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Abstract: - Electric vehicles (EVs) use electric motors for propulsion, relying on electric energy stored in batteries or other energy storage 

devices. The standard communication protocol used in EVs is the Control Area Network (CAN), a communication protocol widely used in 

the automotive industry for networking and communication between various components within a vehicle. CAN protocol, designed without 

any care about protection, as automotive systems become more connected, the vulnerability to cyber threats, including intrusion attacks. 

The most common intrusion attacks on EVs are Denial of Service (DoS), Fuzzy, and Impersonation Attacks. These become a significant 

challenge due to the imperative need for robust Intrusion Detection Systems (IDS) in CAN networks. This paper explores the application of 

advanced deep learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks, to 

enhance the effectiveness of intrusion detection in the EV domain. We will use a hybrid Deep-learning model to improve the analysis. First, 

we will apply the RNN model, and the output will come as input for the second model, LSTM. Our proposed hybrid model achieved an 

accuracy of 93%. The outcomes of this research contribute to advancing cybersecurity measures in vehicular networks, ensuring the 

integrity and safety of connected vehicles. The applicability of RNN and LSTM techniques in the context of CAN networks demonstrates 

their potential to evolve as integral components of next-generation intrusion detection systems, fostering a secure and resilient automotive 

ecosystem.    

Keywords: Intrusion detection system (IDS); controller area network (CAN) bus; deep learning (DL); Recurrent Neural 

Networks (RNN); Long Short-Term Memory (LSTM) networks; Denial of Service (DoS); Electronic Control Units (ECUs). 

I.INTRODUCTION 

They say electric vehicle (EV) technology is fast advancing in the modern car [1]. For this cause, the modern 

car will be more intelligent with many more valuable applications, contemporary, and ranging across numerous 

functions. The various features are controlled by many Electronic Control Units (ECUs) interconnected by the 

CAN bus. One ECU can control, monitor, and allow the subsystems to work at low vehicle noise, vibration, and 

energy [2]. After ECUs started being used in the automotive system. This furthered the functionality. These 

advances have undoubtedly increased the quality of our living standards and the susceptibility of cars as victims 

of cyber-attacks [3]. CAN lacks security functionality; for example, it has no authentication and encryption to 

protect communication from web attacks [4]. Researchers have shown that there are significant security flaws in 

in-car networks [5]. An attacker might get physical control over a car by injecting bogus signals into the car's 

security system and tampering with and accessing an ECU through weak interfaces. Some examples of 

susceptible interfaces are Compact Disc (CD) players, On-Board Diagnostics, and flash drives (USB). 

Furthermore, automobiles are becoming highly intelligent machines that can now communicate with their 

environment thanks to the development of wireless technologies like Bluetooth, Wi-Fi, mobile communication, 

and 5G [6]. For instance, a live system has been successfully hacked using car key fobs. Furthermore, ECUs 

cannot identify who provided the transmitted signals and can receive any ECU-to-ECU transmission on the 

same bus. Malicious assaults, such as packet injection and data manipulation, can create fictitious packets that 

conquer crucial components that ensure drivers' safety [7]. Other vehicle assault methods include radio, GPS, 

Electronic Windows, and steering and brake hacking [8], [9]. Because they put the driver in danger for life, 

vehicular assaults are therefore detrimental to the car as well as the driver [10]. Consequently, it is critical to 

identify car intrusions to prevent vehicle damage and save lives [11].  

Cars can face various kinds of attacks. These could include things like Denial-of-Service (DoS) attacks, 

flooding, fuzzy attacks, spoofing, malfunctions, vulnerabilities when nearby, impersonation, replaying data, 

rerouting, remote sensor tampering, and pretending to be someone else [12]. Numerous research works have 

examined safety concerns related to intra- and inter-vehicular communications [13]. For instance, due to their 
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increasing effectiveness and ease of use in detecting intrusions, intrusion detection sensors are becoming 

increasingly popular [14] Noura et al. [15] devised a method that uses the Advanced Encryption Standard (AES) 

encryption to offer data secrecy while using the least resources. It uses less memory, power, and calculations. 

With limited hardware and software resources, Castiglione et al. [16] suggested a method for securing in-car 

communication that uses lightweight block ciphers. Mundhenk et al. [17] introduced a security method called 

Lightweight Authentication for Secure Automotive Networks (LASAN) to protect car communication while 

using little in the way of computing resources, such as electricity and network bandwidth. Only specific threat 

models previously considered throughout the design phases may make these IDS effective [18]. Most current 

research on the security of the CAN protocol has concentrated on physical aspects, such as encrypting CAN 

transmission and restricting access restrictions [19]. Still, the development of a more effective IDS is required. 

Physical access restrictions will reduce the effectiveness of CAN bus communications. Using cryptography with 

a system this light is only sometimes successful. Machine learning (ML) based intrusion detection systems 

address the issue with traditional communication networks. The objective is to document the essential statistical 

characteristics of data and use them to identify any assault. To categorize different forms of attacks, intrusion 

detection techniques such as Random Forest (RF), Multilayer Perceptron (MLP), Decision Tree (DT), and 

Support Vector Machine (SVM) are created [20]. ML techniques are used for a vehicular network as the typical 

ECU's processing capacity is restricted to handling such a complicated operation. Throughout the past ten years, 

ML tools have produced significant and influential results for complex challenges, such as fault detection [21] 

and detection of cyber threats [22]. ML techniques can be helpful for intrusion detection. However, there still 

needs to be a widely agreed-upon framework or model for consistently identifying and categorizing cyberattacks 

[7]. They may be enhanced by extensively using the dataset and other ML models. To address the present 

security issues with in-vehicle CAN buses, this motivates us to investigate the potential of practical Deep 

Learning (DL) algorithms, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) and Generative Adversarial Network (GAN) or use hybrid 

algorithms to get good results with analysis. 

II.BACKGROUND 

• CAN Protocol  

The Controller Area Network (CAN) bus protocol is a crucial communication standard in automotive and 

industrial systems. Developed in the 1980s by Robert Bosch GmbH,[33] originally for vehicle-to-vehicle 

communication within the car, but now finding wide acceptance in all areas of the industry due to its strength 

and reliability. Basically, CAN bus protocol mediates communications of electronic control units (ECUs) on the 

network but not through a central computer host. This, therefore, creates an invisible relationship between 

interconnected devices to exchange critical real-time data in the modern-day way of operating vehicles and 

industrial machinery. CAN works on a message-based protocol, wherein data is sent as frames. The frames 

carry an identifier that indicates both the priority and content of the message, coupled with the actual data 

payload. CAN uses a differential signaling system and is, therefore, well adapted to transmit without problems 

in noisy surroundings, subsequently enabling this bus to apply effectively in automotive applications, where 

intensities of electromagnetic interference are very high. One of the most critical features of the CAN protocol is 

that it is designed to be fault tolerant. When a transmission error, CAN uses a bitwise mechanism of arbitration 

since hose messages with lower identifiers have priority over those with higher identifiers. By itself, it attempts 

to resolve the conflicting transmissions smoothly allows for the integrity of the communication network. 

Besides, it allows for the variation of the communication speed settings. It is, therefore, flexible in the setup of 

any system, providing data rates of a few kilobits per second up to several megabits per second, which can be 

used and are supported by CAN across all industries. Over the years, the CAN bus protocol has had revisions 

with increments meant for improved data throughput, better fault detection, and security. This has further 

propped up its place in strengthened domains such as automotive networking, industrial automation, and many 

more. The CAN bus protocol, therefore, forms the foundation for all modern communication systems, 

promising reliable interchange even in hostile data environments. That, with the fault-tolerant design, 

decentralized architecture, and flexibility it adheres to, makes it preferred for applications requiring robust and 

efficient communications.  
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• Electronic Control Units  

Electronic Control Units (ECUs) form the heart of today's modern vehicle architecture, playing the role of a 

maestro in the sophisticated interplay of the various subsystems required for optimized performance, efficiency, 

and safety. The high-end embedded systems include functionalities from the vehicle's engine management to 

Advanced Driver Assistance Systems (ADAS)[34], which have the most significant role in vehicle adaptation 

and reactive behavior. Until now, the domain of automotive control systems has relied entirely on mechanical 

and hydraulic components, which facilitate basic operations, among them fuel injection and ignition timing. On 

this continent comes a technological innovation toward super-specialized computational units capable of 

managing complex algorithms and protocols in real time. In principle, ECUs are composed of microcontrollers 

or microprocessors furnished with dedicated memory, input/output interfaces, and communication protocols. 

The ECUs sense the inputs required by using the different types of sensors located in the vehicle, process them 

using sophisticated algorithms, and, in return, command the actuators to make a series of required movements. 

The trend of innovations and optimizations in this area really mirrors the continued growth in the number of 

ECUs in modern-day vehicles. Today, a typical car might include tens of ECUs, which include ECUs for 

managing the engine, controlling the transmission, modulating the brakes, and many others for infotainment. 

Such an architecture would support modularization and specialization, hence allowing easy diagnosis, 

maintenance, and upgrade of the system. It has also enabled the integration of ECUs and high-end 

functionalities developed, such as adaptive cruise control and lane-keeping assistance. The ECUs apply 

sophisticated machine learning algorithms to onboard sensors in a way that they can analyze the driving pattern 

of the driver in a bid to predict danger and proactively take measures to prevent it, hence enhancing safety and 

comfort. As a result, the number of ECUs is projected to grow further, bringing challenges, especially in 

cybersecurity, and increased system complexity. Thus, interconnected systems and communication interfaces 

make ECUs vulnerable to hacking and unauthorized access. So, enforcing high-security measures and strict 

validation procedures to ensure vehicle integrity and user privacy are sacrosanct. All told, electronic control 

units make up the technological backbone of modern automotive systems when digital innovation and 

mechanical exactitude come together. As vehicles continue to roll more and more towards electrification and 

autonomy, ECUs will surely be at the forefront of inciting changes and aiding in shaping a way forward for 

mobility.  

• Attack on EVs  

The development of more ECUs in the systems of such "smart" cars creates a high level at which the automobile 

will be connected with the digital world, hence exposing the automobile to cyber-attacks. CAN protocol is 

extensively accepted, but it makes no room for such security mechanisms as authentication and encryption; it 

thereby really exposes the cars to many threats. Electronic vehicle attacks can happen remotely or through direct 

physical contact. For this reason, the communication channels within the car, including Bluetooth, Wi-Fi, or 

cellular networks, and other channels over the CAN bus from remote places, are open for hackers to exploit to 

transmit their malicious messages. Physical attacks can also be placed in effect either at the time of 

manufacturing or while tampering with on-board diagnostic (OBD) ports in a car, from message spoofing, such 

as attackers sending fake commands to the vehicle to control some part of its behavior, to much more insidious 

attacks. These attacks may result in the loss of life, risk to passenger safety, and compromise of operations 

integrity. Threat actors might potentially take over the control of functions with major criticality levels like 

braking or steering. Besides, there is this risk of hijacking the car's infotainment system or stealing private data, 

which might, in fact, seriously compromise the public trust in the safety of today's vehicles. The danger is not 

only theoretical but some high-profile cases are proven facts that demonstrate these vulnerabilities. For example, 

researchers have shown that it is practically feasible for attackers to take control of a vehicle's engine and brakes 

over the Internet. Such incidents do, in reality, put forward the necessity for very strong security within the in-

vehicle communication network against such kinds of threats. Therefore, the full understanding of these risks 

and methods of their possible attacks is necessary for the in- depth involvement of the automotive industry to 

develop more secure systems against these future threats. This implies thorough, not only benevolent but 

security measures that breed confidence in the reliability of the connected vehicle. 

• Deep Learning for Detection  
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Deep Learning in Cybersecurity: With the exceptional power of deep learning to identify anomalies and 

possible threats in the vehicle network, much has transpired in this regard for cybersecurity. Its capabilities in 

learning from extensive data and knowing complex patterns find perfect use in Supervising the complex 

exchanges in the CAN systems— often, the old ways of security do not suffice.  Deep learning models are 

optimized for normal message separation from those with potentially harmful impacts in a CAN context. Other 

models, instead, analyze the timing, frequency, and sequence of CAN messages to spot the anomalies that refer 

to an attack, e.g., from irregular message patterns to an increase in deviant requests. Here, it is the bedrock for 

some deep-learning architectures, including Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), which have been made operational. In this light, therefore, RNNs will be highly appropriate 

for time- pattern observation within flows of CAN messages and quite capable of detecting state-of-the-art 

attacks that develop over time. The challenges and opportunities arise in the huge benefits that come with the 

high detection capabilities of deep learning. If all else is held constant, it is not free of many challenges. These 

include the fact that it requires massive training data and has other risks like adversarial attacks, where attackers 

manipulate data to beat the defenses. Nevertheless, there’s a strong push in research to make these models more 

robust and less susceptible to such tactics. Deep learning is a powerful tool for bolstering the security of vehicle 

CAN networks, providing an adaptable and forward-looking approach to counteracting the diverse cyber risks. 

III.RELATED WORK  

Significant research has contributed to developing a methodology for detecting attacks on CAN bus protocol. In 

this context, many studies have focused on solving related problems using Machine learning and deep learning. 

This section reviews recent state-of-the-art research and methods that address this problem.  

• ML For Detection on CAN Protocol  

Yang et al. [23] proposed a lightweight framework using machine learning models for IDS in autonomous 

vehicles. The authors focused on the tree-based decision classifier on the standard dataset, and the tree-based 

decision classifier showed significant results in detecting cyberattacks in CAN. The proposed work needs to 

validate the model on the real-time dataset further to evaluate the models' effectiveness and robustness. Alfardus 

and Rawat [24] do excellent research. They tried four different algorithms using HCRL Car-Hacking dataset 

[35]. Three of them are ML, and the last one is DL; for ML SVM, RF, and K-Nearest Neighbor (KNN). They 

got almost similar Results, except KNN, which got on ACC 98.82% and Recalled 98.04%; otherwise, it's 

identical. Alshammari et al. [25] proposed IDS on CAN Bus Protocol using two different ML. The analysis 

using HCRL CAN Intrusion Detection dataset [32], KNN gave great results more than the SVM. D’Angelo, 

Castiglione, and Palmieri [26] present two algorithms designed to execute a data-centric anomaly detection 

framework. The Cluster-based Learning Algorithm's initial algorithm is employed to grasp the typical patterns 

of messages transmitted across the CAN bus, serving as a baseline reference. Conversely, the second algorithm, 

the Data-driven Anomaly Detection Algorithm, is utilized for instantaneous classification of these messages, 

distinguishing between legitimate and malicious ones, thus facilitating early detection in cases of misuse. They 

used the HCRL CAN Intrusion Detection dataset [32], and they got on ACC 99.98%, and for Precision, they got 

99.86%. Refat et al.[27] used the HCRL Car-Hacking dataset [35] to analyze it, and they tried a new approach 

to get a bitter result. First, they transferred the CAN message to Graph Feather, and then they started the 

analysis. They tried two different ML algorithms, SVM and KNN. SVM gave a higher result than KNN.  

Table 1ML INTRUSION DETECTION 

Refere

nce 

number 

 

Type 
Accur

acy 
Recall F1 score 

Precisio

n 

 

DATASET 

23 
DT 99.99 99.99 0.999 

- HCRL Car-Hacking 

dataset [35] 

23 DT 99.72 99.3 0.998 -- CICIDS2017 [36] 

24 
SVM 99.99 100 100 

-- HCRL Car-Hacking 

dataset [35] 

24 RF 99.99 100 100 -- HCRL Car-Hacking 
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Refere

nce 

number 

 

Type 
Accur

acy 
Recall F1 score 

Precisio

n 

 

DATASET 

dataset [35] 

24 
KNN 98.82 98.04 100 

-- HCRL Car-Hacking 

dataset [35] 

25 

SVM 96.4 97.7 93.3 

98.4 HCRL CAN Intrusion 

Detection dataset [32] 

 

25 

KNN 96.9 98.5 93.5 

99.9 HCRL CAN Intrusion 

Detection dataset [32] 

 

26 
Clustrin

g 
99.98 -- -- 

99.86 HCRL CAN Intrusion 

Detection dataset [32] 

 

27 
SVM 99.67 

97.23 
98.04 

99.03 HCRL Car-Hacking 

dataset [35] 

27 
KNN 98.59 

97.06 
97.98 

99.11 HCRL Car-Hacking 

dataset [35] 

 

•  DL For Detection on CAN Protocol  

To achieve more secure communication, hardware and software ciphers might be combined. Hossain et al. [28] 

proposed the LSTM for attack detection in the CAN system. For the LSTM's learning, the authors developed a 

custom dataset using the experimental vehicle. Furthermore, they injected different types of attacks and 

collected malicious samples. The proposed LSTM model showed a 99.99% accuracy score for training and 

testing instances.Similarly, kan et al. [29] also proposed a Bi-LSTM model for anomaly detection in CAN that 

enabled the system to classify the anomalies into DoS, reply, and fuzzy attack. Khatri et al. [30] proposed the 

transfer learning-based model for intrusion detection in CAN. The author extracted the quality features of CAN 

using the DL model and fine-tuned the model for robust classification of attacks. Javed et al[31]  they try a new 

hybrid approach and compare it with previous studies. Their model was designed with Two DL CNN and 

Grated attention Recurrent Neural Networks (GRU), they used CAN Dataset for intrusion detection (OTIDS) 

[32] data set. 

Table 2 DL INSTRUCTION DETECTION 

Referen

ce 

number 

Type 

Accura

cy 
Recall F1 score 

 

Precisio

n 

 

DATASET 

28 LSTM 99.98 99.97 99.90 -- Simulation 

29 Bi-

LSTM 
95.5 - - 

-- Simulation 

30 Transfer 

learning 

Hybrid ( 

CNN+ 

LSTM) 

100 100 100 

100 HCRL Car-Hacking 

dataset [35] 

30 Transfer 

learning 

Hybrid ( 

CNN+ 

99.91 99.91 99.91 

99.91 Car hacking: attack & 

defense challenge 2020 

dataset [37] 
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Referen

ce 

number 

Type 

Accura

cy 
Recall F1 score 

 

Precisio

n 

 

DATASET 

LSTM) 

31 Hybrid 

(CNN+ 

GRU) 

94.23 93.91 93.79 

93.69 

 

HCRL CAN Intrusion 

Detection dataset [32] 

 

 

IV.METHODOLOGY 

In previous studies, DL showed a greater detection result than ML, so we designed a new approach that used 

two DL algorithms. First, we take CAN massage, which comes as input for the RNN model. Then, the result 

goes as input for the second method, LSTM. This showed a great detection result. This section describes the 

proposed methodology with the dataset description. The overview of the proposed method is also shown in Fig 

1 

 

Figure 1 Overview of the proposed methodology. 

• Dataset Description 

We used one of the most published datasets, which is the CAN Dataset for Intrusion Detection (OTIDS)[32]; it 

contains three kinds of attacks (DoS, Fuzzy, and Impersonation) and contains Free attack data. The distribution 

of these classes inside the dataset is shown in Fig 2. In the dataset, about 2.3 million records are normal or 

attacks free, along with Dos, fuzzy and Impersonation have 656.5K, 591.9K, and 995.4K, respectively. The 

dataset contains a total of about 4.6 million records. Originally, the dataset was in the form of text files. 

 

Figure 2 Dataset Class Distribution 

• Dataset Pre-Processing 
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This section discusses the preprocessing of the dataset before splitting it into training and testing and applying 

the model to it. Initially, the data in 4 text files for Dos, Fuzzy, Impersonation, and attacks free, referred to as 

Normal. We have read the text files using Python and merged all four text. files into a single data frame, and set 

the proper column names as ‘Timestamp,’ ‘ID,’ ‘Protocol,’ and ‘DLC,’ etc. After creating the data frame, we 

removed all those instances that have no CAN message. Some columns are also converted to appropriate data 

types that were initially in string or Object type to get the best results for the model. The labels of the training 

and testing set were encoded into 0, 1, 2, and 3 for Dos, Fuzzy, Impersonation, and Normal classes. 

After preprocessing all the data, we split the data into train, validation, and test sets with 60% for training, 20% 

for validation, and 20% for testing. We have also used the argument of the splitting function to split the data 

equally based on their classes—the count of the records after the split is shown in Table III. We have also 

converted the data into the appropriate format that the RNN model expects, a 3d format. 

Table 3 Samples Distribution in each Subset. 

Split Fuzzy Dos Impersonation Normal Total 

Train 371142 413302 634081 1451852 2870377 

Validation 92785 103326 158521 362963 717595 

Test 115982 129157 198150 45370 896993 

 

• Proposed Architecture 

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), and fully connected layers are all 

integral parts of deep learning in their respective ways of managing and processing serial data. RNNs are well-

designed to process sequential data. They retain the data from the previous input to scale up their competence in 

tasks like time series prediction, voice recognition, and processing language. LSTMs help provide a way to 

solve the vanishing gradient problem in conventional RNNs, thus enabling long-term data to be handled more 

effectively. Dense or fully connected layers are central architectural elements of a neural network, enabling a 

network of interlinked neurons to perform intricate feature detection and categorizing. 

We have proposed a hybrid deep learning model that combines RNN with the efficient LSTM model to get 

optimized results of classification for the effective intrusion detection task. Initially the preprocessed data 

passed to the RNN architecture that will do initial feature extraction and get the embeddings of our data, then 

these embeddings passed to the LSTM architecture that have the capability for extracting long term dependent 

features to find the exact representation of our data. Once the feature extraction phase has been completed, these 

extracted features then go through the fully connected layers stacked one after the other. In this phase the 

extracted features undergo through the interconnected neuron layers which further refine the features. Finally, 

the output of this layer passed through the classification layer which classify the input record into one of the 

four predefined classes.  

V.RESULTS AND DISCUSSION 

The evaluation measures that were employed to ascertain the effectiveness of the recommended strategy are 

thoroughly examined in this section. It also looks at the hardware and software requirements needed for training 

and evaluating models. A thorough description of the various hyper-parameters and the values that correspond 

with them is provided. This part also meticulously presents a thorough examination of the results obtained using 

the proposed methodology. 

• Evaluation Measures 

Some of the quantitative measures, also referred to as assessment metrics to measure a deep learning model, are 

effective. It assesses the performance at which different models or algorithms perform for some given tasks, 

estimates the performance of a model or algorithm to solve a given problem, and provides areas of potential 

improvement. This research employed Recall, ROC curve, accuracy, f1-score, precision, and confusion matrix 
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in the assessment measures. All taken together, these measurements provide an all-rounded verdict of the 

model's efficacy and thereby detail both the benefits and possible areas for its development. 

Accuracy: Accuracy measures how well the model classifies correctly, taking everything into account, including 

all the instances and samples. Yet, if different types of lapses differ in their degree of importance or if datasets 

are imbalanced, one might quickly conclude that strict reliance on the attribute of accuracy is insufficient for a 

complete evaluation. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

Precision: Precision is related to how well the model can correctly select positive samples from the set of actual 

positives. The number of true positives against the summation of the number of true positives and the number of 

false positives computes precision. In short, precision indicates how well the model performs when it generates 

a positive forecast. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall: Recall measures how successfully the model separates positive samples from the actual positive pool. It 

is also frequently referred to as sensitivity or the true positive rate. This statistic is computed as the ratio of true 

positives to the sum of true positives and false negatives. In essence, recall offers an assessment of the extent to 

which the model's favorable predictions hold true. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

F1_Score: A total statistic that strikes a balance between recall and precision is the f1-score. The harmonic 

mean of these two measurements is used to calculate it. This is particularly helpful in situations where there is 

an unequal distribution of lapses among the classes or where the significance of the two error categories is the 

same. Using a range of 0 to 1, the f1-score is a comprehensive assessment of the model's precision and recall 

skills. It functions optimally at 1. 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

• Environmental Setup 

Several experiments were conducted within the Colab environment to test the models. Throughout this study, 

the model was trained and evaluated using the Python programming language TensorFlow and Keras. An 

NVIDIA Tesla T4 GPU with 15 GB of RAM was used in the trials, which ran on Google Colab's free edition. 

• Hyper-Parameter Settings 

Extensive empirical testing was conducted to optimize the model training performance for Intrusion detection in 

the CAN system by fine-tuning several hyperparameters. Batch size, selection of optimizer, learning rate, 

epochs, and loss function selection are some of these critical factors. The goal was to determine which 

combination of hyperparameter values produced the most significant outcomes in identifying intrusion in CAN 

by methodical testing and iteration. The model was optimized iteratively to get the appropriate degree of 

resilience and accuracy in identifying various forms of CAN intrusion. The selected parameters are shown in 

Table 4. 

Table 4 Optimal Values of Hyperparameters. 

Parameter Value 

Optimizer Adam 

Learning rate 0.001 

Epochs 10 

Batch Size 64 
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Activation              (RNN & LSTM) ReLU 

Dense layer Neuron (RNN & LSTM) 64 

• Evaluation Measures 

In this study, we have suggested a hybrid RNN-LSTM architecture for categorizing various CAN system 

assaults on automobiles. Following preprocessing and the removal of records without any messages, the 

dataset's initial contents were 4.61 million, which were reduced to 4.48 million records. Firstly, 20% of the 

dataset was put aside for testing, leaving 80% for training. From the training set, 20% of that was used for 

validation when our model was in the training stage. As seen in Figure 3, the model functioned incredibly well 

and displayed accuracy rates of 93.2% and 93.2% for both training and validation. The performance of the 

model can be seen from the losses which are 0.1831 and 0.1833 for training and validation respectively, as 

presented in Fig 3. 

 

Figure 3 The loss and accuracy of the model during training. 

ROC curve and confusion matrix technique is used for the evaluation of the model on the unseen data that was 

separated out initially. An assessment metric called a confusion matrix shows the actual label of the samples on 

the y-axis and the anticipated label of the model on the x-axis. Additionally, it determines the number of correct 

matches in cases where the projected label and the actual label match exactly. Fig 4 displays the confusion 

matrix of the trained hybrid model. 

 

Figure 4 Confusion matrix of our proposed hybrid model. 
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The confusion matrix was used to construct the remaining assessment metrics, such as accuracy, precision, 

recall, and f1-score, as stated in equations 1-4. The table comprehensively summarizes the model for 

various attack categorizations on unseen samples. The unweighted average of measurements determined 

individually for each class is referred to as "Macro AVG" in Table 5. Put another way, it computes the average 

of each class's unique performance metrics and considers all classes equally, regardless of how frequently or 

how important they are. This ensures that every class receives a fair evaluation. Calculating the average of the 

metrics weighted by the number of samples in each class, also known as "Weighted AVG," which considers the 

class imbalance. This indicates that, in comparison to classes with fewer instances, classes with more instances 

have a more significant impact on the total average. "Weighted AVG" is especially helpful when working with 

unbalanced datasets since it assigns greater weight to class performances that are more typical of the 

distribution. 

Table 5 Classification Report of the Proposed Model. 

  Precision Recall F1Score Support 

DoS 0.89 0.78 0.83 129157 

Fuzzy 0.92 0.74 0.82 115982 

Impersonation 1 1 1 198150 

Normal 0.92 0.99 0.95 453704 

Accuracy     0.93 896993 

Macro Avg 0.93 0.88 0.9 896993 

Weighted 

Avg 
0.93 0.93 0.93 896993 

The ROC curve is an extremely useful visual tool in which the plot of the performance is made at different 

levels of decision-making thresholds to assess how well the classification system works. It's basically a plot of 

the True Positive Rate (TPR) against the False Positive Rate (FPR) with a changing threshold. True Positive 

Rate is also called sensitivity or recall; it specifies the number of actual positives that are correctly identified 

through a test. The False Positive Rate tells how many negatives are wrongly assigned to positives. On the other 

hand, the area under the ROC curve gives overall information about the accuracy of the test in discriminating 

effectively between the two groups. A ROC curve plots sensitivity on the y-axis against 1-specificity on the x-

axis. An AUC of 0.5 suggests the test does no better than making random guesses, and an AUC of 1.0 suggests 

the test perfectly separates the two groups. The proposed hybrid model gives the AUC score of 0.97, 0.98, 1.00, 

and 0.99 for Dos, Fuzzy, Impersonation, and Normal Classes, respectively, as shown in Figure 5.  

 

Figure 5 ROC Curve of all Classes. 
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VI.CONCLUSTION 

This study proposed a hybrid deep learning model by combining Recurrent Neural Networks (RNN) with Long 

Short-Term Memory (LSTM) networks for an improved electric vehicle cybersecurity setup. Our 

groundbreaking hybrid deep-learning model goes beyond off-the-shelf solutions, not just in dealing with the 

CAN protocol's known susceptibilities but by setting new standards for both accuracy and efficiency for 

intrusion detection by giving a 93% success rate. This work shows the potential for enhancement in the security 

of the vehicular network through the fusing of RNN and LSTM architectures. As the trend of connecting electric 

vehicles to an ecosystem increases, there is an urgent need to develop a robust intrusion detection system. These 

advancements have made it necessary to move to an advanced level of cybersecurity protection against 

sophisticated threats, including Denial of Service (DoS), fuzzy, and impersonation attacks, which are increasing 

daily in the changed automotive technology environment. The effectiveness of the proposed model would, in 

essence, lead to the efficacy of the current security protocols while opening doors for further research and 

development. The study promotes the continued development and exploration of deep-learning strategies to 

enhance the accuracy and efficiency of intrusion detection systems. 

This research, therefore, provides a critical step in the security of electric vehicles from cyber threats, thus 

leading to improved intrusion detection systems using RNN and LSTM. These, in turn, would undergird 

continuous innovation in vehicle cybersecurity and form a solid base for future actions to secure connected and 

autonomous vehicles to provide a safe, reliable, and resilient automotive future. 
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