠(𝑝) ≥ 1 − 𝑖𝑛𝑖𝑡_𝑚𝑠(𝑝) = 2 −
𝑐

|𝑆(𝑠)|
 

 

  Therefore 

                                                       𝜙𝑠,𝑓 ≤
|𝑁𝑠

𝑓
|

|𝑆(𝑠)|
 

 

    Thus, we only need to show that ∑
𝑠∉𝐴

𝜙𝑠,𝑓 ≤ 2. We now consider two cases 

 

(1) If init_ms(Ns
f ) ≤ init_ms(S(f))/2, then  

 

                   ∑
𝑠

𝜙𝑠,𝑓 = ∑
𝑠∉𝐴

𝜙𝑠,𝑓 ≤ ∑
𝑠∉𝐴

|𝑁𝑠
𝑓

|

|𝑆(𝑠)|
≤ ∑

𝑠∉𝐴

|𝑁𝑠
𝑓

|

𝑐 2⁄
≤

|𝑆(𝑓)|

𝑐 2⁄
≤ 2 

 

(2)      If init_ms(Ns′
f ) > init_ms(S(f))/2    ∀s′ ∈ S − O. This implies 

 

                   i𝑛𝑖𝑡_𝑚𝑠(𝑁
𝑠′
𝑓

) ≥ ∑
𝑠≠𝑠′

𝑖𝑛𝑖𝑡_𝑚𝑠(𝑁𝑠
𝑓

) 

                                            ≥ ∑
𝑠∉𝐴∪{𝑠′}

𝑖𝑛𝑖𝑡_𝑚𝑠(𝑁𝑠
𝑓

) 

                                             = ∑
𝑠∉𝐴∪{𝑠′}

|𝑁𝑠
𝑓

|
𝑐−|𝑆(𝑠)|

|𝑆(𝑠)|
 

                                              = ∑
𝑠∉𝐴∪{𝑠′}

(𝑐
|𝑁𝑠

𝑓
|

|𝑆(𝑠)|
− |𝑁𝑠

𝑓
|) 

 

    Since init_wt(Ns′
f ) ≤ |Ns′

f | rearranging we get, 

 

                      ∑
𝑠∉𝐴∪{𝑠′}

|𝑁𝑠
𝑓

|

|𝑆(𝑠)|
≤ ∑

𝑠∉𝐴

|𝑁𝑠
𝑓

|

𝑐
≤ 1. 

 

    Now 

 

                      ∑
𝑠∉𝐴∪{𝑠′}

𝜙𝑠,𝑓 ≤ ∑
𝑠∉𝐴∪{𝑠′}

|𝑁𝑠
𝑓

|

|𝑆(𝑠)|
≤ 1 

 

and since ϕs′,f ≤ 1  

 

                         ∑
𝑠

𝜙𝑠,𝑓 = ∑
𝑠∉𝐴

𝜙𝑠,𝑓 ≤ 2. 

 

The proof is now complete.  

So next,   

 

  ∑
𝑠

𝜙𝑠,𝑓𝜇′(𝑠, 𝑓) = ∑(
𝑠

𝜙𝑠,𝑓𝛽𝑠,𝑓 ∑
𝑝∈𝑆(𝑓)

                       

 𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝)) 

                           = (∑
𝑠

𝜙𝑠,𝑓𝛽𝑠,𝑓) ∑
𝑝∈𝑆(𝑓)

                       

 𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝) 

 

If ∑
𝑠

𝜙𝑠,𝑓𝛽𝑠,𝑓  > 1
                       

  then the value of βs,f is reduced in such a manner so that the sum is exactly 1. However, if 

∑
𝑠

𝜙𝑠,𝑓𝛽𝑠,𝑓 = 1 − ϒ𝑓  , ϒ𝑓 > 0
                       

, then the inequalities associated with the facility addition operation f ∈ O are considered, 

as follows 

 

 𝑓𝑓 + ∑
𝑝∈𝑆(𝑓)

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝) ≥ 0                              (12)  
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and these are added to the inequality (11) with a mass ϒf .  

 

Therefore, taking ϒf = maximum{0, 1 − ∑
s

ϕs,fβs,f
                       

}, we can substitute the second term of the inequality on the RHS (11) 

with  

 

∑
𝑠,𝑓

𝜙𝑠,𝑓𝜇′(𝑠, 𝑓) + ∑
𝑓

ϒ𝑓(𝑓𝑓 + ∑
𝑝∈𝑆(𝑓)

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝)) 

                                        = ∑
𝑓

    ∑(1 − ϒ𝑓)
𝑝∈𝑆(𝑓)

                       

 𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝)+  ∑
𝑓

ϒ𝑓𝑓𝑓 + ∑
𝑓

    ∑ ϒ𝑓
𝑝∈𝑆(𝑓)

                       

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝) 

                                       = ∑
𝑓

    ∑
𝑝∈𝑆(𝑓)

                       

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝) +   ∑
𝑓

ϒ𝑓𝑓𝑓 

                                      =     ∑
𝑝∈𝑃(𝑠)

                       

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝) + ∑
𝑓

ϒ𝑓𝑓𝑓 

 

Therefore, inequality (11) now becomes 

 

∑
𝑠∈𝑆−𝑂

𝑓𝑠 ≤  ∑
𝑓

(ϒ𝑓 + ∑
𝑠

𝜙𝑠,𝑓)
                       

𝑓𝑓  + ∑
𝑝∈𝑃(𝑠)

𝑟𝑒𝑚_𝑚𝑠(𝑝)𝑚𝑠(𝑝)  + ∑
𝑝∈𝑃(𝑠)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) + ∑
𝑝∈𝑃(𝑠)

𝑚𝑠(𝑝)𝑚𝑜𝑣𝑒(𝑝)  + 2 ∑
𝑝∈𝑃𝑇∪𝑃𝑃

𝑚𝑜𝑣𝑒(𝑝)         (13) 

 

 

 ≤ ∑
𝑓

(ϒ𝑓 + ∑
𝑠

𝜙𝑠,𝑓)
                       

𝑓𝑓 +  ∑
𝑝∈𝑃(𝑠)

(𝑚𝑜𝑣𝑒(𝑝) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝))  + 2 ∑
𝑝∈𝑃𝑇∪𝑃𝑃

𝑚𝑜𝑣𝑒(𝑝)   

 
 ≤ ∑

𝑓
(ϒ𝑓 + ∑

𝑠
𝜙𝑠,𝑓)

                       

𝑓𝑓 + ∑
𝑗∈𝑃𝑠∩𝐶

(𝑂𝑗  −  𝑆𝑗  +  𝑂𝑗 + 𝑆𝑗  )  +2 ∑
𝑝∈(𝑃𝑇∪𝑃𝑃)∩(𝐶−𝐶3 )

(𝑂𝑗  −  𝑆𝑗  )   + 2 ∑
𝑝∈𝑃𝑇∩𝐶3 

(𝑝𝑗  −  𝑆𝑗  ) 

 

 ≤ ∑
𝑓

(ϒ𝑓 + ∑
𝑠

𝜙𝑠,𝑓)
                       

𝑓𝑓 + 2 ∑
𝑗∈𝐶−𝐶3 

𝑂𝑗 + 2 ∑
𝑗∈𝐶3 

𝑝𝑗 

 

Recall that C3  ⊆ C is client set incurring penalty only in O. Only thing that remains to be proved now is that  

 

Lemma 3.2.  ∑
𝑠

𝜙𝑠,𝑓(1 − 𝛽𝑠,𝑓)
                       

 ≤ 1. 

 Proof. When ∑
𝑠

𝜙𝑠,𝑓𝛽𝑠,𝑓
                       

 > 1,  value of some βs,f was reduced to make the sum become exactly equal to 1. So,  

 

  ∑
𝑠

𝜙𝑠,𝑓(1 − 𝛽𝑠,𝑓)
                       

 =   ∑
𝑠

𝜙𝑠,𝑓 − 1
                       

 ≤ 1, 

 

according to Lemma 3.1, ϕs,f ≤ 2.  

 

We now assume that no βs,f was reduced. Since rem_ms(S(f))   ≤   |S(f)|   ≤ c  

we have 

 

 𝛽𝑠,𝑓  =  𝑚𝑖𝑛(1,
𝑐−𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑓))
) ≥ 𝑚𝑖𝑛(1,1 −

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑓))
) =  1 −

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑠))

𝑟𝑒𝑚_𝑚𝑠(𝑆(𝑓))
 

 

Hence 

 

∑
𝑠

𝜙𝑠,𝑓(1 − 𝛽𝑠,𝑓)
                       

≤  ∑
𝑠

𝑟𝑒𝑚_𝑚𝑠(𝑁𝑠
𝑓

)

𝑟𝑒𝑚_𝑚𝑠(𝑁𝑂(𝑓))
 = 1. 

 

 

Using Lemma 3.2, the inequality 13 can now be written as 

 

∑
𝑠∈𝑆−𝑂

𝑓𝑠 ≤  2 ∑
𝑓∈𝑂−𝑆

𝑓𝑓 + 2 ∑
𝑗∈𝐶−𝐶3 

𝑂𝑗+2 ∑
𝑗∈𝐶3 

𝑝𝑗                      (14) 

 

Or 

 

∑
𝑠∈𝑆

𝑓𝑠 ≤  2 ∑
𝑓∈𝑂−𝑆

𝑓𝑓 + ∑
𝑓∈𝑆∩𝑂

𝑓𝑓 + 2 ∑
𝑗∈𝐶−𝐶3 

𝑂𝑗 + 2  ∑
𝑗∈𝐶3 

𝑝𝑗            (15) 

 

           ≤  2 ∑
𝑓∈𝑂

𝑓𝑓 + 2 ∑
𝑗∈𝐶−𝐶3 

𝑂𝑗 + 2 ∑
𝑗∈𝐶3 

𝑝𝑗 
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          ≤ 2 (Pf(O) + Ps(O) +Pp(O) ) 

Together with inequality 1, we obtain the following result 

 

    P(S) ≤ 3P(O) .  

 

Therefore, the algorithm based on local search having add operation, delete operation, and swap operation is a “3-factor 

approximation algorithm”. This approach addresses  “uniform capacitated facility location problem with penalties”. 
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