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Abstract: - Predicting defective software modules before testing is a valuable operation that reduces time and cost of software testing.  

Source code fault prediction plays a vital role in improving software quality that effectively assists in optimization testing resource 

allocation.  Several machine learning and ensemble learning techniques has been extensively evolved over the recent few years to predict 

defect at an early stage. These techniques made predictions based on historical defect data, the software metrics. Nevertheless, the time 

efficient and accurate fault predictions are the major challenging tasks that yet have to be addressed. In order to ensure accurate software 

fault prediction, a method called Rand-Index Target Projective Gradient Deep Belief Network (RTPGDBN) is designed. The proposed 

RTPGDBN method comprises of three processes namely acquiring JAVA packages, software metric selection and classification. First, the 

number of JAVA packages is used as input from the dataset. Second with the JAVA packages obtained as input, Rand similarity indexive 

target projection function is applied for selecting the most significant software metrics in order to minimize time complexity of fault 

prediction. Third, with the selected metrics, classification is performed using Tversky Gradient Deep Belief neural network. Also, gradient 

descent function is applied to minimize classification error, therefore ensuring accurate software fault classification results obtained at the 

output layer. Experimental setup of proposed RPGDDBN and existing methods are implemented in Java language and the dataset collected 

from smell prediction replication package. Performance analysis is carried out with different quantitative metrics such as accuracy, 

precision, recall, F-measure, and time complexity and space complexity. Through extensive experiments on repository data, experimental 

results indicate that our RPGDDBN method outperforms two state-of-the-art defect detection methods in terms of different performance 

metrics.  
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I.  INTRODUCTION 

Encountering a high-quality software design is constrained by experiencing software design that definitely 

positively controls the software produce quality features, like, affinity, sustainability, reliability, security and 

scalability. As each characteristics of quality has a greater influence on others, it is essential to act in accordance 

with the back and forth techniques, i.e., concentrating on the quality attributes that are interpreted by the 

circumstances and tolerance of others.  

A Hybrid Approach to detect Large Class Bad Smell (HA-LCBS) was proposed in [1] to detect large class bad 

smell. Here, Genetic Algorithm (GA) was employed for automating module detection composition including 

cohesion and coupling metric. Following which the resulting paired value were passed to deep learning technique 

with the purpose of automating large class bad smell. As a result, accuracy with which bad smell detection were 

made was found to be significant. Nevertheless, owing to the immediate reliance between improved and 

consistent code, earlier machine learning based techniques cut out to model prolonged and deep dependencies, 

resulting in high false positive. To focus on this aspect, a Bug Prediction (BUGPRE) method was proposed in [2] 

to address the two issues relating to prolonged and deep dependencies. Here, propagation tree-based associated 

analysis was employed for performing effective defect prediction with the purpose of acquiring the changed 

modules in the current version. In addition, BugPre contrived capitalizing code context dependences and 

employed a graph convolutional neural network for learning representative characteristics of code. As a result, 

defect prediction potentiality was improved when updates were noticed during changes in version, therefore 

improving both accuracy and F1-score.  
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The quality and reliability of software specifically depend on eliminating defects in software. The conventional 

mechanism for identifying software defects is by means of testing and performing reviews, but necessitates time 

and effort. On contrary, automatic software defect prediction may assists developers in enhancing quality of code 

at a reduced cost upon comparison to manual model. Hence, Software Defect Prediction (SDP) has become a 

significant research area of topic in recent years. A holistic review of deep learning techniques for software defect 

prediction was investigated in [3]. Historical data is considered as the gold mine for predicting software defect 

with greater level of accuracy and confidence. This is owing to the reason that the software defect prediction data 

is available in its raw form, hence found to be not suitable as far as machine learning applications are concerned.  

A robust tool was introduced in [4] that initially with the aid of raw data collection following with validation 

finally predicted the defect by means of machine learning. Multiple expert learning systems were integrated in [5] 

to decide on the faulty modules with elevated accuracy rate. The process of software defect-prediction comprises 

of metrics extraction and designing full proof defect prediction. Over the past few years, most conventional 

software defect-prediction methods employ machine learning for constructing defect prediction following which 

the extracted metrics were employed as model features. Nevertheless, the conventional metrics specifically 

concentrated on complexity involved in code designing. Also strong differentiation between semantics and 

semantic information in the source code were not made.  

To explore information between sequences and also to learn code semantics in addition to syntactic structure, a 

method call sequence was presented in [6] that preserve the code context structure information. With this type of 

design, mean absolute error rate was found to be comparatively less. Yet another deep learning based prediction 

method was proposed in [7] to focus on the accuracy and time aspect.  Since recently deep learning techniques 

have achieved significant results in several areas of applications, there is a requirement to apply for all type of 

problems, i.e., software defect prediction. In this work, the objective is to evaluate the performance of deep belief 

neural network and the effect of gradient function on defect prediction methods and also compare these results 

with the performance of deep learning algorithms. We report our findings on the comparison of the software 

defect prediction performance of two learning algorithms (i.e., HA-LCBS and BUGPRE). Experiments were 

performed on publicly available dataset. 

A. Contributory remarks 

To design Rand similarity indexive target projection-based feature selection where the time and accuracy is said 

to be improved by means of rand similarity index function and target projection. The problem is formulated as a 

defective and non-defective package modeled at different time instances owing to different class data samples and 

features employed for testing and accordingly results are evaluated. The contributing remarks of Rand-Index 

Target Projective Gradient Deep Belief Network (RTPGDBN) are provided below.  

• To design efficient method for software fault prediction using Rand-Index Target Projective Gradient 

Deep Belief Network (RTPGDBN) method. 

• To propose Rand similarity indexive target projection-based feature selection for obtaining 

computationally efficient software metrics.  

• To present an algorithm called Tversky Gradient Deep Belief Neural Network-based classifier that with 

the aid of Tversky Gradient function and soft step activation function improves precision and recall with 

minimum complexity.   

• Experiments are performed conducted on the smell prediction replication package and the results show 

that our method can efficiently enhance the prediction performance of defect prediction method with improved 

precision, recall and has the lowest complexity and time in terms of comparison with other methods. 

B. Outline of the paper 

The remainder of this paper is organized as follows: Section 2 introduces related work on traditional software 

metric defect prediction algorithms, deep learning based prediction and machine learning based prediction. 

Section 3 describes the proposed Rand-Index Target Projective Gradient Deep Belief Network (RTPGDBN) 
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method. Section 4 presents the experimental setup and parameter settings, followed by discussion with the aid of 

table and graph in Section 5. Section 6 summarizes our work. 

II. RELATED WORKS 

As far as early phases of software evolution life cycle are concerned, one of the sophisticated means of defect 

identification is software defect prediction. This early warning mechanism can assist in discarding defects present 

in software and produce cost efficient and quality software products. However, the imbalanced nature of data 

remains the major concerns for software module defect prediction. A novel hybrid method called, Hellinger net 

model was designed in [9] that addressed the issues relating to imbalanced learning for enhancing software 

module defect prediction. Yet another method to focus on the accuracy aspect employing graph representation 

learning was presented in [10]. A case study of software defect prediction to explore feasibility of employing 

static software metrics were investigated in [11]. Yet another empirical study on the mechanism for software 

defect prediction using classification was discussed in [12].  

The core objective of a software project remains in carrying out the anticipated performance while assigning the 

indispensable measure of quality on time and within a defined budget. From the angle of software projects 

evolved over the past few years, the intricacy in developing software has risen owing to the expanded number of 

customer requirements. This complexity has made it more laborious and cumbersome to achieve their main 

objectives. Ensemble machine learning techniques and RNN-based deep learning was applied in [13] for software 

fault prediction. Nevertheless, few studies considered the influence of time factors on prediction results.  An 

improved Elman neural network was presented in [14] for improving the defect prediction adaptability to the 

time-varying features.  

Most of the prevailing defect prediction methods are designed on the basis of lines of code, stack reference depth 

for defect prediction. However, it did not take into consideration the semantic features into account that in turn 

would result in unsatisfactory prediction results. In [15], convolutional neural network was designed with the 

purpose of mining semantic features towards accurate software defect prediction. Yet another enhanced random 

forest technique was applied in [16] for defective system prediction. Also with defect density prediction before 

module testing is said to be laborious and time consuming, decision makers require to construct a prediction 

method that can assist in defective module detection. With this type of design would result in minimizing both the 

testing cost and enhance resource utilization testing significantly. However, data sparsity involved in defect 

density prediction was not made. To address on this issue, deep learning was applied in [17] to handle data 

sparsity in defect density. Yet another graph-based ML was presented in [18] by taking into consideration CNN 

for ensuring accuracy involved in prediction.  

The prevailing software defect prediction practiced on file level cannot predict failures in an accurate fashion. To 

solve this issue, a novel technique combining statement level granularity and attention based LSTM was designed 

in [19] for predicting defects in statement-level. To reduce the complexity, a graph based ML technique for defect 

prediction was presented in [20]. Though certain works provided in the literature address on accuracy aspects, 

certain others focuses on precision and recall. In this work, a method called, Rand-Index Target Projective 

Gradient Deep Belief Network (RTPGDBN) is proposed. The elaborate description of RTPGDBN is provided in 

the following sections. 

III. METHODOLOGY 

This section formulates a new method to software defect prediction by applying Tversky Gradient Deep Belief 

neural network for automating module detection composition. Our proposed RPGDDBN method is illustrated in 

figure 1 includes three steps: 1) obtaining metrics data and repository data for extracting the JAVA packages, 2) 

selecting significant software metrics which reveal the behavior of programs, and 3) applying a Tversky Gradient 

Deep Belief neural network on selected significant software metrics for ensuring accurate software fault 

classification. Figure 1 shows the structure of RPGDDBN method. 
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Figure 1 Structure of RPGDDBN method 

As shown in the above figure, in the first, step, design smell and metrics are extracted from the corresponding 

JAVA classes. Next, in the second step, Rand similarity indexive target projection is applied to obtain the most 

significant software metrics of a program. Finally, we leverage a powerful Tversky Gradient Deep Belief neural 

network to automatically build predictive models based on gradient descent function for accurate and precise 

classification. The elaborate description of the RPGDDBN method is provided in the following sections.  

A.  Dataset details  

The smell prediction replication package dataset employing metrics-data and repository-data validated in our 

work is one of the most common benchmark datasets extensively utilized for software defect prediction analysis. 

In this work, for each system, both metrics-data and repository data containing design smell and metrics in 

addition to commit sequences are manipulated to train and test the proposed method. The smell prediction 

replication package dataset is obtained from https://drive.google.com/drive/folders/101QbQ-TtQpyZa-

APCFo4hCGAc_c-g6-Y. The design smells are reported in the columns ranging between 5 and 23, whereas the 

product metrics are reported in columns ranging between 24 and 53. Finally, the last two columns are discarded as 

they refer to the type of artifact.  

B.  Rand similarity indexive target projection-based feature selection 

The magnitude of the data employed in training the neural network can have certain influences on the neural 

network performance. With input data possessing fewer variables, the classification system is said to be faster 

with comparatively better convergence speed. Therefore, the magnitude of defective metrics should be reduced. 

Hence, software metric (i.e., feature) selection is extensively employed in picking out the most significant 

software metric to train the neural network.In this work, Rand similarity indexive target projection-based feature 

selection model is used to minimize the number of data by selecting the most important features. The Rand 

similarity indexive target projection is used to reduce the number of input variables and to transform the original 

defect dataset to select the smallest subset of data. With the hypothesis that there are ‘M*N’ software 

packagesor files in a software system where each software package is represented with ‘(P_i,P_j ),where i,j∈

M*N’, a correlation matrix ‘CM’ of size ‘M*N’ is generated that exhibits the source code similarities among 

the packages. This correlation matrix is initially formulated as given below.  
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𝐶𝑀 = [

𝐶𝑀(𝑃1, 𝑃1) 𝐶𝑀(𝑃1, 𝑃2) … 𝐶𝑀(𝑃1, 𝑃𝑁)

𝐶𝑀(𝑃2, 𝑃1) 𝐶𝑀(𝑃2, 𝑃2) … 𝐶𝑀(𝑃2, 𝑃𝑁)
… … … …

𝐶𝑀(𝑃𝑀 , 𝑃1) 𝐶𝑀(𝑃𝑀, 𝑃2) … 𝐶𝑀(𝑃𝑀 , 𝑃𝑁)

]      (1) 

From the above equation (1), the correlation matrix ‘𝐶𝑀’ is formulated by taking into consideration ‘𝑃𝑀 ∗ 𝑃𝑁’ 

packages for simulation. Then, given ‘𝑛’ element set ‘𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}’ and two portions of ‘𝑆’ to equate or 

compare ‘𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑖}’ a portion of ‘𝑆’ into ‘𝑖’ subsets and ‘𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑗}’ a portion of ‘𝑆’ into ‘𝑗’ 

subsets define the following hypothesis. 

𝐻0:  𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵(𝑠𝑠) 

                   𝐻1: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛  𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵 → (𝑑𝑑) 

           𝐻2: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛  𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵 → (𝑠𝑑) 

                    𝐻3: 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 𝑆 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛  𝑑𝑖𝑓𝑓 𝑠𝑢𝑏𝑠𝑒𝑡 𝐴 𝑎𝑛𝑑 𝑠𝑎𝑚𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐵 → (𝑑𝑠) 

Based on the above hypotheses, ‘𝐻0’, ‘𝐻1’, ‘𝐻2’ and ‘𝐻3’, the Random Similarity Index is mathematically 

represented as given below.  

𝑅𝐼 =
𝑠𝑠+𝑑𝑑

𝑠𝑠+𝑑𝑑+𝑠𝑑+𝑑𝑠
=

𝑠𝑠+𝑑𝑑

(
𝑛
2)

         (2) 

From the above formulate (2), ‘(𝑠𝑠 + 𝑑𝑑)’ symbolizes the magnitude of agreements between ‘𝐴’ and ‘𝐵’, and 

‘ (𝑠𝑑 + 𝑑𝑠) ’ symbolizes the magnitude of disagreements between ‘ 𝐴 ’ and ‘ 𝐵 ’ respectively. Also as the 

denominator represents the total numbers of pairs, the Random Similarity Index represents the repetition of 

incident of agreements over the total sample instances. Then for each package ‘𝑃𝑖 ’, correlation to defective 

package ‘𝐶𝐷𝑃𝑖’ and correlation to non-defective package ‘𝐶𝑁𝐷𝑃𝑖’ is measured as given below.  

𝐶𝐷𝑃𝑖 = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1          (3) 

From the above equation (3), ‘𝑆𝑀(𝑃𝑖 , 𝑃𝑗)’ is taken into consideration if ‘𝑃𝑗’ is defective and in a similar manner, 

‘𝑆𝑀(𝑃𝑖 , 𝑃𝑗)’ as given below (4) is taken into consideration if ‘𝑃𝑗’ is non-defective. 

𝐶𝑁𝐷𝑃𝑖 = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1          (4) 

On the other hand, we also take into consideration how faultiness is simulated or affected when the class data 

samples is s considered together with the correlation. That is why two more metrics are introduced (i.e., 

correlation to defective packages with class data samples and correlation to non-defective packages with class 

data samples). Assuming the size of a class data samples in terms of instances, we calculate ‘𝐶𝐷𝑃[𝐶𝑖]’ (i.e., 

correlation to defective packages with class data samples) and ‘𝐶𝑁𝐷𝑃[𝐶𝑖]’ (i.e., correlation to non-defective 

packages with class data samples) metrics for each package as given below.  

  

𝐶𝐷𝑃[𝐶𝑖] = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1 ∗ 𝐶𝑗        (5) 

 𝐶𝑁𝐷𝑃[𝐶𝑖] = ∑ 𝑆𝑀(𝑃𝑖 , 𝑃𝑗)𝑁
𝑗=1 ∗ 𝐶𝑗        (6) 

From the above equation (5), correlation to defective packages with class data samples is formulated if ‘𝑃𝑗’ is 

defective whereas from equation (6), correlation to defective packages with class data samples is formulated if 

‘𝑃𝑗’ is non-defective. Finally, the overlap between ‘𝐴’ and ‘𝐵’ is outlined in a contingency table ‘[𝑘𝑖𝑗]’ where 

each entry ‘ 𝑘𝑖𝑗 ’ represents the number of software metrics in repeated between ‘ 𝐴𝑖 ’ and ‘ 𝐵𝑗 ’. This is 

mathematically represented as given below.  

𝑘𝑖𝑗 = [𝐴𝑖  ∩ 𝐵𝑗])          (7) 
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Figure 2 contingency table construction using target projection 

From the above equation (7), finally, the most significant software metrics selected are obtained according to 

common software metrics inclass data samples. Figure 2 shows the contingency table construction using target 

projection (i.e., correlation to both defective/non-defective packages with class samples).  

Finally, with the contingency table construction using target projection the software metrics in common between 

two packages are eliminated from further processing. In this manner, more significant software metrics are 

obtained with minimum complexity. The pseudo code representation of Rand similarity indexive target 

projection-based feature selection is given below.  

Input: Dataset ‘𝐷𝑆’, Java Package ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’ 

Output: Computationally-efficient and significant software metrics ‘𝑘𝑖𝑗’ 

1: Initialize‘𝑛’ independent packages 

2: Begin 

3: For each Dataset ‘𝐷𝑆’ with Java Package ‘𝑃’ 

4: Obtain correlation matrix as given in (1) 

5: For each hypothesis 

6: Evaluate Random Similarity Index as given in (2) 

7: Measure correlation to defective package and non-defective package as given in (3) and (4) 

8: For each class data samples 

9: Evaluate correlation to defective and non-defective packages with class data samples as given 

in (5) and (6) 

10: End for 
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11: End for 

12: Return significant software metrics ‘𝑘𝑖𝑗’ 

13: End for 

14: End  

Algorithm 1 Rand similarity indexive target projection-based feature selection 

As given in the above algorithm, for each dataset and java packages acquired as input, correlation matrix is 

initially generated. Following which four distinct hypotheses with same and different subsets are evolved so that 

the number of agreements can be increased and also the number of disagreements can be decreased. By achieving 

this objective using rand similarity index function, the accuracy involved in software fault prediction can be 

improved significantly. Following which, with the aid of target projection evolved using contingency table via 

defective and non-defective packages with class data samples significant software metrics are obtained in a timely 

manner, therefore improving the software fault detection time.  

C. Tversky Gradient Deep Belief Neural Network-based classifier 

Over the recent few years, the software industry has contributed sizeable amount of endeavor to enhance software 

quality in organizations. Registering dynamic software defect prediction will assists both the developers and 

testers to identify the defects at an early stage, therefore minimizing both the time and endeavor. Conventional 

software defect prediction methods focus on models concentrate on standard source code characteristics like, 

complexity involved in code, lines of code and so on. However, these characteristics go wrong in predicting 

software defect with minimum complexity. In this work, with the selected metrics, classification is performed 

using Tversky Gradient Deep Belief Neural Network-based classifier. The proposed classifier comprises 

numerous layers such as one input layer, two hidden layers, and one output layer. Figure 3 shows the structure of 

Tversky Gradient Deep Belief Neural Network-based classifier model.  

 

Figure 3 Structure of Tversky Gradient Deep Belief Neural Network-based classifier model 

As illustrated in the above figure, distinct numbers of selected software metrics are given as input in visible  

input layer. Next, the visible input layer value is transferred into the hidden layer where Tversky correlation is 

applied with the purpose of identifying the software faults in Java package classes. Following which the 

correlation values are given to the next hidden layer where soft step activation function is applied for analyzing 

the given input in visible input layer and provides the final classified results as defect or non-defects in the output 
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visible layer. Also, gradient descent function is applied to minimize classification error, therefore ensuring 

accurate software fault classification results obtained at the output layer with minimal complexity. 

Let us consider the significant software metrics ‘𝑘𝑖𝑗’ to be initialized in the training vector.  

 𝑘𝑖𝑗 = [

𝑘11 𝑘12 … 𝑘1𝑁

𝑘21 𝑘22 … 𝑘2𝑁

… … … …
𝑘𝑀1 𝑘𝑀2 … 𝑘𝑀𝑁

]        (8) 

From the above equation (8), ‘𝑀 ∗ 𝑁’ significant software metrics are initialized in the visible units. Following 

which, Tversky Gradient function is applied that tunes the parameters of the measure so as the optimally adapt it 

to identifying the software faults. To this end, we assume suitable training data to be given, that model about the 

similarity or dissimilarity between class data samples in the first hidden layer. To be more specific, let us assume 

the training data as given below:   

 𝑃 = {𝑓(𝐴𝑛), 𝑓(𝐵𝑛), 𝑅𝑒𝑠𝑛}𝑛=1
𝑁 ∈ 𝑃[𝑘𝑖𝑗]       (9) 

From the above formulate (9), each training data or training example is a triplet, ‘(𝐴𝑛), 𝑓(𝐵𝑛), 𝑅𝑒𝑠𝑛’, where 

‘𝑅𝑒𝑠𝑛 ∈ {0,1}’ infers whether the two class data samples ‘𝐴𝑛’ and ‘𝐵𝑛’ are considered similar or not. Next, in the 

second hidden layer,soft step activation function is applied to the first hidden layer results as given below.  

 𝜑(𝑅𝑒𝑠) =
1

1+𝑒−𝑅𝑒𝑠         (10) 

Next, the hidden units are updated in parallel given the visible unit as given below.  

𝑃𝑟𝑜𝑏(ℎ𝑗 = 1|𝑉) = 𝜎 (𝑋𝑗 + ∑ 𝑣𝑖𝑤𝑖𝑗𝑖 )       (11) 

From the above equation (11), ‘𝜎’ represent the soft step activation function with ‘𝑋𝑗’ denoting the bias of ‘ℎ𝑗’. In 

a similar manner, the visible units are updated in parallel given in the hidden layer as given below.  

𝑃𝑟𝑜𝑏(𝑣𝑖 = 1|𝐻) = 𝜎 (𝑌𝑖 + ∑ ℎ𝑗𝑤𝑖𝑗𝑗 )       (12) 

From the above equation (12), ‘𝜎’ represent the soft step activation function with ‘𝑌𝑖’ representing the bias of ‘𝑣𝑖’. 

The pseudo code representation of Tversky Gradient Deep Belief Neural Network-based classifier is given below.  

Input: Dataset ‘𝐷𝑆’, Java Package ‘𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑛}’ 

Output: Precise and complexity-minimized software fault prediction  

1: Initialize‘𝑛’ independent packages, significant software metrics ‘𝑘𝑖𝑗’ 

2: Initialize visible units (i.e., significant software metrics ‘𝑘𝑖𝑗’) to training vector  

3: Begin 

4: For each Dataset ‘𝐷𝑆’ with Java Package ‘𝑃’ 

5: Initialize significant software metrics ‘𝑘𝑖𝑗’ in the training vector as given in (8) 

6: Formulate Tversky Gradient function as given in (9) 

7: If ‘𝑅𝑒𝑠𝑛 = 0’ 

8: Both class data samples in training and test set are similar 

9: Go to step 14 

10: End if 

11: If ‘𝑅𝑒𝑠𝑛 = 1’ 

12: Both class data samples in training and test set are dissimilar 

13: Formulate soft step activation function as given in (10) 

14: If ‘𝜑(𝑅𝑒𝑠) > 0 𝑎𝑛𝑑 𝜑(𝑅𝑒𝑠)  ≤ 0.5’ 

15: Then packages identified with non defective instances 

16: Go to step 23 

17: Else if ‘𝜑(𝑅𝑒𝑠) ≥ 0.5 𝑎𝑛𝑑 𝜑(𝑅𝑒𝑠)  ≤ 1’ 

18: Then packages identified with defective instances  
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19: Update hidden and visible units as given in (11) and (12) 

20: End if  

21: End if 

22: End for 

23: End  

Algorithm 2 Tversky Gradient Deep Belief Neural Network-based classifier 

As given in the above algorithm, the overall software fault prediction process is split into two sections, i.e., visible 

layer and hidden layer. Here visible layer serves as both the input and output layer. In the hidden layer the actual 

intermediate process is performed where the actual classification process is done to provide the final results (i.e., 

defective or non defective instances). First, the significant software metrics are obtained as input in the visible 

layer with which the actual process of software fault prediction has to be made. Second, Tversky Gradient 

function is applied in the first hidden layer, where with the aid of different weights reduces the false positive and 

false negative rate, therefore improving the overall precision and recall rate significantly. Following which soft 

step activation function is applied in to the second hidden layer, where the function being differentiable, i.e., the 

slope of the sigmoid curve can be identified at any two points with either defective or non defective instances. In 

this manner, the complexity involved in software fault prediction is improved significantly.  

IV. EXPERIMENTAL SETUP 

In the previous section, the entire process of modeling and implementation of the Rand-Index Target Projective 

Gradient Deep Belief Network (RTPGDBN) method is introduced. The method is also validated to be 

hypothetically practicable. In this section, the theoretical model is applied to real data for verification and 

validation. To obtain more accurate and complete data and make the experiment credible, we use the dataset 

collected from https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y and are 

implemented in JAVA language. This work conducts experiments using the prediction method and basic data 

proposed above and analyzes the results and validates accordingly. Considering that the entire software defect 

detection process includes several specific processing procedures, it is important to ensure that we use appropriate 

and effective methods at each step.Performance analysis is carried out with different quantitative metrics such as 

software fault prediction time, software fault prediction accuracy, precision recall and space complexity.  

V. EVALUATION MEASURES  

To measure and validate the performance of defect prediction, the following performance metrics are used, 

precision, recall, software fault prediction accuracy, software fault prediction time and space complexity. All the 

five metrics are introduced below. 

A. Case scenario 1: Software fault prediction time 

This section represents the software fault prediction time complexity of the methods based on the testing. 

Furthermore, the testing technique is viewed as a critical statistic as it reveals the efficiency and general 

performance and significant performance indicators. This is mathematically stated as given below.  

 𝑆𝐹𝑃𝑇 =  ∑ 𝐶𝑖
𝑛
𝑖=1 ∗ 𝑇𝑖𝑚𝑒 [𝑆𝐹𝑃]        (13) 

From the above equation (13), the software fault prediction time ‘𝑆𝐹𝑃𝑇’ is measured by taking into consideration 

the class data samples ‘𝐶𝑖 ’ for simulation and the time involved in the software fault prediction process 

‘𝑇𝑖𝑚𝑒 [𝑆𝐹𝑃]’. It is measured in terms of milliseconds (ms). Table 1 compares the RTPGDBN method with other 

state-of-the-art software fault prediction methods with the same settings (as in table 1). The RTPGDBN method 

achieved the best results with minimum amount of time taken or consumed for predicting the fault prone classes.  

 

 

 

https://drive.google.com/drive/folders/101QbQ-TtQpyZa-APCFo4hCGAc_c-g6-Y
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Table 1 Software fault prediction time using RTPGDBN, HA-LCBS [1] and BUGPRE [2] 

Number of class 

data 

Software fault prediction time (ms) 

RTPGDBN HA-LCBS BUGPRE 

1000 11 14 17 

2000 11.55 15.35 19.25 

3000 13.15 20.15 25.35 

4000 18 25.35 30.15 

5000 21.35 30 38.35 

6000 25.85 33.45 45.25 

7000 28.25 35.35 50.35 

8000 30 38.45 55.35 

9000 31.45 41.35 60.25 

               10000 35.85 48.15 70.15 

 

 

Figure 4 Comparison of software fault prediction time using RTPGDBN, HA-LCBS [1] and BUGPRE [2] 

Firstly, we compare our proposed RTPGDBN with HA-LCBS [1] and BUGPRE [2] with regard to the software 

fault prediction time efficiency. As shown in figure 4, the software fault prediction time efficiency of our method 

is the best in these three methods, followed by HA-LCBS [1] and the worst by BUGPRE [2]. In the HA-LCBS [1] 

method GA was employed for automating module detection composition including cohesion and coupling metric 

involvinglarge class bad smell. The time consumed in the overall testing process was not focused, so the software 

fault prediction time of HA-LCBS [1] is less. On the other hand, the BUGPRE [2] does not consider in obtaining 

changed modules in the current version. Soit views defective and non defective instances as equal, and performs 

prediction directly on whole sample package. So the software fault prediction time of BUGPRE [2] isslightly 

higher than that of the proposed RTPGDBN method. In our method, contingency table was used in distinguishing 

between defective and non defective cases, with which basic probability calculations were performed easily via 

multivariate frequency distribution. As a result, the software fault prediction time using RTPGDBN method was 

found to be comparatively better by 25% compared to [1] and 44% compared to [2] respectively.  

B. Case scenario 2: Software fault prediction accuracy 
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The software fault prediction accuracy is an experimental measure to express the software fault prediction 

diagnostic tests’ evaluation performance. The software fault prediction accuracy is mathematically stated as given 

below.  

 SFPA = ∑
CPC

Ci
∗ 100n

i=1          (14) 

From the above equation (14), the software fault prediction accuracy ‘SFPA’ is measured based on the class data 

samples ‘Ci’ and the class data samples predicted correctly ‘CPC’. It is measured in terms of percentage (%).The 

comparison results between the proposed RTPGDBN method and existing methods, HA-LCBS [1] and BUGPRE 

[2] are listed in table 2, showing that the RTPGDBN method improve the prediction of software defect 

significantly. We noted that the RTPGDBN method had good prediction performance in distinguishing defective 

and non defective. In addition, we compared the RTPGDBN method with other state-of-the-art software defect 

prediction methods in identifying defect/non defect with the same settings (as in table 2). The RTPGDBN 

achieved the best results, suggesting that the presented method had prospective to be utilized in computer-aided 

diagnostic system for locating code in software areas where the occurrence of fault is high.  

Table 2 Software fault prediction accuracy using different software fault prediction methods 

Number of class 

data 

Software fault prediction accuracy (%) 

RTPGDBN HA-LCBS BUGPRE 

1000 99.5 90.5 85.5 

2000 96.35 86.55 80 

3000 95 85.35 79.15 

4000 94.15 85 76 

5000 93 84.85 74.15 

6000 92.85 83 71 

7000 91.35 82.35 69.25 

8000 91 82 66 

9000 90 81.15 64.15 

10000 88.15 80 61 

 

Figure 5 Comparison of software fault prediction accuracy using RTPGDBN, HA-LCBS [1] and BUGPRE [2] 

Figure 5shows the comparison results of software fault prediction accuracy efficiency. The more class data the 

software quality manager stores for simulation purpose, the lower the software fault prediction accuracy 

efficiency is. It can be seen clearly from figure 5 that the software fault prediction accuracy efficiency is 

influenced by number of class data samples involved in simulation. As shown in figure 5, the software fault 
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prediction accuracy efficiency of our method is the best in these three schemes. In addition, as the number of class 

data samples increases, the prediction efficiency gap among these three methods becomes larger and larger. In 

these three methods, the software fault prediction accuracy efficiency of our method is the highest. The state-of-

the-art methods, HA-LCBS [1] and BUGPRE [2] and the proposed RTPGDBN method automated large class bad 

smell to ensure accurate prediction. This bad smell detection method though can enhance the accuracy, but it also 

needs additional storage space to store the bad smell. Nevertheless, this additional storage space is unavoidable. 

On the one hand, the automation of large class bad is derived from the consistent code. In other words, the 

accuracy is said to be compromised. On the other hand, by applying rand similarity indexive target projection-

based feature selection algorithm, our distinct hypotheses with same and different subsets were evolved with the 

objective of increasing the agreements and decreasing the disagreements. This in turn improved the software fault 

prediction accuracy using RTPGDBN method by 11% compared to [1] and 29% compared to [2]. 

C. Case scenario 3: Precision and Recall  

Precision is one of the performance metrics used to represent the correctness classification. The precision 

performance metric is calculated by dividing the number of class data samples that correctly predicted the 

software defect divided by the total number of correctly predicted class data samples. This is mathematically 

stated as given below.  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
         (15) 

From the above equation (15), precision ‘𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛’ is measured based on the true positive ‘𝑇𝑃’ that represent 

the true prediction of positive values and the false positive ‘𝐹𝑃’ that represent the false prediction of the positive 

values respectively. Recall on the other hand denotes the rate of defecting models. The recall rate is calculated by 

dividing the number of class data samples that correctly predicted defect divided by the total number of modules 

or class data samples that are actually defective. This is mathematically represented as given below.  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
          (16) 

From the above equation (16), recall rate ‘𝑅𝑒𝑐𝑎𝑙𝑙’ is measured by taking into consideration the true positive ‘𝑇𝑃’ 

that represent the true prediction of positive values and the false negative ‘𝐹𝑁’ that denotes the false prediction of 

the negative values respectively. Table 3 given below lists the precision and recall rate arrived at using 1000 

distinct numbers of class data samples obtained at different time instances.  

Table 3 Precision and Recall rate using different software fault prediction methods 

Number 

of class 

data 

Precision  Recall  

RTPGDBN HA-

LCBS 

BUGPRE RTPGDBN HA-LCBS BUGPRE 

1000 99.79 98.41 97.43 99.48 97.92 96.33 

2000 98.35 95.25 92.35 98.35 91.35 84.35 

3000 98 95 94.15 98 90.15 84 

4000 97.55 94.35 91.85 97.16 89.35 83.15 

5000 97.35 94 90.35 97 89 82 

6000 97 93.55 89.15 96.35 89.25 80.15 

7000 96.55 93.35 89 96 89 80 

8000 96.15 92.35 87.15 95.55 87.15 79.15 

9000 95.35 92 86 95 86 78 

10000 95 91.15 85.25 94.15 89.15 77.35 
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Figure 6 Comparison of precision and recall using RTPGDBN, HA-LCBS [1] and BUGPRE [2] 

In the figure 6 we observe that the precision and recall rate of our proposed RTPGDBN method is moderately 

higher than that of HA-LCBS [1] and BUGPRE [2]. For the sake of inspecting the governing aspects, we compare 

the true positive, false positive and false negative rate for class data samples to detect defective or non defective 

cases in these three methods in figure 6. Note that we define the true positive for class data samples to generate 

the probability values as the precision and recall. As shown in the figure, the precision and recall of RTPGDBN 

method is the highest, followed by HA-LCBS [1] and BUGPRE [2] respectively. Just as we analyzed in section 

3.3, measure of quality and quantity for refactoring process for both defective and non defective instances were 

made significantly. So the false positive rate and false negative rate of HA-LCBS [1] and BUGPRE [2] is much 

higher than that of RTPGDBN method. Also only two layers were employed where the visible layer holds the 

significant software metrics and the hidden layer performed the actual process of predicting software faults. 

Following which by applying the Tversky Gradient function via distinct weights reduced the false positive and 

false negative rate, therefore improving the overall precision and recall rate using RTPGDBN method by 3% 8% 

(i.e., in terms of precision) and 8% 18% (i.e., in terms of recall) respectively.  

D.  Space complexity  

Finally, in this section, space complexity involved in software fault prediction is analyzed to validate the 

efficiency of the method. The space complexity is mathematically formulated as given below.  

 𝑆𝐶 = ∑ 𝐶𝑖
𝑛
𝑖=1 ∗ 𝑀𝑒𝑚 [𝑆𝐹𝑃]        (17) 

From the above equation (17), the space complexity ‘𝑆𝐶’ is measured by taking into consideration the class data 

samples ‘𝐶𝑖’ involved in the simulation process and the actual memory consumed ‘𝑀𝑒𝑚 [𝑆𝐹𝑃]’ is software fault 

prediction. It is measured in terms of kilobytes (KB). Finally, table 4 given below lists the space complexity 

results using the three methods, RTPGDBN, HA-LCBS [1] and BUGPRE [2].  

Table 4 Space complexity using different software fault prediction methods 

Number of class 

data 

Space complexity (KB) 

RTPGDBN HA-LCBS BUGPRE 

1000 35 50 75 

2000 38 55 80 

3000 45 70 85 

4000 50 73 93 

5000 55 78 100 

6000 58 85 110 
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7000 70 89 118 

8000 75 93 125 

9000 83 95 133 

10000 90 105 140 

 

Figure 7 Comparison of space complexity using RTPGDBN, HA-LCBS [1] and BUGPRE [2] 

We provide a comparison of space complexity in figure 7. We arbitrarily sorted out 1000, 2000,…, 10000 class 

data from the datasetto do experiments. When the total number of class data samples is proportionately negligible, 

the space complexity of the three methods, RTPGDBN, HA-LCBS [1] and BUGPRE [2] are less. When the 

number of class data is 1000, the space complexity of RTPGDBN method is the shortest, followed by HA-LCBS 

[1] and finally BUGPRE [2]. The main reason is that HA-LCBS [1] and the proposed RTPGDBN method both 

cohesion and coupling metric type passes paired value results (i.e., significant software metrics) to a deep learning 

model for automating the detection of large class bad smell. In contrast BUGPRE [2] employs propagation tree-

based associated analysis that though improved accuracy and F1-score, however consumes more stack for storing 

intermediate results. Also as shown in the above figure, when the total number of class data increases, the space 

complexity of BUGPRE [2] is the highest,followed by HA-LCBS [1] and our method. This is due to the 

application of Deep Belief Neural Network where with the aid of visible and hidden layer for processing 

minimizes the layer involved in the defect prediction. This in turn reduces the space complexity involved in the 

overall process using RTPGDBN by 26% compared to [1] and 45% compared to [2].In conclusion, compared 

with methods [1], [2], our proposed RTPGDBN method has shown good efficiency in terms of software fault 

prediction accuracy, software fault prediction time, precision, recall and space complexity. 

VI. CONCLUSION  

Coming up with a high-quality software product is a prerequisite task in the course of two distinct phases, namely, 

software testing and maintenance. One of the significant considerations as far as software product quality is 

concerned is the density involved in defect. In this work we proposed an enhanced deep belief neural network 

called Rand-Index Target Projective Gradient Deep Belief Network (RTPGDBN) to predict software fault. The 

constructed RTPGDBN method has been estimated against other popular deep learning methods using smell 

prediction replication package dataset. First, Rand similarity indexive target projection-based feature selection 

algorithm was employed in selecting computationally efficient significant software metric via Random Similarity 

Index. Second Tversky Gradient Deep Belief Neural Network-based classifier model was applied to selected 

software metric for making significant classification between defective and non defective class instances. The 

obtained results demonstrate that the RTPGDBN significantly outshines the other software fault prediction 

methods with very accuracy levels. Furthermore, our method is competitive to other deep learning methods such 

as HA-LCBS and BUGPRE in terms of precision and recall with minimum space complexity.  
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