
J. Electrical Systems 20-6s (2024): 2656-2670

2656

1 T Shathish Kumar

2B Booba

Rand-Index Target Projective

Gradient Deep Belief Network for

Software Fault Prediction

Abstract: - Predicting defective software modules before testing is a valuable operation that reduces time and cost of software testing.

Source code fault prediction plays a vital role in improving software quality that effectively assists in optimization testing resource

allocation. Several machine learning and ensemble learning techniques has been extensively evolved over the recent few years to predict

defect at an early stage. These techniques made predictions based on historical defect data, the software metrics. Nevertheless, the time

efficient and accurate fault predictions are the major challenging tasks that yet have to be addressed. In order to ensure accurate software

fault prediction, a method called Rand-Index Target Projective Gradient Deep Belief Network (RTPGDBN) is designed. The proposed

RTPGDBN method comprises of three processes namely acquiring JAVA packages, software metric selection and classification. First, the

number of JAVA packages is used as input from the dataset. Second with the JAVA packages obtained as input, Rand similarity indexive

target projection function is applied for selecting the most significant software metrics in order to minimize time complexity of fault

prediction. Third, with the selected metrics, classification is performed using Tversky Gradient Deep Belief neural network. Also, gradient

descent function is applied to minimize classification error, therefore ensuring accurate software fault classification results obtained at the

output layer. Experimental setup of proposed RPGDDBN and existing methods are implemented in Java language and the dataset collected

from smell prediction replication package. Performance analysis is carried out with different quantitative metrics such as accuracy,

precision, recall, F-measure, and time complexity and space complexity. Through extensive experiments on repository data, experimental

results indicate that our RPGDDBN method outperforms two state-of-the-art defect detection methods in terms of different performance

metrics.

Keywords: Software Fault Prediction, Rand-Index, Target Projective, Tversky, Gradient Descent, Deep Belief Network

I. INTRODUCTION

Encountering a high-quality software design is constrained by experiencing software design that definitely

positively controls the software produce quality features, like, affinity, sustainability, reliability, security and

scalability. As each characteristics of quality has a greater influence on others, it is essential to act in accordance

with the back and forth techniques, i.e., concentrating on the quality attributes that are interpreted by the

circumstances and tolerance of others.

A Hybrid Approach to detect Large Class Bad Smell (HA-LCBS) was proposed in [1] to detect large class bad

smell. Here, Genetic Algorithm (GA) was employed for automating module detection composition including

cohesion and coupling metric. Following which the resulting paired value were passed to deep learning technique

with the purpose of automating large class bad smell. As a result, accuracy with which bad smell detection were

made was found to be significant. Nevertheless, owing to the immediate reliance between improved and

consistent code, earlier machine learning based techniques cut out to model prolonged and deep dependencies,

resulting in high false positive. To focus on this aspect, a Bug Prediction (BUGPRE) method was proposed in [2]

to address the two issues relating to prolonged and deep dependencies. Here, propagation tree-based associated

analysis was employed for performing effective defect prediction with the purpose of acquiring the changed

modules in the current version. In addition, BugPre contrived capitalizing code context dependences and

employed a graph convolutional neural network for learning representative characteristics of code. As a result,

defect prediction potentiality was improved when updates were noticed during changes in version, therefore

improving both accuracy and F1-score.

1* T Shathish Kumar, Department of Computer and Engineering, Vels Institute of Science, Technology & Advanced Studies
(VISTAS),

Vels University, Chennai, Tamil Nadu, India

2 Department of Computer and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS),

Vels University, Chennai, Tamil Nadu, India

Copyright©JES2024on-line:journal.esrgroups.org

J. Electrical Systems 20-6s (2024): 2656-2670

2657

The quality and reliability of software specifically depend on eliminating defects in software. The conventional

mechanism for identifying software defects is by means of testing and performing reviews, but necessitates time

and effort. On contrary, automatic software defect prediction may assists developers in enhancing quality of code

at a reduced cost upon comparison to manual model. Hence, Software Defect Prediction (SDP) has become a

significant research area of topic in recent years. A holistic review of deep learning techniques for software defect

prediction was investigated in [3]. Historical data is considered as the gold mine for predicting software defect

with greater level of accuracy and confidence. This is owing to the reason that the software defect prediction data

is available in its raw form, hence found to be not suitable as far as machine learning applications are concerned.

A robust tool was introduced in [4] that initially with the aid of raw data collection following with validation

finally predicted the defect by means of machine learning. Multiple expert learning systems were integrated in [5]

to decide on the faulty modules with elevated accuracy rate. The process of software defect-prediction comprises

of metrics extraction and designing full proof defect prediction. Over the past few years, most conventional

software defect-prediction methods employ machine learning for constructing defect prediction following which

the extracted metrics were employed as model features. Nevertheless, the conventional metrics specifically

concentrated on complexity involved in code designing. Also strong differentiation between semantics and

semantic information in the source code were not made.

To explore information between sequences and also to learn code semantics in addition to syntactic structure, a

method call sequence was presented in [6] that preserve the code context structure information. With this type of

design, mean absolute error rate was found to be comparatively less. Yet another deep learning based prediction

method was proposed in [7] to focus on the accuracy and time aspect. Since recently deep learning techniques

have achieved significant results in several areas of applications, there is a requirement to apply for all type of

problems, i.e., software defect prediction. In this work, the objective is to evaluate the performance of deep belief

neural network and the effect of gradient function on defect prediction methods and also compare these results

with the performance of deep learning algorithms. We report our findings on the comparison of the software

defect prediction performance of two learning algorithms (i.e., HA-LCBS and BUGPRE). Experiments were

performed on publicly available dataset.

A. Contributory remarks

To design Rand similarity indexive target projection-based feature selection where the time and accuracy is said

to be improved by means of rand similarity index function and target projection. The problem is formulated as a

defective and non-defective package modeled at different time instances owing to different class data samples and

features employed for testing and accordingly results are evaluated. The contributing remarks of Rand-Index

Target Projective Gradient Deep Belief Network (RTPGDBN) are provided below.

• To design efficient method for software fault prediction using Rand-Index Target Projective Gradient

Deep Belief Network (RTPGDBN) method.

• To propose Rand similarity indexive target projection-based feature selection for obtaining

computationally efficient software metrics.

• To present an algorithm called Tversky Gradient Deep Belief Neural Network-based classifier that with

the aid of Tversky Gradient function and soft step activation function improves precision and recall with

minimum complexity.

• Experiments are performed conducted on the smell prediction replication package and the results show

that our method can efficiently enhance the prediction performance of defect prediction method with improved

precision, recall and has the lowest complexity and time in terms of comparison with other methods.

B. Outline of the paper

The remainder of this paper is organized as follows: Section 2 introduces related work on traditional software

metric defect prediction algorithms, deep learning based prediction and machine learning based prediction.

Section 3 describes the proposed Rand-Index Target Projective Gradient Deep Belief Network (RTPGDBN)

J. Electrical Systems 20-6s (2024): 2656-2670

2658

method. Section 4 presents the experimental setup and parameter settings, followed by discussion with the aid of

table and graph in Section 5. Section 6 summarizes our work.

II. RELATED WORKS

As far as early phases of software evolution life cycle are concerned, one of the sophisticated means of defect

identification is software defect prediction. This early warning mechanism can assist in discarding defects present

in software and produce cost efficient and quality software products. However, the imbalanced nature of data

remains the major concerns for software module defect prediction. A novel hybrid method called, Hellinger net

model was designed in [9] that addressed the issues relating to imbalanced learning for enhancing software

module defect prediction. Yet another method to focus on the accuracy aspect employing graph representation

learning was presented in [10]. A case study of software defect prediction to explore feasibility of employing

static software metrics were investigated in [11]. Yet another empirical study on the mechanism for software

defect prediction using classification was discussed in [12].

The core objective of a software project remains in carrying out the anticipated performance while assigning the

indispensable measure of quality on time and within a defined budget. From the angle of software projects

evolved over the past few years, the intricacy in developing software has risen owing to the expanded number of

customer requirements. This complexity has made it more laborious and cumbersome to achieve their main

objectives. Ensemble machine learning techniques and RNN-based deep learning was applied in [13] for software

fault prediction. Nevertheless, few studies considered the influence of time factors on prediction results. An

improved Elman neural network was presented in [14] for improving the defect prediction adaptability to the

time-varying features.

Most of the prevailing defect prediction methods are designed on the basis of lines of code, stack reference depth

for defect prediction. However, it did not take into consideration the semantic features into account that in turn

would result in unsatisfactory prediction results. In [15], convolutional neural network was designed with the

purpose of mining semantic features towards accurate software defect prediction. Yet another enhanced random

forest technique was applied in [16] for defective system prediction. Also with defect density prediction before

module testing is said to be laborious and time consuming, decision makers require to construct a prediction

method that can assist in defective module detection. With this type of design would result in minimizing both the

testing cost and enhance resource utilization testing significantly. However, data sparsity involved in defect

density prediction was not made. To address on this issue, deep learning was applied in [17] to handle data

sparsity in defect density. Yet another graph-based ML was presented in [18] by taking into consideration CNN

for ensuring accuracy involved in prediction.

The prevailing software defect prediction practiced on file level cannot predict failures in an accurate fashion. To

solve this issue, a novel technique combining statement level granularity and attention based LSTM was designed

in [19] for predicting defects in statement-level. To reduce the complexity, a graph based ML technique for defect

prediction was presented in [20]. Though certain works provided in the literature address on accuracy aspects,

certain others focuses on precision and recall. In this work, a method called, Rand-Index Target Projective

Gradient Deep Belief Network (RTPGDBN) is proposed. The elaborate description of RTPGDBN is provided in

the following sections.

III. METHODOLOGY

This section formulates a new method to software defect prediction by applying Tversky Gradient Deep Belief

neural network for automating module detection composition. Our proposed RPGDDBN method is illustrated in

figure 1 includes three steps: 1) obtaining metrics data and repository data for extracting the JAVA packages, 2)

selecting significant software metrics which reveal the behavior of programs, and 3) applying a Tversky Gradient

Deep Belief neural network on selected significant software metrics for ensuring accurate software fault

classification. Figure 1 shows the structure of RPGDDBN method.

J. Electrical Systems 20-6s (2024): 2656-2670

2659

Figure 1 Structure of RPGDDBN method

As shown in the above figure, in the first, step, design smell and metrics are extracted from the corresponding

JAVA classes. Next, in the second step, Rand similarity indexive target projection is applied to obtain the most

significant software metrics of a program. Finally, we leverage a powerful Tversky Gradient Deep Belief neural

network to automatically build predictive models based on gradient descent function for accurate and precise

classification. The elaborate description of the RPGDDBN method is provided in the following sections.

A. Dataset details

The smell prediction replication package dataset employing metrics-data and repository-data validated in our

work is one of the most common benchmark datasets extensively utilized for software defect prediction analysis.

In this work, for each system, both metrics-data and repository data containing design smell and metrics in

addition to commit sequences are manipulated to train and test the proposed method. The smell prediction

replication package dataset is obtained from https://drive.google.com/drive/folders/101QbQ-TtQpyZa-

APCFo4hCGAc_c-g6-Y. The design smells are reported in the columns ranging between 5 and 23, whereas the

product metrics are reported in columns ranging between 24 and 53. Finally, the last two columns are discarded as

they refer to the type of artifact.

B. Rand similarity indexive target projection-based feature selection

The magnitude of the data employed in training the neural network can have certain influences on the neural

network performance. With input data possessing fewer variables, the classification system is said to be faster

with comparatively better convergence speed. Therefore, the magnitude of defective metrics should be reduced.

Hence, software metric (i.e., feature) selection is extensively employed in picking out the most significant

software metric to train the neural network.In this work, Rand similarity indexive target projection-based feature

selection model is used to minimize the number of data by selecting the most important features. The Rand

similarity indexive target projection is used to reduce the number of input variables and to transform the original

defect dataset to select the smallest subset of data. With the hypothesis that there are ‘M*N’ software

packagesor files in a software system where each software package is represented with ‘(P_i,P_j),where i,j∈

M*N’, a correlation matrix ‘CM’ of size ‘M*N’ is generated that exhibits the source code similarities among

the packages. This correlation matrix is initially formulated as given below.

J. Electrical Systems 20-6s (2024): 2656-2670

2660

𝐶𝑀 = [

𝐶𝑀(𝑃1, 𝑃1) 𝐶𝑀(𝑃1, 𝑃2) … 𝐶𝑀(𝑃1, 𝑃𝑁)

𝐶𝑀(𝑃2, 𝑃1) 𝐶𝑀(𝑃2, 𝑃2) … 𝐶𝑀(𝑃2, 𝑃𝑁)
… … … …

𝐶𝑀(𝑃𝑀 , 𝑃1) 𝐶𝑀(𝑃𝑀, 𝑃2) … 𝐶𝑀(𝑃𝑀 , 𝑃𝑁)

] (1)

From the above equation (1), the correlation matrix ‘𝐶𝑀’ is formulated by taking into consideration ‘𝑃𝑀 ∗ 𝑃𝑁’

packages for simulation. Then, given ‘𝑛’ element set ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}’ and two portions of ‘𝑆’ to equate or

compare ‘𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑖}’ a portion of ‘𝑆’ into ‘𝑖’ subsets and ‘𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑗}’ a portion of ‘𝑆’ into ‘𝑗’

subsets define the following hypothesis.

𝐻0: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵(𝑠𝑠)

 𝐻1: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵 → (𝑑𝑑)

 𝐻2: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵 → (𝑠𝑑)

 𝐻3: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵 → (𝑑𝑠)

Based on the above hypotheses, ‘𝐻0’, ‘𝐻1’, ‘𝐻2’ and ‘𝐻3’, the Random Similarity Index is mathematically

represented as given below.

𝑅𝐼 =
𝑠𝑠+𝑑𝑑

𝑠𝑠+𝑑𝑑+𝑠𝑑+𝑑𝑠
=

𝑠𝑠+𝑑𝑑

(
𝑛
2)

 (2)

From the above formulate (2), ‘(𝑠𝑠 + 𝑑𝑑)’ symbolizes the magnitude of agreements between ‘𝐴’ and ‘𝐵’, and

‘ (𝑠𝑑 + 𝑑𝑠) ’ symbolizes the magnitude of disagreements between ‘ 𝐴 ’ and ‘ 𝐵 ’ respectively. Also as the

denominator represents the total numbers of pairs, the Random Similarity Index represents the repetition of

incident of agreements over the total sample instances. Then for each package ‘𝑃𝑖 ’, correlation to defective

package ‘𝐶𝐷𝑃𝑖’ and correlation to non-defective package ‘𝐶𝑁𝐷𝑃𝑖’ is measured as given below.

𝐶𝐷𝑃𝑖 = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1 (3)

From the above equation (3), ‘𝑆𝑀(𝑃𝑖 , 𝑃𝑗)’ is taken into consideration if ‘𝑃𝑗’ is defective and in a similar manner,

‘𝑆𝑀(𝑃𝑖 , 𝑃𝑗)’ as given below (4) is taken into consideration if ‘𝑃𝑗’ is non-defective.

𝐶𝑁𝐷𝑃𝑖 = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1 (4)

On the other hand, we also take into consideration how faultiness is simulated or affected when the class data

samples is s considered together with the correlation. That is why two more metrics are introduced (i.e.,

correlation to defective packages with class data samples and correlation to non-defective packages with class

data samples). Assuming the size of a class data samples in terms of instances, we calculate ‘𝐶𝐷𝑃[𝐶𝑖]’ (i.e.,

correlation to defective packages with class data samples) and ‘𝐶𝑁𝐷𝑃[𝐶𝑖]’ (i.e., correlation to non-defective

packages with class data samples) metrics for each package as given below.

𝐶𝐷𝑃[𝐶𝑖] = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1 ∗ 𝐶𝑗 (5)

 𝐶𝑁𝐷𝑃[𝐶𝑖] = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1 ∗ 𝐶𝑗 (6)

From the above equation (5), correlation to defective packages with class data samples is formulated if ‘𝑃𝑗’ is

defective whereas from equation (6), correlation to defective packages with class data samples is formulated if

‘𝑃𝑗’ is non-defective. Finally, the overlap between ‘𝐴’ and ‘𝐵’ is outlined in a contingency table ‘[𝑘𝑖𝑗]’ where

each entry ‘ 𝑘𝑖𝑗 ’ represents the number of software metrics in repeated between ‘ 𝐴𝑖 ’ and ‘ 𝐵𝑗 ’. This is

mathematically represented as given below.

𝑘𝑖𝑗 = [𝐴𝑖 ∩ 𝐵𝑗]) (7)

J. Electrical Systems 20-6s (2024): 2656-2670

2661

Figure 2 contingency table construction using target projection

From the above equation (7), finally, the most significant software metrics selected are obtained according to

common software metrics inclass data samples. Figure 2 shows the contingency table construction using target

projection (i.e., correlation to both defective/non-defective packages with class samples).

Finally, with the contingency table construction using target projection the software metrics in common between

two packages are eliminated from further processing. In this manner, more significant software metrics are

obtained with minimum complexity. The pseudo code representation of Rand similarity indexive target

projection-based feature selection is given below.

Input: Dataset ‘𝐷𝑆’, Java Package ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’

Output: Computationally-efficient and significant software metrics ‘𝑘𝑖𝑗’

1: Initialize‘𝑛’ independent packages

2: Begin

3: For each Dataset ‘𝐷𝑆’ with Java Package ‘𝑃’

4: Obtain correlation matrix as given in (1)

5: For each hypothesis

6: Evaluate Random Similarity Index as given in (2)

7: Measure correlation to defective package and non-defective package as given in (3) and (4)

8: For each class data samples

9: Evaluate correlation to defective and non-defective packages with class data samples as given

in (5) and (6)

10: End for

J. Electrical Systems 20-6s (2024): 2656-2670

2662

11: End for

12: Return significant software metrics ‘𝑘𝑖𝑗’

13: End for

14: End

Algorithm 1 Rand similarity indexive target projection-based feature selection

As given in the above algorithm, for each dataset and java packages acquired as input, correlation matrix is

initially generated. Following which four distinct hypotheses with same and different subsets are evolved so that

the number of agreements can be increased and also the number of disagreements can be decreased. By achieving

this objective using rand similarity index function, the accuracy involved in software fault prediction can be

improved significantly. Following which, with the aid of target projection evolved using contingency table via

defective and non-defective packages with class data samples significant software metrics are obtained in a timely

manner, therefore improving the software fault detection time.

C. Tversky Gradient Deep Belief Neural Network-based classifier

Over the recent few years, the software industry has contributed sizeable amount of endeavor to enhance software

quality in organizations. Registering dynamic software defect prediction will assists both the developers and

testers to identify the defects at an early stage, therefore minimizing both the time and endeavor. Conventional

software defect prediction methods focus on models concentrate on standard source code characteristics like,

complexity involved in code, lines of code and so on. However, these characteristics go wrong in predicting

software defect with minimum complexity. In this work, with the selected metrics, classification is performed

using Tversky Gradient Deep Belief Neural Network-based classifier. The proposed classifier comprises

numerous layers such as one input layer, two hidden layers, and one output layer. Figure 3 shows the structure of

Tversky Gradient Deep Belief Neural Network-based classifier model.

Figure 3 Structure of Tversky Gradient Deep Belief Neural Network-based classifier model

As illustrated in the above figure, distinct numbers of selected software metrics are given as input in visible

input layer. Next, the visible input layer value is transferred into the hidden layer where Tversky correlation is

applied with the purpose of identifying the software faults in Java package classes. Following which the

correlation values are given to the next hidden layer where soft step activation function is applied for analyzing

the given input in visible input layer and provides the final classified results as defect or non-defects in the output

J. Electrical Systems 20-6s (2024): 2656-2670

2663

visible layer. Also, gradient descent function is applied to minimize classification error, therefore ensuring

accurate software fault classification results obtained at the output layer with minimal complexity.

Let us consider the significant software metrics ‘𝑘𝑖𝑗’ to be initialized in the training vector.

 𝑘𝑖𝑗 = [

𝑘11 𝑘12 … 𝑘1𝑁

𝑘21 𝑘22 … 𝑘2𝑁

… … … …
𝑘𝑀1 𝑘𝑀2 … 𝑘𝑀𝑁

] (8)

From the above equation (8), ‘𝑀 ∗ 𝑁’ significant software metrics are initialized in the visible units. Following

which, Tversky Gradient function is applied that tunes the parameters of the measure so as the optimally adapt it

to identifying the software faults. To this end, we assume suitable training data to be given, that model about the

similarity or dissimilarity between class data samples in the first hidden layer. To be more specific, let us assume

the training data as given below:

 𝑃 = {𝑓(𝐴𝑛), 𝑓(𝐵𝑛), 𝑅𝑒𝑠𝑛}𝑛=1
𝑁 ∈ 𝑃[𝑘𝑖𝑗] (9)

From the above formulate (9), each training data or training example is a triplet, ‘(𝐴𝑛), 𝑓(𝐵𝑛), 𝑅𝑒𝑠𝑛’, where

‘𝑅𝑒𝑠𝑛 ∈ {0,1}’ infers whether the two class data samples ‘𝐴𝑛’ and ‘𝐵𝑛’ are considered similar or not. Next, in the

second hidden layer,soft step activation function is applied to the first hidden layer results as given below.

 𝜑(𝑅𝑒𝑠) =
1

1+𝑒−𝑅𝑒𝑠 (10)

Next, the hidden units are updated in parallel given the visible unit as given below.

𝑃𝑟𝑜𝑏(ℎ𝑗 = 1|𝑉) = 𝜎 (𝑋𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗𝑖) (11)

From the above equation (11), ‘𝜎’ represent the soft step activation function with ‘𝑋𝑗’ denoting the bias of ‘ℎ𝑗’. In

a similar manner, the visible units are updated in parallel given in the hidden layer as given below.

𝑃𝑟𝑜𝑏(𝑣𝑖 = 1|𝐻) = 𝜎 (𝑌𝑖 + ∑ ℎ𝑗𝑤𝑖𝑗𝑗) (12)

From the above equation (12), ‘𝜎’ represent the soft step activation function with ‘𝑌𝑖’ representing the bias of ‘𝑣𝑖’.

The pseudo code representation of Tversky Gradient Deep Belief Neural Network-based classifier is given below.

Input: Dataset ‘𝐷𝑆’, Java Package ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’

Output: Precise and complexity-minimized software fault prediction

1: Initialize‘𝑛’ independent packages, significant software metrics ‘𝑘𝑖𝑗’

2: Initialize visible units (i.e., significant software metrics ‘𝑘𝑖𝑗’) to training vector

3: Begin

4: For each Dataset ‘𝐷𝑆’ with Java Package ‘𝑃’

5: Initialize significant software metrics ‘𝑘𝑖𝑗’ in the training vector as given in (8)

6: Formulate Tversky Gradient function as given in (9)

7: If ‘𝑅𝑒𝑠𝑛 = 0’

8: Both class data samples in training and test set are similar

9: Go to step 14

10: End if

11: If ‘𝑅𝑒𝑠𝑛 = 1’

12: Both class data samples in training and test set are dissimilar

13: Formulate soft step activation function as given in (10)

14: If ‘𝜑(𝑅𝑒𝑠) > 0 𝑎𝑛𝑑 𝜑(𝑅𝑒𝑠) ≤ 0.5’

15: Then packages identified with non defective instances

16: Go to step 23

17: Else if ‘𝜑(𝑅𝑒𝑠) ≥ 0.5 𝑎𝑛𝑑 𝜑(𝑅𝑒𝑠) ≤ 1’

18: Then packages identified with defective instances

J. Electrical Systems 20-6s (2024): 2656-2670

2664

19: Update hidden and visible units as given in (11) and (12)

20: End if

21: End if

22: End for

23: End

Algorithm 2 Tversky Gradient Deep Belief Neural Network-based classifier

As given in the above algorithm, the overall software fault prediction process is split into two sections, i.e., visible

layer and hidden layer. Here visible layer serves as both the input and output layer. In the hidden layer the actual

intermediate process is performed where the actual classification process is done to provide the final results (i.e.,

defective or non defective instances). First, the significant software metrics are obtained as input in the visible

layer with which the actual process of software fault prediction has to be made. Second, Tversky Gradient

function is applied in the first hidden layer, where with the aid of different weights reduces the false positive and

false negative rate, therefore improving the overall precision and recall rate significantly. Following which soft

step activation function is applied in to the second hidden layer, where the function being differentiable, i.e., the

slope of the sigmoid curve can be identified at any two points with either defective or non defective instances. In

this manner, the complexity involved in software fault prediction is improved significantly.

IV. EXPERIMENTAL SETUP

In the previous section, the entire process of modeling and implementation of the Rand-Index Target Projective

Gradient Deep Belief Network (RTPGDBN) method is introduced. The method is also validated to be

hypothetically practicable. In this section, the theoretical model is applied to real data for verification and

validation. To obtain more accurate and complete data and make the experiment credible, we use the dataset

collected from https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y and are

implemented in JAVA language. This work conducts experiments using the prediction method and basic data

proposed above and analyzes the results and validates accordingly. Considering that the entire software defect

detection process includes several specific processing procedures, it is important to ensure that we use appropriate

and effective methods at each step.Performance analysis is carried out with different quantitative metrics such as

software fault prediction time, software fault prediction accuracy, precision recall and space complexity.

V. EVALUATION MEASURES

To measure and validate the performance of defect prediction, the following performance metrics are used,

precision, recall, software fault prediction accuracy, software fault prediction time and space complexity. All the

five metrics are introduced below.

A. Case scenario 1: Software fault prediction time

This section represents the software fault prediction time complexity of the methods based on the testing.

Furthermore, the testing technique is viewed as a critical statistic as it reveals the efficiency and general

performance and significant performance indicators. This is mathematically stated as given below.

 𝑆𝐹𝑃𝑇 = ∑ 𝐶𝑖
𝑛
𝑖=1 ∗ 𝑇𝑖𝑚𝑒 [𝑆𝐹𝑃] (13)

From the above equation (13), the software fault prediction time ‘𝑆𝐹𝑃𝑇’ is measured by taking into consideration

the class data samples ‘𝐶𝑖 ’ for simulation and the time involved in the software fault prediction process

‘𝑇𝑖𝑚𝑒 [𝑆𝐹𝑃]’. It is measured in terms of milliseconds (ms). Table 1 compares the RTPGDBN method with other

state-of-the-art software fault prediction methods with the same settings (as in table 1). The RTPGDBN method

achieved the best results with minimum amount of time taken or consumed for predicting the fault prone classes.

https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y

J. Electrical Systems 20-6s (2024): 2656-2670

2665

Table 1 Software fault prediction time using RTPGDBN, HA-LCBS [1] and BUGPRE [2]

Number of class

data

Software fault prediction time (ms)

RTPGDBN HA-LCBS BUGPRE

1000 11 14 17

2000 11.55 15.35 19.25

3000 13.15 20.15 25.35

4000 18 25.35 30.15

5000 21.35 30 38.35

6000 25.85 33.45 45.25

7000 28.25 35.35 50.35

8000 30 38.45 55.35

9000 31.45 41.35 60.25

 10000 35.85 48.15 70.15

Figure 4 Comparison of software fault prediction time using RTPGDBN, HA-LCBS [1] and BUGPRE [2]

Firstly, we compare our proposed RTPGDBN with HA-LCBS [1] and BUGPRE [2] with regard to the software

fault prediction time efficiency. As shown in figure 4, the software fault prediction time efficiency of our method

is the best in these three methods, followed by HA-LCBS [1] and the worst by BUGPRE [2]. In the HA-LCBS [1]

method GA was employed for automating module detection composition including cohesion and coupling metric

involvinglarge class bad smell. The time consumed in the overall testing process was not focused, so the software

fault prediction time of HA-LCBS [1] is less. On the other hand, the BUGPRE [2] does not consider in obtaining

changed modules in the current version. Soit views defective and non defective instances as equal, and performs

prediction directly on whole sample package. So the software fault prediction time of BUGPRE [2] isslightly

higher than that of the proposed RTPGDBN method. In our method, contingency table was used in distinguishing

between defective and non defective cases, with which basic probability calculations were performed easily via

multivariate frequency distribution. As a result, the software fault prediction time using RTPGDBN method was

found to be comparatively better by 25% compared to [1] and 44% compared to [2] respectively.

B. Case scenario 2: Software fault prediction accuracy

J. Electrical Systems 20-6s (2024): 2656-2670

2666

The software fault prediction accuracy is an experimental measure to express the software fault prediction

diagnostic tests’ evaluation performance. The software fault prediction accuracy is mathematically stated as given

below.

 SFPA = ∑
CPC

Ci
∗ 100n

i=1 (14)

From the above equation (14), the software fault prediction accuracy ‘SFPA’ is measured based on the class data

samples ‘Ci’ and the class data samples predicted correctly ‘CPC’. It is measured in terms of percentage (%).The

comparison results between the proposed RTPGDBN method and existing methods, HA-LCBS [1] and BUGPRE

[2] are listed in table 2, showing that the RTPGDBN method improve the prediction of software defect

significantly. We noted that the RTPGDBN method had good prediction performance in distinguishing defective

and non defective. In addition, we compared the RTPGDBN method with other state-of-the-art software defect

prediction methods in identifying defect/non defect with the same settings (as in table 2). The RTPGDBN

achieved the best results, suggesting that the presented method had prospective to be utilized in computer-aided

diagnostic system for locating code in software areas where the occurrence of fault is high.

Table 2 Software fault prediction accuracy using different software fault prediction methods

Number of class

data

Software fault prediction accuracy (%)

RTPGDBN HA-LCBS BUGPRE

1000 99.5 90.5 85.5

2000 96.35 86.55 80

3000 95 85.35 79.15

4000 94.15 85 76

5000 93 84.85 74.15

6000 92.85 83 71

7000 91.35 82.35 69.25

8000 91 82 66

9000 90 81.15 64.15

10000 88.15 80 61

Figure 5 Comparison of software fault prediction accuracy using RTPGDBN, HA-LCBS [1] and BUGPRE [2]

Figure 5shows the comparison results of software fault prediction accuracy efficiency. The more class data the

software quality manager stores for simulation purpose, the lower the software fault prediction accuracy

efficiency is. It can be seen clearly from figure 5 that the software fault prediction accuracy efficiency is

influenced by number of class data samples involved in simulation. As shown in figure 5, the software fault

J. Electrical Systems 20-6s (2024): 2656-2670

2667

prediction accuracy efficiency of our method is the best in these three schemes. In addition, as the number of class

data samples increases, the prediction efficiency gap among these three methods becomes larger and larger. In

these three methods, the software fault prediction accuracy efficiency of our method is the highest. The state-of-

the-art methods, HA-LCBS [1] and BUGPRE [2] and the proposed RTPGDBN method automated large class bad

smell to ensure accurate prediction. This bad smell detection method though can enhance the accuracy, but it also

needs additional storage space to store the bad smell. Nevertheless, this additional storage space is unavoidable.

On the one hand, the automation of large class bad is derived from the consistent code. In other words, the

accuracy is said to be compromised. On the other hand, by applying rand similarity indexive target projection-

based feature selection algorithm, our distinct hypotheses with same and different subsets were evolved with the

objective of increasing the agreements and decreasing the disagreements. This in turn improved the software fault

prediction accuracy using RTPGDBN method by 11% compared to [1] and 29% compared to [2].

C. Case scenario 3: Precision and Recall

Precision is one of the performance metrics used to represent the correctness classification. The precision

performance metric is calculated by dividing the number of class data samples that correctly predicted the

software defect divided by the total number of correctly predicted class data samples. This is mathematically

stated as given below.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (15)

From the above equation (15), precision ‘𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛’ is measured based on the true positive ‘𝑇𝑃’ that represent

the true prediction of positive values and the false positive ‘𝐹𝑃’ that represent the false prediction of the positive

values respectively. Recall on the other hand denotes the rate of defecting models. The recall rate is calculated by

dividing the number of class data samples that correctly predicted defect divided by the total number of modules

or class data samples that are actually defective. This is mathematically represented as given below.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (16)

From the above equation (16), recall rate ‘𝑅𝑒𝑐𝑎𝑙𝑙’ is measured by taking into consideration the true positive ‘𝑇𝑃’

that represent the true prediction of positive values and the false negative ‘𝐹𝑁’ that denotes the false prediction of

the negative values respectively. Table 3 given below lists the precision and recall rate arrived at using 1000

distinct numbers of class data samples obtained at different time instances.

Table 3 Precision and Recall rate using different software fault prediction methods

Number

of class

data

Precision Recall

RTPGDBN HA-

LCBS

BUGPRE RTPGDBN HA-LCBS BUGPRE

1000 99.79 98.41 97.43 99.48 97.92 96.33

2000 98.35 95.25 92.35 98.35 91.35 84.35

3000 98 95 94.15 98 90.15 84

4000 97.55 94.35 91.85 97.16 89.35 83.15

5000 97.35 94 90.35 97 89 82

6000 97 93.55 89.15 96.35 89.25 80.15

7000 96.55 93.35 89 96 89 80

8000 96.15 92.35 87.15 95.55 87.15 79.15

9000 95.35 92 86 95 86 78

10000 95 91.15 85.25 94.15 89.15 77.35

J. Electrical Systems 20-6s (2024): 2656-2670

2668

Figure 6 Comparison of precision and recall using RTPGDBN, HA-LCBS [1] and BUGPRE [2]

In the figure 6 we observe that the precision and recall rate of our proposed RTPGDBN method is moderately

higher than that of HA-LCBS [1] and BUGPRE [2]. For the sake of inspecting the governing aspects, we compare

the true positive, false positive and false negative rate for class data samples to detect defective or non defective

cases in these three methods in figure 6. Note that we define the true positive for class data samples to generate

the probability values as the precision and recall. As shown in the figure, the precision and recall of RTPGDBN

method is the highest, followed by HA-LCBS [1] and BUGPRE [2] respectively. Just as we analyzed in section

3.3, measure of quality and quantity for refactoring process for both defective and non defective instances were

made significantly. So the false positive rate and false negative rate of HA-LCBS [1] and BUGPRE [2] is much

higher than that of RTPGDBN method. Also only two layers were employed where the visible layer holds the

significant software metrics and the hidden layer performed the actual process of predicting software faults.

Following which by applying the Tversky Gradient function via distinct weights reduced the false positive and

false negative rate, therefore improving the overall precision and recall rate using RTPGDBN method by 3% 8%

(i.e., in terms of precision) and 8% 18% (i.e., in terms of recall) respectively.

D. Space complexity

Finally, in this section, space complexity involved in software fault prediction is analyzed to validate the

efficiency of the method. The space complexity is mathematically formulated as given below.

 𝑆𝐶 = ∑ 𝐶𝑖
𝑛
𝑖=1 ∗ 𝑀𝑒𝑚 [𝑆𝐹𝑃] (17)

From the above equation (17), the space complexity ‘𝑆𝐶’ is measured by taking into consideration the class data

samples ‘𝐶𝑖’ involved in the simulation process and the actual memory consumed ‘𝑀𝑒𝑚 [𝑆𝐹𝑃]’ is software fault

prediction. It is measured in terms of kilobytes (KB). Finally, table 4 given below lists the space complexity

results using the three methods, RTPGDBN, HA-LCBS [1] and BUGPRE [2].

Table 4 Space complexity using different software fault prediction methods

Number of class

data

Space complexity (KB)

RTPGDBN HA-LCBS BUGPRE

1000 35 50 75

2000 38 55 80

3000 45 70 85

4000 50 73 93

5000 55 78 100

6000 58 85 110

J. Electrical Systems 20-6s (2024): 2656-2670

2669

7000 70 89 118

8000 75 93 125

9000 83 95 133

10000 90 105 140

Figure 7 Comparison of space complexity using RTPGDBN, HA-LCBS [1] and BUGPRE [2]

We provide a comparison of space complexity in figure 7. We arbitrarily sorted out 1000, 2000,…, 10000 class

data from the datasetto do experiments. When the total number of class data samples is proportionately negligible,

the space complexity of the three methods, RTPGDBN, HA-LCBS [1] and BUGPRE [2] are less. When the

number of class data is 1000, the space complexity of RTPGDBN method is the shortest, followed by HA-LCBS

[1] and finally BUGPRE [2]. The main reason is that HA-LCBS [1] and the proposed RTPGDBN method both

cohesion and coupling metric type passes paired value results (i.e., significant software metrics) to a deep learning

model for automating the detection of large class bad smell. In contrast BUGPRE [2] employs propagation tree-

based associated analysis that though improved accuracy and F1-score, however consumes more stack for storing

intermediate results. Also as shown in the above figure, when the total number of class data increases, the space

complexity of BUGPRE [2] is the highest,followed by HA-LCBS [1] and our method. This is due to the

application of Deep Belief Neural Network where with the aid of visible and hidden layer for processing

minimizes the layer involved in the defect prediction. This in turn reduces the space complexity involved in the

overall process using RTPGDBN by 26% compared to [1] and 45% compared to [2].In conclusion, compared

with methods [1], [2], our proposed RTPGDBN method has shown good efficiency in terms of software fault

prediction accuracy, software fault prediction time, precision, recall and space complexity.

VI. CONCLUSION

Coming up with a high-quality software product is a prerequisite task in the course of two distinct phases, namely,

software testing and maintenance. One of the significant considerations as far as software product quality is

concerned is the density involved in defect. In this work we proposed an enhanced deep belief neural network

called Rand-Index Target Projective Gradient Deep Belief Network (RTPGDBN) to predict software fault. The

constructed RTPGDBN method has been estimated against other popular deep learning methods using smell

prediction replication package dataset. First, Rand similarity indexive target projection-based feature selection

algorithm was employed in selecting computationally efficient significant software metric via Random Similarity

Index. Second Tversky Gradient Deep Belief Neural Network-based classifier model was applied to selected

software metric for making significant classification between defective and non defective class instances. The

obtained results demonstrate that the RTPGDBN significantly outshines the other software fault prediction

methods with very accuracy levels. Furthermore, our method is competitive to other deep learning methods such

as HA-LCBS and BUGPRE in terms of precision and recall with minimum space complexity.

J. Electrical Systems 20-6s (2024): 2656-2670

2670

REFERENCES

[1] Ayad Tareq Imam, Basma R. Al-Srour, AyshAlhroob, “The automation of the detection of large class bad smell by using

genetic algorithm and deep learning”, Journal of King Saud University –Computer and Information Sciences, Elsevier,

Volume 34, Issue 6, 2022, Pages 2621-2636. https://doi.org/10.1016/j.jksuci.2022.03.028[Hybrid Approach to detect

Large Class Bad Smell (HA-LCBS)]

[2] Zixu Wang, Weiyuan Tong, Peng Li, Guixin Ye, Hao Chen, Xiaoqing Gong &Zhanyong Tang, “BUGPRE: an

intelligent software version-to-version bug prediction system using graph convolutional neural networks”, Complex &

Intelligent Systems, Springer, 2022, Pages 1-21. https://doi.org/10.1007/s40747-022-00848-w[Bug Prediction

(BUGPRE)]

[3] GörkemGiray, Kwabena EboBennin, ÖmerKöksal, Önder Babur, BedirTekinerdogan, “On the use of deep learning in

software defect prediction”, The Journal of Systems & Software, Elsevier, Feb 2023

[4] JalajPachouly, Swati Ahirrao, Ketan Kotecha, “SDPTool : A tool for creating datasets and software defect predictions”,

Software, Elsevier, Feb 2022

[5] Pradeep Singh and Shrish Verma, “Multi-Classifier Model for Software Fault Prediction”, The International Arab

Journal of Information Technology, Vol. 15, No. 5, September 2018

[6] Fengyu Yang, Yaxuan Huang, Haoming Xu, Peng Xiao, and Wei Zheng, “Fine-Grained Software Defect Prediction

Based on the Method-Call Sequence”, Computational Intelligence and Neuroscience, Hindawi, Aug 2022

[7] Raymon van Dinter, CagatayCatal, GörkemGiray, BedirTekinerdogan, “Just‑in‑time defect prediction for mobile

applications: using shallow or deep learning?”, Software Quality Journal, Springer, Apr 2023

[8] Tanujit Chakraborty and Ashis Kumar Chakraborty, “Hellinger Net: A Hybrid Imbalance Learning Model to Improve

Software Defect Prediction”, IEEE Transactions on Reliability, Mar 2020

[9] Jiaxi Xu, Fei Wang, and Jun Ai, “Defect Prediction with Semantics and Context Features of Codes Based on Graph

Representation Learning”, IEEE Transactions on Reliability, Vol. 70, No. 2, June 2021

[10] ChakkritTantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto, “The Impact of Automated

Parameter Optimization on Defect Prediction Models”, IEEE Transactions on Software Engineering, Dec 2017

[11] Xue Han, Gongjun Yan, “Fault Prediction with Static Software Metrics in Evolving Software: A Case Study in Apache

Ant”, Journal of Computer and Communications, Oct 2022

[12] PetarAfric, Davor Vukadin, Marin Silic, Goran Delac, “Empirical Study: How Issue Classification Influences Software

Defect Prediction”, IEEE Access, Feb 2023

[13] EminBorandag, “Software Fault Prediction Using an RNN-Based Deep Learning Approach and Ensemble Machine

Learning Techniques”, Applied Sciences, Apr 2023

[14] Kun Song, ShengKaiLv, Die Hu, and Peng He, “Software Defect Prediction Based on Elman Neural Network and

Cuckoo Search Algorithm”, Mathematical Problems in Engineering, Hindawi, Nov 2021

[15] Can Liu, SumayaSanober, Abu Sarwar Zamani, L. Rama Parvathy, Rahul Neware, and Abdul Wahab Rahmani, “Defect

Prediction Technology in Software Engineering Based on Convolutional Neural Network”, Security and Communication

Networks, Wiley, Apr 2022

[16] Fahad H. Alshammari, “Software Defect Prediction and Analysis Using Enhanced Random Forest (extRF) Technique: A

Business Process Management and Improvement Concept in IOT-Based Application Processing Environment”, Mobile

Information Systems, Hindawi, Sep 2022

[17] Firas Alghanim, Mohammad Azzeh, Ammar El-Hassan, Hazem Qattous, “Software Defect Density Prediction Using

Deep Learning”, IEEE Access, Nov 2022

[18] Can Liu, SumayaSanober, Abu Sarwar Zamani, L. Rama Parvathy, Rahul Neware, and Abdul Wahab Rahmani, “Defect

Prediction Technology in Software Engineering Based on Convolutional Neural Network”, Security and Communication

Networks, Hindawi, Apr 2022

[19] Hafiz Shahbaz Munir, Shengbing Ren, Mubashar Mustafa, Chaudry Naeem Siddique, Shazib Qayyum, “Attention based

GRU-LSTM for softwaredefect prediction”, PLOS ONE, Mar 2021

[20] Jonathan Bryan, Pablo Moriano, “Graph-based machine learning improves justin- time defect prediction”, PLOS ONE,

Apr 2023pr 2023

https://doi.org/10.1016/j.jksuci.2022.03.028
https://doi.org/10.1007/s40747-022-00848-w

