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Abstract: - When the reality of energy saving and reduction of enterprises’ emissions are a concern, research on the 

investigation of establishing mathematical models to optimize the production time has been studied. In this article, an enhanced 

sparrow optimization method is proposed. First, two-layer coding is employed for workpieces and machines according to the 

model requirements. Secondly, the three-dimensional chaotic mapping scheme is presented to improve the population 

heterogeneity of the algorithm, and the adaptive inertia weight balance algorithm is implemented to offset the speed of the 

convergence and its probability. Finally, the Cauchy mutation scheme is adopted to help the algorithm jump out of the local 

optimum. Simulated data is run to check the superiority of the proposed method. So, through the simulations and comparisons 

of 10 kinds of test datasets, the outcomes suggest that the solution quality of the enhanced sparrow optimization method has 

been effectively advanced, and its good global optimization ability is shown, which can provide scheduling strategies for 

workshop productions. One of the successes of the ISSA algorithm is its superior search accuracy. 
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1 Introduction   

With the diversification of customer needs and rapid development of production technology, the 

complexity of job shop manufacturing has increased, so efficient production planning is one of the key 

factors in improving the competitiveness of a company. A flexible job shop scheduling problem (FJSSP) 

depends completely on optimization processes and deals with an assignment problem that combines 

production planning with workpieces and machine sequencing. An FJSSP is an extended version of a 

conventional job shop scheduling problem (JSSP), where each operation is assigned to a machine and 

the operation processes are sequenced. The JSSP belongs to the NP-hard problem class [1]. Similarly, 

the FJSSP is very tough to resolve, so the FJSSP also belongs to the NP-hard problem class. 

In recent years, the FJSSP has received comprehensive attention For example, Wenchong et al. [2] 

proposed a super heuristic cross-entropy method to resolve the two-stage distributed assembly FJSSP. 

Deng et al. [3] established a mathematical model considering new job arrivals, machine failures, job 

cancellations, and alteration of operation processing time, and employed the Monte Carlo Tree Search 

(MCTS) method to resolve the model. Li et al. [4] enhanced the genetic algorithm to resolve the 

shortcoming of insufficient flexibility in batch processing of workpieces. Liu et al.[5] suggested the 

mixed attribute domain search and genetic algorithm to resolve the contradiction between the waiting 

time and solution quality of the algorithm when the FJSSP model was solved. Wenxiang et al. [6] 
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established the FJSSP problem considering workpiece job outsourcing and utilized fuzzy hierarchical 

analysis. Chen et al.[7] improved the NSGA-II method to resolve the FJSSP. Dong et al. [8] introduced 

the total tariff into the shop scheduling model and implemented an adaptive learning rate mechanism to 

guide the estimation method to determine the optimal solution. Li et al. [9] mixed the genetic algorithm 

and taboo search algorithm to resolve the FJSSP problem. Zhenwei et al. [10] studied the uncertain 

FJSSP with job priority requirements. Changxing et al. [11] constructed an FJSSP model with maximum 

completion time and machine load as optimization objectives, and a mixed elite retention mechanism 

and summation search algorithm. Berend et al. [12] suggested a new FJSSP model utilizing optimization 

based on quantum computing. Xin et al. [13] investigated the FJSSP with AGV strategy utilizing 

multiple genetic algorithms. Ye et al. [14] proposed an adaptive hybrid optimization method employing 

reinforcement learning.  

Wang et al. [15] proposed an invasive weed optimization algorithm embedded based on the gray wolf 

algorithm, which was utilized to enhance the capabilities of the global and local search and enhance the 

quality of the initial solution. Wang et al. [16] suggested a new encoding methodology and optimal 

subpopulation-based genetic algorithm to resolve the flexible workshop scheduling problem. Jia et al. 

[17] suggested a hybrid Pareto method based on omniscient particle swarm optimization and dynamic 

forbidden search to enhance the population diversity and convergence speed. Yu et al. [18] proposed a 

strategy for producing the initial population by utilizing full search encoding for the initial population 

to enhance the quality of the solution. Xu et al. [19] suggested a new discrete bat method. Wang et al. 

[20] suggested an enhanced whale algorithm using the variable neighborhood of the critical path. 

Edilson et al. [21] suggested an optimization based on the hybrid particle swarm method and a stochastic 

re-climbing method to resolve the FSSP. Wang et al. [22] designed an advanced ant colony method to 

optimize the maximum completion time of the flexible scheduling shop. Zheng et al. [23] suggested a 

novel coding scheme of knowledge rule-guided Drosophila optimization method to resolve the dual-

resource constrained FJSSP.  

In this paper, the improved sparrow search method is applied to resolve the mathematical model 

to optimize the production time and the proposed method is effectively verified by the simulations based 

on production examples.  

 

2 The description of the flexible job shop scheduling problem  

The FJSSP is described as follows: given a set of n independent jobs J = { 𝐽1  ,  𝐽2 , . . . , 𝐽𝑛} and 

a set of m machines M = { 𝑀1 , 𝑀2 , . . . , Mm}, a job  𝐽𝑖   is scheduled by a set of operations 

𝑂𝑖={𝑂1,𝑂2,…,𝑂𝑛} in the given order, where i denotes the number of operations in 𝐽𝑖  . The operation 

𝑂𝑖,𝑗 could be conducted by any machine in the given set of machines 𝑀𝑖,𝑗 ∈ M. The processing time 

of an operation depends on its machine assignment if it is assigned to a machine 𝑀𝐾, 𝑃𝑖,𝑗,𝑘 represents 

the processing time of operation 𝑂𝑖,𝑗 . 

1. At t = 0, all workpieces are machined with the same priority.  

2. Since the processes of each workpiece are different, the processes of each workpiece do not constitute 

a constraint. 

3. Once a given job starts processing on a given machine, interruption is not allowed, and processing 

will continue until completion (no preemption).  

4. Only one workpiece is allowed to be processed by a single machine at the same time.  

5. The start time of any operation is greater than or equal to the release time of the previous phase, 

ignoring machine setup time and workpiece transport time.  

With the maximum completion time as a decision variable, denoted by C, Eq. (1) presents it. 
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𝐶 = 𝑚𝑎𝑥
1≤𝑖≤𝑁

𝐶𝑖 = 𝑚𝑎𝑥
1≤𝑖≤𝑁

( 𝑚𝑎𝑥
1≤𝑗≤𝑁𝑖

𝐶𝑖𝑗)                                                          (1) 

 

3 Sparrow Search Algorithm (SSA)  

Producers with bigger fitness scores have priorities for obtaining food during foraging in the 

sparrow search algorithm (SSA). The location of the discoverer is updated in each run and is described 

below.  

The population size of sparrows is denoted by N, D denotes the spatial dimension, and a vector 

with D dimension whose median score is in [-1,1] in each dimension is randomly produced as the initial 

operator, the individual positions of sparrows are denoted by 𝑥𝑖 = (𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑑), i ∈ [1, N], d 

∈ [1, d] and 𝑥𝑖𝑑 denotes the position of the 𝑖𝑡ℎ  sparrow in the d-dimensional space. Eq. (2) is updated 

by the discoverer position.  

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ⋅ 𝑒𝑥𝑝(

−𝑖

α⋅𝑖𝑡𝑒𝑟max
)     𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄 ⋅ 𝐿                           𝑅2 ≥ 𝑆𝑇

                                                                      (2)      

where t denotes the current iteration numbers, T denotes the highest number of iterations, α 

represents a random number between (0,1), Q denotes a random number distributed normally, L denotes 

a matrix of size 1 × d, R2∈ [0, 1] represents the warning score, ST ∈ [0.5, 1] denotes the safety score. 

Once R2 < ST, the population is not in danger and the scouts continue searching. On the other hand, 

once R2 ≥ ST, the vigilant in the flock has pinpointed a predator and instantly alerted the other sparrows, 

and then the flock executes anti-predatory actions, tunes its search plan, and flies rapidly to the safe 

region. During foraging, all sparrows, except the producers, act as followers in search of the best 

foraging area. Eq. (3) presents the position update of the follower.  

𝑋𝑖,𝑗
𝑡+1 = {

𝑄 ⋅ 𝑒𝑥𝑝(
𝑋worst − 𝑋𝑖,𝑗

𝑡

𝑖2
)          𝑖 > 𝑁/2

𝑋𝑝
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑝
𝑡+1|𝐴+. 𝐿    𝑖 ≤ 𝑁/2

                             (3) 

where 𝑋worst denotes the global worst position for the 𝑡𝑡ℎ iteration. 𝑋𝑝
𝑡+1 represents the global 

best position of the t+1th iteration, A represents an l×d matrix where each element is randomly set to 1 

or -1, 𝐴+ 𝐴+ = 𝐴T(A𝐴T)−1. Once i > N/2, it means that the 𝑖𝑡ℎ joiner has not yet got food and needs 

to fly to other places to forage for food. Once i ≤ N/2,  the follower at 𝑖𝑡ℎ 𝑡ℎ𝑒 place is near the global 

optimal position and forages around randomly. The initial position of individuals randomly generated 

in the population is formulated as follows: 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽|𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡 
𝑡 |           𝑓𝑖 ≠ 𝑓𝑔

𝑋𝑖,𝑗
𝑡 + 𝐾 (

|𝑋𝑖,𝑗
𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓𝑖 − 𝑓𝑤) + 𝜀
)     𝑓𝑖 = 𝑓𝑔

                         (4) 

where β represents the step control parameter, a random number distributed normally whose mean 

and variance are 0 and 1, respectively, K represents the movement direction of sparrows and takes 

values randomly in [-1,1], ε denotes a very small constant, 𝑓𝑖  denotes the adaptation of the  𝑖𝑡ℎ  

sparrow, 𝑓𝑔 and 𝑓𝑤 denote the best and worst adaptations of the current sparrow population.  

Once 𝑓𝑖 = 𝑓𝑔 , the 𝑖𝑡ℎ sparrow is located at the edge of the population, and then the sparrow in 

this position is vulnerable to predators, when  𝑓𝑖 = 𝑓𝑔, the sparrow at the ith place is located in the 

population center, and since the sparrow is aware of the existence of threats, needs to avoid being 

captured by approaching other sparrows.  
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4 The improved SSA algorithm 

The SSA algorithm has some shortcomings: the initialized population is not rich enough, the global 

search ability is poor, local optimums are easy to appear, the solution accuracy is often not high enough, 

and premature convergence is easy to occur. To better deal with these issues affecting the performance 

of the SSA method, the following improvements are made in this paper. 

4.1 Encoding and decoding  

Two layers of real coding are adopted. The first layer is the OS code for the procedure, and the 

second layer is the MS code for the machine. The coding length of each layer is the total number of 

processes, the OS code represents the serial number of the workpiece, and the number of times appears 

as the number of processes of the workpiece, the MS code represents the first step from the first 

workpiece, and the production equipment is assigned one by one, and the order of the equipment is 

recorded (1,2, ..., k). As shown in Figure 1, four workpieces are produced on three machines. 

 
Figure 1 Work sequence and machine selection of two-level coding process. 

First, all processes are added to the corresponding equipment in the order of sorting workpieces. 

Then, the process sequence is traversed and the process equipment is assigned according to the earliest 

start time of the workpiece (i.e., the maximum of the end time of the immediately preceding process 

and the finish time of the previous process of the equipment). Finally, the active scheduling solution is 

obtained by using the plug-in decoding method. 

4.2 Population initialization 

The quality of the initial solution parameters determines the quality of the algorithm’s solution, 

taking a random number of generations to ensure the population’s diversity, but it influences greatly the 

algorithm in the later solution. Therefore, we choose to adopt the hybrid initialization method to enhance 

the algorithm’s performance. [24] suggested that 30% of them are generated using a random search 

strategy, and then the processing machine with a short waiting time starts producing the artifact. If the 

machine waits the same processing time, it continues processing by randomly generating the machine, 

Otherwise, the operation continues. The remaining 70% is generated using a global search strategy, and 

the same as above for selecting the processing machine. 

4.3 Initialization of chaotic sequence  

When complex optimization problems are under investigation, SSA copes with poor population 

diversity as a disadvantage in runs. In recent years, chaotic mappings have been utilized in many 

optimization fields as an alternative to pseudo-random number generators. It is indicated in [25] that 

the population initialized using chaotic sequences affects the whole process and often achieves better 
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results than pseudo-random generators. For example, in [26], chaotic sequences were used to 

dynamically enhance the size of the population to evade immature convergence, in [27], chaotic 

sequences were utilized for the initial population production and the performance of the variation 

operator. Chaotic sequences could be mapped by distinct chaotic models such as Tent map, Logistic 

map, Kent map, and Cubic map. [28] shows that cubic mapping presents better uniformity and higher 

flexibility than other mappings. Thus, a cubic map chaotic sequence is used for the initialization of the 

population in this paper. Thus, the chaotic maps’ ergodicity and initial sensitivity improve the diversity 

of SSA populations. Eqs. (5) and (6) present them. 

𝑦𝑖+1 = 4𝑦𝑖
3 − 3𝑦𝑖                                                                   (5) 

𝑋𝑖 = 𝑋𝑙𝑏 +
(𝑋𝑢𝑏 − 𝑋𝑙𝑏) × (𝑦𝑖+1)

2
                                                 (6) 

where −1<𝑦𝑖<1,𝑦𝑖 = 0, i = 0, 1. . .N. 𝑋𝑙𝑏 and  𝑋𝑢𝑏  are the upper and lower bounds, and N is the size 

of the population. First, let D represent dimension, and randomly generate a D-dimensional vector in [-

1,1] in each dimension as the first operator. Then, Eq. (5) was employed to iterate over each dimension 

of the first operator to attain the rest of the (N-1) operators. Lastly, Eq. (6) was employed to map the 

operators’ scores produced by the three mappings onto the individual sparrows. The recent literature 

presents some contributions. Doush et al. [29] introduced the flow shop scheduling with blocking which 

is thought of as a substantial issue in scheduling settings that could be easily applied to real cases.  A 

method called the harmony search algorithm (HSA) was proposed to minimize the total flow time. 

Doush et al. [30] suggested the island neighboring heuristics harmony search algorithm (INHS) to 

overcome the blocking flow-shop scheduling problem to diversify the population. Hence, the 

performance of the proposed algorithm was increased. Wadallah et al. [31] reviewed the recent research 

articles related to the SSA covering distinct extensions to avoid convergence issues. Besides, the SSA 

with a multi-objective version was reviewed. Lastly, the critical analysis of the main research gaps in 

the convergence behavior of SSA was discussed. 

 

4.4 Adaptive inertia weights  

In the SSA scouts need a larger search space to find food sources, and whether SSA could 

determine the optimal solution depends primarily on the scouts’ searchability. The individual’s location 

within the search range is randomly distributed. Once there exist no neighboring sparrows close to the 

former scout, a random search scheme will be performed. Note that this model not only slows down the 

convergence rate but also reduces the convergence precision with limited iteration numbers. To further 

improve the algorithm’s performance, adaptive inertia weights are introduced in Eq. (2). 

In Eq. (2), the largest factor affecting the producer’s location is 
𝑖

∝∙iter𝑚𝑎𝑥
 , and when α has a larger 

random value, the range of values taken may progressively decrease from (0, 1) to roughly (0, 0.4) as i 

increases. Therefore, an adaptive control factor is introduced to extend the search range of the producer 

as presented in Eq. (7). 

ω = ω0 + ct                                                                             (7) 

where ω0 = 1 denotes the initial weight, c denotes the adaptive factor of ω which could be set 

according to the real problem, and t denotes the current iteration numbers. To keep the value of ω small, 

increase the search range of producers, and enhance the algorithm’s global search capability, the value 

of c is initially set to 0.9. Thus, Eq. (8) presents the update of the discoverer position. 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ⋅ 𝑒𝑥𝑝(

−𝑖

ω ⋅ α ⋅ 𝑖𝑡𝑒𝑟max
)     𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄 ⋅ 𝐿                                  𝑅2 ≥ 𝑆𝑇

                                        (8) 

https://www.sciencedirect.com/topics/computer-science/flowshop-scheduling
https://www.sciencedirect.com/topics/computer-science/harmony-search
https://www.sciencedirect.com/topics/computer-science/harmony-search
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To avoid predators during foraging, 10-20% of sparrows were picked as scouts. The presence of 

scouts could aid sparrow populations to obtain better SSA results. When the scouts’ number (SN) grows 

large, it would help advance the sparrows’ global optimization. Nevertheless, when the SN grows small, 

it would help speed up the SSA’s convergence. Thus, an adaptive update equation for the scout number 

is suggested, as presented in Eq. (9), which can be reduced nonlinearly during the iterative process. 

𝑆𝑁 = 𝑆𝑁𝑚𝑎𝑥 −  𝑟𝑜𝑢𝑛𝑑 ((𝑆𝑁𝑚𝑎𝑥 − 𝑆𝑁𝑚𝑖𝑛)
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)                           (9) 

where 𝑆𝑁max is the highest score for the number of scouts, 𝑆𝑁max indicates the smallest score of 

the number of scouts, the round mapping was utilized to round the numbers, 𝑖𝑡𝑒𝑟 denotes the current 

iteration, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥indicates the highest number of iterations.  

4.5 Cauchy mutation strategy 

In the later iterations of the SSA, sparrows progressively converge toward the optimal individuals, 

resulting in insufficient population heterogeneity and an inclination for the method to converge 

prematurely. To solve the issue, the Cauchy mutation scheme was presented. The individual with the 

best current fitness was picked for mutation. Afterward, their positions were compared based on before 

and after positions, and then the better position was selected to put into a subsequent run. Eqs. (10) and 

(11) present the Cauchy mutation scheme. 

𝑈𝑏𝑒𝑠𝑡 
𝑡+1 = X [1 + 𝜏1 𝐶𝑎𝑢𝑐ℎ𝑦 (0, 𝜗2) + 𝜏2 𝐺𝑎𝑢𝑠𝑠 (0, 𝜗2)]                         (10)𝑡

𝑏𝑒𝑠𝑡  

𝜗 = {

1                                               𝑓(𝑋𝑏𝑒𝑠𝑡 ) < 𝑓(𝑋𝑖)

𝑒𝑥𝑝 (
𝑓(𝑋𝑏𝑒𝑠𝑡 ) − 𝑓(𝑋𝑖)

|𝑓(𝑋𝑏𝑒𝑠𝑡 )|
)     𝑓(𝑋𝑏𝑒𝑠𝑡 ) ≥ 𝑓(𝑋𝑖)

                              (11) 

where 𝑋𝑏𝑒𝑠𝑡  denotes the position of the elite individual, 𝑈𝑖 
𝑡+1represents the position of the elite 

individual after mutation, and 𝜗2represents the standard deviation of the Cauchy-Gaussian mutation 

scheme. Cauchy 𝜗2is a random variable that satisfies the Cauchy distribution, Gauss 𝜗2is a random 

variable that satisfies the Gaussian distribution. 𝜏1 = 1 + t2/T2
max and 𝜏2 = 1 − t2/T2

max  are 

dynamic parameters that are adaptively tuned with the number of iterations. In Eq.(10), the initial stage 

τ1 is large, allowing the algorithm to explore a larger range of optimal solutions with a larger variation 

step. 𝜏2 is a small variation step, which facilitates the method of searching for a near-optimal solution. 

When the search process is run,𝜏1 reduces while 𝜏2 keeps rising. 

4.6 Mutation operator  

During the search process of the SSA, the sparrow population’s heterogeneity decreases, which 

may lead to the algorithm’s premature convergence. To surmount the SSA’s local optimum issue, the 

mutation operator was suggested to boost the population diversity. So,  it helps resolve the local 

optimum problem. Particularly, just one individual random variation in each iteration has little impact 

on the algorithm’s convergence. 

𝑥𝑟 = 𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏). 𝑟𝑎𝑛𝑑(1, 𝐷)                                        (12) 

where r denotes a random individual in each iteration, and the position of sparrow r will be 

initialized by variation.  

The improved SSA algorithm performs the following flow. 

1. Parameter setting: number of populations, the highest number of iterations, number of discoverers, 

number of scouts, etc., initialized utilizing mapped chaotic sequences. 

2. Rank fitness scores to determine the current best and worst individuals. 

3. Determine the investigator according to Eq. (8). 

4. Perform a position update according to Eq. (3). 

5. Identify the Watchman and perform the location update according to Eq. (4). 
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6. Select elite individuals according to Eq. (10) and Apply adaptive mutation to them.  

7. Obtain the current updated location.  

8. Decide whether the termination condition is met, and if so, move to the next step, otherwise execute 

step 2. 

9. Output the optimal result.  

 

5 Simulation Experiments 

5.1 Experimental platform and parameter settings  

The Improved SSA algorithm (ISSA) was conducted by using MATLAB R2019b with a CPU of 

i5-10500, a main frequency of 3.10GHZ, a computer memory of 8GB, a population size P of 100, and 

a maximum iteration 𝑡max of 600. 

5.2 Analysis of simulation results  

For the 10 benchmark cases (Kacem01 and Kacem08, MK1-MK8) in [1], each algorithm was run 

10 times independently. 

Table 1 depicts that the best denotes the optimal score, the min denotes the smallest score, the 

average represents the average value, and the RPD represents the relative percentage difference, the 

parameters used for the RPD are the optimal score and the minimum score, and the equation is presented 

by RPD=100×(best-min)/min, the smaller its value suggests that the stability and uniformity of the 

algorithm are better, and the value obtained by this algorithm is more representative. ISSA, SSA, WOA, 

GWO, and PSO denote advances in the sparrow, whale gray wolf, and particle swarm optimization 

algorithms. The RPD is the average of the five algorithms under 10 cases. The results suggest that the 

values obtained by the ISSA algorithm are relatively representative, and the performance of the ISSA 

algorithm is more stable.  

Table 1 Comparison results of the benchmark algorithm 

Exam

ple 

and 

size 

ISSA SSA WOA GWO PSO 

be

st 

av

g 

RP

D% 

be

st 

avg RP

D

% 

be

st 

avg RP

D

% 

be

st 

av

g 

RP

D% 

be

st 

av

g 

RP

D% 

Kacem1 

7×8 

33 35 0 56 37 47 45 38 8 51 35 14 39 35 5 

Kacem

2 

10×1

0 

39 43 0 44 45 0 47 49 0 39 43 5 43 54 41 

MK1 

10×6 

59 62 18 60 65 12 65 71 39 72 77 10 84 90 0 

MK2 

10×6 

44 44 0 46 50 4 47 53 28 47 52 0 53 67 0 

MK3 

15×8 

40

2 

40

2 

0 40

4 

404 0 42

0 

42

2 

0 40

8 

41

9 

32 41

1 

43

0 

25 

MK4 

15×8 

10

9 

11

7 

24 11

4 

123 24 11

0 

12

0 

14 12

7 

13

0 

37 12

7 

13

0 

0 

MK5 

15×4 

19

0 

19

1 

0 19

2 

192 0 21

8 

22

4 

41 19

0 

22

7 

35 21

6 

24

5 

12 

MK6 

10×1

5 

11

6 

12

0 

24 12

4 

133 0 14

7 

14

0 

12 13

2 

14

9 

21 14

0 

15

3 

26 

MK7 

20×5 

18

2 

19

0 

0 19

2 

201 17 18

2 

21

7 

24 18

5 

22

5 

28 21

1 

22

2 

16 
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MK8 

20×1

0 

59

8 

59

8 

0 61

8 

639 33 62

1 

63

6 

49 61

6 

62

1 

25 59

8 

59

8 

0 

RPD̅̅ ̅̅ ̅̅

% 
6.6 13.7 21.5 20.7 12.5 

 

Table 2 shows the relative lift rates, where ∆best is the optimal value of the lift rate and ∆avg is 

the mean of the lift rate, for example, for Kacem1, the optimal value of the lift rate of the ISSA relative 

to SSA is calculated by ∆best = 100×(SSAbest −ISSAbest )/SSAbest . For the other four algorithms, the 

ISSA obtains a certain lifting rate and obtains a maximum lifting rate of 43.8% and a minimum lifting 

rate of 6.25% for Kacem1. A maximum lifting rate of 20.5% and a minimum lifting rate of 6.6% are 

achieved for Kacem2. A maximum lifting rate of 31.1% a minimum lifting ratio of 1.7% for MK1, and 

the highest lifting ratio of 34.3% and a minimum lifting rate of 4.3% for MK2. A maximum lift rate of 

34.3% and a minimum lift rate of 4.3% for MK3. A maximum lift rate of 6.5% and the smallest lift ratio 

of 0.49% are achieved for MK4. The highest lift ratio of 14.2% and the smallest lift ratio of 0.9% is 

gained for MK5. The highest lift ratio of 23.5% and the smallest lift ratio of 0.5% for MK6 is received. 

The highest ratio was 21.1% and the minimum lift rate was 3.3% for MK7. The maximum lift rate was 

15.6% and the minimum lift rate was 1.6% for MK8. Therefore, the maximum lift rate was 6.4% and 

the minimum lift rate was 2.9%.  

Table 2 Comparison of experimental results 

Example and sizes 
Kacem1 

7×8 

Kacem2 

10×10 

MK1 

10×6 

MK2 

10×6 

MK3 

15×8 

MK4 

15×8 

MK5 

15×4 

MK6 

10×15 

MK7 

20×5 

MK8 

20×10 

Relative 

SSA（%） 

∆best 41 12.8 1.7 4.3 0.49 4.4 1 3.3 5.2 3.2 

∆avg 5.4 6.6 4.6 12 0.49 4.9 0.5 9.8 5.4 6.4 

Relative 

WOA（%） 
∆best 26.7 20.5 10.1 6.4 4.3 0.9 12.8 21.1 - 3.7 

∆avg 7.9 12.2 12.7 17 4.7 2.5 14.7 14.3 12.4 6 

Relative 

GWO（%） 
∆best 35.3 - 22 6.4 1.4 14.1 - 12.1 1.6 2.9 

∆avg - - 19.4 15.4 4.1 10 15.9 19.5 15.6 3.7 

Relative 

PSO（%） 

∆best 15.4 9.3 29.7 17 2.18 14.2 12 17.1 13.7 - 

∆avg - 20.4 31.1 34.3 6.5 10 23.5 21.5 14 - 

 

Figures 2 and 3 compare the convergence curves of the five algorithms tested for the two instances 

of Kacem1 and Kacem2, respectively. The performance of the ISSA algorithm is bigger than the other 

four algorithms, and for Kacem1, the quality of the optimal solution is ISSA, PSO, SSA, WOA, and 

GWO when ordered from strong to weak, for Kacem2, the quality of the optimal solution is ISSA, PSO, 

GWO, SSA, and WOA when ordered from strong to weak. In Figure 2, the ISSA obtains the largest 

optimal solution of 63 and the smallest of 33, where the difference is 30, which is the largest when 

compared with the other four algorithms, in Figure 3, ISSA obtains the largest optimal solution of 133 

and the smallest of 41, with a difference of 92, and ISSA obtains the largest difference from the initial 

state to the convergence state when compared with the others. In brief, it shows that the ISSA has a 

faster convergence speed and stronger searchability.  
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Figure 2 The convergence curve of Kacem1  

 

Figure 3 The convergence curve of Kacem2  

Figures 4 and 5 show the Gantt charts obtained by the ISSA algorithm for Kacem1 testing, where 

the horizontal axis is the production time, the vertical axis is the processing equipment, different colors 

represent different workpieces, and the serial number represents the production process of that 

workpiece. The effect of the workpiece scheduling generated by the optimized algorithm can be 

visualized in Figure 3. As shown in Figures 4 and 5, 10 workpieces are processed on 10 machines, and 

the final optimal processing time is obtained as 39 and 47 seconds, respectively.  

 
Figure 4 The Gantt chart of Kacem1  
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Figure 5 The Gantt chart of Kacem2  

 

6 Conclusion  

When the reality of energy saving and reduction of enterprises’ emissions are a concern, research 

on the investigation of establishing mathematical models to optimize the production time has been 

studied. In this article, an enhanced sparrow optimization method is proposed. First, two-layer coding 

is employed for workpieces and machines according to the model requirements. Secondly, the three-

dimensional chaotic mapping scheme is presented to improve the population heterogeneity of the 

algorithm, and the adaptive inertia weight balance algorithm is implemented to offset the speed of the 

convergence and its probability. Finally, the Cauchy mutation scheme is adopted to help the algorithm 

jump out of the local optimum. Simulated data is run to check the superiority of the proposed method. 

So, through the simulations and comparisons of 10 kinds of test datasets, the outcomes suggest that the 

solution quality of the enhanced sparrow optimization method has been effectively advanced, and its 

good global optimization ability is shown, which can provide scheduling strategies for workshop 

productions. 

The SSA is a swarm intelligence-based optimization, and the following improvements are made to 

the SSA method for the characteristics of FJSS: 1. two-layer real number encoding is employed, 2. 

chaotic mapping instead of the pseudo-random number generator is utilized to enrich the initialized 

population, 3. adaptive inertia weights are employed to enhance the algorithm’s search ability, 4. the 

Cauchy mutation scheme is implemented to avoid the algorithm’s premature convergence.  

The comparison suggests that the ISSA algorithm presents superiority regarding search accuracy, 

convergence performance, stability, and exploration over WOA, PSO, and GWO and has an ability not 

to fall into a local optimum. 
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