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Abstract: - Federated learning (FL) allows end-devices to train local models on their respective local datasets and collaborate with the server 

to train a global predictive model, thus achieving the goal of machine learning while protecting the privacy and sensitive data of end-devices. 

However, simultaneous access to the server by a large number of end devices may result in increased transmission latency and some local 

models may have malicious behavior, converging in the opposite direction to the global model. As a result, additional communication costs 

can occur during the federation learning process. Existing research has mainly focused on reducing the number of communication rounds or 

cleaning dirty local data. In order to decrease the overall amount of local updates, we provide an edge-based model cleaning and device 

clustering strategy in this study. By computing the cosine similarity between local update parameters and global model parameters over a 

multi-dimensional space, the approach assesses if local updates are necessary while preventing pointless communications. In addition, end 

devices are grouped together based on where they are connected to the network and connect to the cloud via mobile edge nodes in clusters, 

therefore lowering the latency associated with high concurrent server access. Convolutional neural networks and Soft max regression are 

used, for instance, to perform MNIST handwritten digit recognition, and the effectiveness of the suggested approach to enhancing 

communication efficiency is confirmed. According to experimental findings, the edge-based model cleaning and device clustering technique 

decreases the quantity of local updates by 60% and speeds up the model's convergence by 10.3% when compared to the conventional FL 

approach. 

Keywords: mobile edge computing; model cleaning; clustering; cosine similarity 

I. INTRODUCTION 

The Many industries experience data silos as a result of competitive competition and the requirement to preserve 

data privacy. It is extremely difficult to integrate data from separate organizations, which is almost impossible in 

practice, even within the same corporation, let alone between different divisions. Data privacy and security are 

becoming increasingly important on a worldwide scale as Big Data continues to evolve. There are many difficulties 

with traditional machine learning techniques that transmit data from end devices to the cloud for deep learning [1]. 

FL, one of the core technologies of artificial intelligence, has emerged as a promising approach to address this 

challenge. In FL, the cloud server maintains a global model that is shared by all end devices [2]. The end devices 

only need to train the local model using local datasets and upload the trained local updates to the cloud server to 

participate in global aggregation, and then iterate the process [3]. The learning process of FL does not involve the 

transmission of data, and is therefore able to protect the privacy and security of the data and achieve the goals of 

machine learning while protecting data privacy. 

FL still has a lot to learn about effective communication [4]. On the one hand, complicated neural networks are 

widely used in advanced machine learning applications that are installed on end devices, leading to local updates 

that frequently have huge gradient vectors. The network between end devices and cloud servers, in contrast, has 

two issues: first, a limited amount of network bandwidth and the high cost of servers for high bandwidth services; 

and second, an asymmetric network connection between local and cloud where the upstream speed is typically 

much slower than the downstream speed. Therefore, when a large number of end devices are involved in federation 

learning, high concurrent access increases the communication latency of model transmission, and the instability of 

the network can lead to bottlenecks in the training process [5]. On the other hand, there is heterogeneity in the 

devices involved in federation learning, and their local data tend to obey a non-independent homogeneous 

distribution [6].Because of this, the local models created using these tools and data are frequently of poor quality 

and are referred to as "dirty models." The accuracy of the global model will be significantly impacted if local 

updates from filthy models are sent to the cloud to participate in aggregation. This will also result in increased 

communication costs. Thus, it is essential to lessen FL's network footprint [7]. 
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This work analyzes how edge computing and communication resources can be effectively used to obtain the best 

federation learning performance in order to address the aforementioned problems [8]. The usage of mobile edge 

nodes deployed at various network locations to serve as hubs for communication between distant clouds and end 

devices is a common mobile edge computing design [9]. End devices are split into several clusters according to 

their LAN addresses, as seen in Figure 1. Each end device calculates the cosine similarity between the local update 

parameters and the global model parameters during the local update phase [10]. The local model is not transferred 

to the server for aggregation if the similarity is low, indicating that it is a malicious or useless update and preventing 

the need for further communication [11]. Mobile edge nodes installed in each LAN gather and aggregate essential 

or non-malicious local updates during the edge aggregation phase because each global aggregation uses network 

connection and cloud computing resources. Once the edge aggregated models have been delivered to the cloud 

server for global aggregation, delay associated with high concurrent access to the server is avoided, and the 

utilization of the computing resources of the mobile edge nodes is rationalized to relieve the load on the cloud [12]. 

Abnormal Model Check
Design 

preparation 

class

Edge aggregation

Global Haohe

 

Figure 1 System framework 

The main contributions of this paper are as follows: 

By computing the cosine similarity between global model parameters and local update parameters and contrasting 

their disparities in parameter values and model convergence directions, a method for cleaning up models is given 

to get rid of pointless updates and minimize the amount of local updates. 

The introduction of a clustering technique based on the network location of end devices. By installing mobile edge 

nodes in each cluster as a communication hub between the cloud server and the end devices to gather and aggregate 

local updates, the latency issue caused by high concurrent server access is addressed. 

On two FL models, the usefulness of the suggested strategy to communication optimization is confirmed. When 

compared to conventional federation learning, the suggested strategy reduced the number of network updates by 

60% and sped up the model's convergence by 10.3%, according to extensive testing using the MNIST dataset [13]. 

II. RELATED WORKS 

In recent years, communication optimization work in FL has received continuous attention from researchers, and a 

series of optimization methods have been proposed, mainly including reducing the number of communication 

rounds and terminal equipment cleaning [14]. 

A. Reducing the number of communication rounds 

To reduce the communication overhead, existing work has focused on increasing edge computation and 

optimization algorithms. Increasing the amount of edge computing refers to using edge resources to compute local 

models with better convergence and model accuracy, thus reducing the computational burden on the cloud server 

and accelerating the convergence of the global model [15]. For example, the optimization scheme proposed in [16] 

focuses on increasing the number of end devices and improving the computational power of end devices to speed 

up the convergence of the global model. In addition, [17] proposed a three-tier federation learning system which 
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aggregates models at both the edge server and cloud server levels to achieve a good compromise between 

communication and computation.  

In terms of algorithm optimization, [18] suggests a control algorithm that chooses the best balance between local 

updates and global parameter aggregation for a given resource budget in order to minimize the loss function, taking 

into account that federation learning involves data distributed across multiple end devices. By determining whether 

local updates are consistent with the overall trend to prevent irrelevant updates, a federation learning technique 

called communication mitigation is proposed in [19]. This method lowers the total number of communication 

rounds for FL. 

B. Data Clustering 

Malicious end devices may upload damaging models during the federation learning training process and stop the 

process altogether. These malevolent devices may unintentionally produce low-quality data or purposefully carry 

out unpredictable updates, such as data poisoning assaults. The convergence speed of the global model will be 

slowed down, and a great deal of superfluous communication will result, if the local models trained by these devices 

are uploaded straight to the cloud for aggregation. Studies have suggested a method for choosing trustworthy 

endpoint devices and established the idea of reputation as a metric to address this problem. Additionally, [20] 

developed a technique that makes use of a pre-trained anomaly detection model to identify end device abnormal 

behavior and get rid of its negative effects on the overall model. The technique specifically produces low-

dimensional agent vectors and makes use of them for anomaly identification. [21] suggests a federated learning 

framework for clustering end devices into groups in order to weed out aberrant players. This framework is based 

on cosine similarity clustering between parameter updates. [22] concentrated on cleaning up local anomaly data to 

lessen the effect of anomalous data on the overall model. 

In contrast to the research mentioned above, the communication delays brought on by high server concurrency and 

the additional communication issues brought on by the uploading of pointless local updates to the cloud are the 

main topics of this paper. This study suggests a method to eliminate unnecessary updates whose differences are 

greater than a predetermined threshold, compare the differences between local update parameters and global model 

parameters, and cluster devices with the same network position. By relocating the edge nodes to connect with the 

server as clusters, FL's communication efficiency is increased. 

III. RELATED CONCEPTS AND PROBLEM DESCRIPTIONS 

A. Federal Learning 

A horizontal FL system consisting of a server and N  end devices, and a global model trained collaboratively using 

the Fed Avg algorithm. The FL scheme explored is limited to the mobile communication network scenario, 

considering that existing FL has a large number of participants and is widely distributed. Assuming that each end 

device i N  has an independent local data set iD , for any data sample ,j jx y  , where jx  represents the input 

to the model, the learning task of the device is to find a model parameter w  that describes jy  and minimizes the 

loss function ( )jf w  of the model. The loss function is used to evaluate the difference between the model 

prediction and the true situation, and the smaller the difference, the better the model. For example, for a linear 

regression model, the number of losses can be expressed as ( ) ( )
1

,
2

T

j j j jf w x w y y R= −   . For convenience, 

this paper uses | |iD  to represent the size of the data set and 

1

N

i

i

D D
−

=  to define the total size of the data 

involved in learning. Thus, in federal learning, the loss function of end device i on its dataset is defined as 

( ) ( )
1

| |
i

i j

j Di

F w f w
D 

=     (1) 
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According to the Fed Avg algorithm, the global loss function on the server can be defined as 

( ) ( )
1

N
i

i

i

D
F w F w

D−

=    (2) 

The learning objective of federal learning is to minimize the global loss function represented by equation (2). 

B.  Model parameters 

A global model parameter is initialized by the server at the start of FL training and optimized by the end device. FL 

typically need T global iterations to get the loss function to converge. Similar to this, end device i must perform 

numerous rounds of local training on its local dataset iD −  during each global iteration to determine the ideal model 

parameters. 

( ) ( )arg min
t

iw F w=    (3) 

The complexity inherent in most machine learning models is usually addressed by using Stochastic Gradient 

Descent (SGD) in equation (3). The best local update parameters 
( )t
iw  trained by these end devices on their local 

datasets need to be sent to the server to participate in global aggregation, which according to the Fed Avg algorithm, 

can be expressed as 

( ) ( )1

1

N
t ti

i i

i

D
w w

D

+

−

=    (4) 

The goal of global aggregation is to minimize the global loss function ( )F w  in equation (2), and then the server 

broadcasts 
( )1t

w
+

 to all end devices as the global model parameter for the next iteration. After several global 

iterations, the global model converges, and finally a stable global model accuracy 

( )( ) ( )( )  ( )221
|| || || ||

t t
F w F w 

−
     is obtained. 

C. Problem description 

Each end device reduces its loss function across its local data set during each global iteration. The disparities 

between the local and global models are substantial because of the variability of the end devices and the non-

independent homogenous distribution of the local data [23]. Some local models' gradients might run 

counterclockwise to those of the global model. In other words, certain locally trained models with poor training 

may contaminate the global model 
( )1t

w
+

 during the model aggregation phase. The accuracy of the global model 

is impacted if these local models are transferred to the cloud for aggregation, and they also use up a lot of network 

capacity and slow down model transmission.  

In this paper, i  is defined to denote the size of the update uploaded from terminal i  in the t st global iteration, 

and due to the dimensional consistency of the model parameters, i  is assumed to be constant. For a given number 

of end devices N  , then the total number of data uploaded from end devices in the t st global iteration is 

1

T

t i

i


−

 =  . Assuming that *w  is the final target global model parameter, this paper seeks a solution to the 

following problem. 
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( )
1

min

. . * arg min

T

t

i

s t w F w

−



=


   (5) 

IV.  EDGE-BASED MODEL CLEANING AND CLUSTERING METHODS 

In this section, this paper proposes a solution to improve the efficiency of FL communication, namely edge- based 

model cleaning and device clustering in FL (ecFL). The solution to the problem presented in the previous section 

is given in this paper. 

A. Anomalous model detection 

Anomaly local models or filthy models are terms used to describe local models that are unrelated to the convergence 

of the global model. In order to avoid downloading filthy models and cut down on wasteful communication 

expenses, this paper's goal is to identify them. As previously indicated, CMFL measures the significance of local 

updates by counting the number of parameters that have the same sign between global and local updates, for 

example, those satisfying ( ) ( )( )
1

1
sgn sgn

N

jj

j

I u u Threshold
N −

=   represents the global modelling 

parameters of the preceding global iteration, ju  denotes the local modelling parameters in the current global 

iteration, and N  denotes the total number of parameters. 

While the parameter sign of the model update identifies the direction of improvement (increase or decrease) of the 

model parameters in each dimension, the values of the parameters also reflect the extent to which the model 

parameters change in different directions.For instance, the values of the model parameters in a standard Soft max 

regression model can be understood as the Soft max probability values for each category. As a result, the local 

update's and the global model's parameter values ought to be comparable. We infer that there is no association 

between the two model parameters if the global and local models both have the same sign of the relevant parameters 

but have considerably different parameter values. This naturally prompts the query, "Are there any other methods 

to find the correlation between the global update and the local update?" 

The basics of federated learning, machine learning and edge computing, are the focus of this study. Euclidean 

distance, cosine similarity, and Jaccard similarity coefficient are three common similarity measurements used in 

machine learning. While cosine similarity measures the angle of spatial vectors, which more clearly displays the 

difference in direction, Euclidean distance measures the absolute distance of each point in space, which is directly 

tied to the point's coordinates. This work makes the assumption that cosine similarity is preferable than Euclidean 

distance for anomaly model identification because model parameters suggest the direction of convergence of the 

model. 

We also found an Angle-Based Anomaly Detection method (ABOD) in our edge computing based data cleaning 

algorithm. ABOD contains a set of data point sets, for any point o . ABOD calculates the angles xoy  of a pair 

of points ( ),x y  and o  satisfying x o  and y o  , and determines whether the data are anomalous based on 

the angular variance of each point. The findings in edge computing confirm the conjecture of this paper that cosine 

similarity algorithms focusing on angular variance are more suitable as anomaly model detection algorithms. 

As illustrated in Figure 2, where G stands for the global model and signifies the local model, this research abstracts 

the model parameters in geometric space as two-dimensional vectors and high-dimensional spatial planes. The 

cosine distance, which measures the angle of the spatial vector and is more a reflection of the difference in direction 

than in position, may be seen in the figure 2.  For the given models L  and G  in Figure 2(a), the distance 

( ),dist L G  between them is absolute. If the position of L  remains constant and the parameters of G  change in 

any dimension, the cosine distance will change at that point (because the angle changes). For the given models L  
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and G  in Figure 2(b), the angle between the two planes represents their cosine distance; the smaller the angle, the 

smaller the cosine distance, indicating that the two models are more similar. 

(a) Model parameters in low 

dimensional space

(b) Model parameters in high-

dimensional space  

Figure 2 Abstract representation of model parameters in different dimensional spaces 

In order to calculate the similarity between the model parameters for any terminal device involved in training, this 

paper first vectorizes the local update and the global model by using digital image processing methods. Assuming 

the local update  1 2, ,..., ml l lL l=  in the current iteration of the device and the global update 

 11 2, ,...,l mg gG g− =  in the previous iteration, the similarity between the global model and the local model can 

be calculated based on the cosine similarity algorithm, i.e: 

( ) ( )
( )

( ) ( )
1

11

1,
2 21

1 1

,
similarity cos ,

l l

m

j j

jl l

l lL G m m
l l

j j

j j

l g
L G

L G
L G

l g
−

−−

−

−

− −



= = =





 

   （6） 

The Trigonometric Theorem states that the cosine value range is [-1,1]. When the cosine value is close to 1, it 

denotes a closer relationship between the two vectors; when it goes to -1, it denotes a greater difference in direction; 

and when it is close to 0, it denotes a nearly orthogonal relationship between the two models. In general, similarity 

values below 0 do not correspond to readers' reading preferences. As a result, this paper normalizes the models' 

degree of similarity to the interval [0,1]. 

( ) ( )
1

1,
0.5 cos , 0.5

l l
l lL G

Similarity L G
−

−=  +    （7） 

Similarly, when ( )1,l lL G
Similarity

−
 tends to zero, the validity of the local model parameters is lower; conversely, 

the validity is higher. 

In this study, a threshold value is established, and the model parameter is set to NULL to indicate that the model 

update is incorrect and does not take part in global aggregation when the correlation ( )1,l lL G
Similarity

−
 between 

the local model and the global model is less than the set threshold value. The local training and implementation of 

the anomaly model detection in the end device are described in detail in Algorithm 1. The experimental part includes 

a detailed description of threshold setting. 

Algorithm 1 Anomaly model detection algorithm. 

Input: dataset D  of end device z , global model G  of the last iteration and threshold f  , learning rate   

Output: local update L  

1) Partition the dataset D  into multiple minibatches to obtain the minibatch set Bt ; 

2) FOR b IN Bt DO 
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3) ( )L L F L −   

4) END FOR 

5) ( ) ( ),
0.5 cos , 0.5

L G
Similarity L G=  +  ;//Calculate the cosine similarity between the local and global 

update parameters 

6) IF 
( ),L G

Similarity f THEN 

7) L NULL= ; 

8) END IF 

B.  Edge clustering 

The uploading of local updates and the downloading of the global model take up the majority of FL's 

communication time. The download time of the global model is trivial and is not taken into account in this work 

because, due to the network's design, the downstream bandwidth is far greater than the upstream capacity. However, 

because the server's network capacity is constrained, there can only be a certain number of connections active at 

once. The data transfer rate would be inversely proportional to the number of devices in the network and energy 

consumption would grow if all end devices were to communicate with the server directly. Given Shannon's 

theorem's restrictions, we can assume that the model has 

( ) 1 1
p

S
re erse B n

N
  

 
=  +  

 

   (8) 

Where B  and 

p

S

N
 denote the uplink bandwidth and signal-to-noise ratio, respectively,   denotes the number of 

devices connected to the server, and ( )re erse   . denotes the function with   . Assuming that the signal-to-

noise ratio 

p

S

N
 of the channel remains constant during the learning process of FL , and the size of the model 

update iw  is defined as M in this paper, and assuming that this value is constant, then the communication time for 

the end devices to participate in a global training can be expressed as 

( )
co

1 1

m

p

M M
T

S
re erse B n

N


 

= =
 

 +  
 

   (9) 

This shows that the communication time comT increases monotonically with the number of device connections 

, i.e. the more devices connected to the server, the longer the communication time for federal learning.  

Based on the fact that LAN bandwidth is much larger than WAN bandwidth, the idea of this paper is to allow end 

devices to communicate within the LAN as much as possible. As computing resources in the LAN are limited, 

large-scale global aggregation tasks still need to be done at the remote cloud. Therefore, this paper plans to 

implement joint communication of FLs between the LAN and the WAN. In short, this can be done using a clustering 

approach where end devices are aggregated in some way to form clusters and communicate with the cloud server 

as clusters to reduce model transmission latency and achieve the goal of federation learning. 
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Assuming that iA  is the LAN address of end device i  and mclustsr  is the cluster of devices with address mA , 

the device clustering process can be expressed as 

 |m i mclustsr i A A= =    (10) 

In other words, depending on the LAN where the device is located, it can be divided into clusters, each of which is 

independent of the other. Once the clustering is complete, the question of who will communicate between the 

clusters and the cloud becomes a further consideration. 

The first idea of this paper is to select a cluster head device in a local area network, inspired by the traditional 

wireless sensor networks [24]. The cluster head in a sensor network is in charge of combining the data gathered by 

the sensors and transmitting it to the aggregation nodes. The use of a cluster head device to gather all local updates 

in a LAN and transfer them to a cloud server for global aggregation is also taken into consideration in this article. 

A theoretical examination is conducted to see if the theory presented in this work holds true in real-world situations. 

For example, if there are p end devices in the LAN and each one has a local update size of k , the cluster head 

device must communicate p k  bytes of data in total. The size of the packets sent between a single device and 

the server, in other words 

The cluster header reduces the number of devices directly connected to the server   and increases the data 

transmission rate   , but also increases the amount of data to be transmitted M . According to the definition of 

communication time /comT M =  in the previous section, it is difficult to determine the trend of communication 

time comT  when M and   are changing at the same time. Therefore, the idea of clustering not only does not 

reduce the training communication time, but also may increase the transmission delay of the model. 

Considering that a complex DL  model training may contain millions of parameters per update, the local model 

contains a large gradient vector; and due to the clustering mechanism, the size of the data transferred between the 

edge and the cloud changes from k  to p k  , the size of the local update is even more non-negligible. Therefore, 

in order to ensure the consistency of the model variables in the communication process, this paper considers using 

the computing resources of the mobile edge nodes to calculate the weighted average of the local models in the 

cluster, i.e., the local updates satisfying Similarity Threshold in the local model will be transferred to the 

mobile edge nodes to participate in the edge aggregation and obtain the cluster model. In this paper, the process of 

edge aggregation is represented as 

 clusser 

( ) ( )i
m i

i m m

D
F w f w

D

=     (11) 

Where 
 clusser 

m i

i m

D D


=  , all cluster models are uploaded to the cloud to take part in global aggregation to reduce 

the overall loss function before moving on to the following training cycle. The specifics of the edge aggregation 

procedure are shown in Algorithm 2. The ecFL model cleaning workflow is shown in Figure 3. 

 



J. Electrical Systems 20-7s (2024): 27-45 

35 

Global model 

parameters

Local model 

parameters

1 1 1 1

1 2

t t t t

m gw w w w− − − − →
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< threshold Discard
t

iw( )1cos ,t t

g iw w−

1t

gw −

t

iwt

iw

Local Device

Moving Edge 

Nodes Cosine algorithm

t

mw

SERVER

1

2

4

3

t

iw

N

Y

1 2

3 4

Global aggregation results in a global model, and 

terminal devices calculate and optimize the global 

model to obtain a local model

Local models with similarity less than the threshold 

are discarded, while local models with similarity 

greater than the threshold participate in edge 

aggregation

Using the cosine similarity algorithm to 

determine the similarity between local and 

global models

Edge aggregation of local models on the same LAN, 

and sending the aggregated cluster model to the 

cloud for global aggregation

 

Figure 3 Workflow of model cleaning 

Algorithm 2. Model cleaning and device clustering algorithms. 

Input: set of end devices N , LAN location ( )ddress i  where device i  is located  

Output: global model G  

1) FOR 1, 2,...iteration = DO  

2) FOR  devices i IN N DO 

3) // Clustering based on device LAN addresses  

4) ( ) |mCluster i i in ddress m=  ； 

5)  END FOR 

6）FOR 1, 2,...m =  DO 

7）FOR Equipment i  IN mCluster  DO 

8) Execute the anomaly model detection algorithm to obtain local updates iL ; 

9) // Collect local updates within the cluster 

10)  mod |m i iCluster el L L is NOT NULL=  ； 

11)  END FOR 

12）
 clusser 

mod i
m i

i m m

D
Edge el L

D

=   ; // Get the edge model 

13)  END FOR 
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14) mod m
mD

EdgeG el
D

=   // Transfer the edge model to the cloud server to participate in global 

aggregation to obtain the global model G  for the next iteration 

15)  END FOR 

C. Analysis of the algorithm 

Minimizing the communication time for federal learning while ensuring learning convergence. Given that the 

dataset of end devices obeys a non-independent homogeneous distribution, minimizing the communication time is 

still an open problem. Therefore, this paper only proves theoretically that the proposed algorithm is guaranteed to 

converge, and relies on simulation experiments to illustrate the communication improvement of the proposed 

scheme. Instead of adding additional communication overhead, this process reduces the communication overhead. 

Quantitatively, assuming that there are p  end devices participating in learning, and the local update size is fixed 

and the communication cost is x  for a single upload from the local to the cloud server, the total communication 

cost for a global update in the traditional federation learning mode is p x ; in contrast, assuming that the 

communication cost for a local update to the mobile edge node is y , and a total of ( )z z p  mobile edge nodes 

are set up, as the mobile edge nodes are closer to the y x  , then the total communication cost of a global update 

in ecFL is z x p y +   , which is much smaller than the communication overhead in the traditional mode. 

In addition, assume that the loss value of federal learning training to achieve the target accuracy is 
 *L w

 ,i.e. 

  ( ) ( )* | * |L w F w F w= −  . Then the time complexity of training the federal learning model can be limited to 

 
1

1 1 1
lim *

T

t
T

t

L w O O f
T T T→

−

   
= −    

    
 , and since f is constant and the number of training iterations T can 

be reduced after model cleaning, this paper basically maintains a similar time complexity to traditional federal 

learning in terms of communication. 

V. EXPERIMENTAL ANALYSIS 

A. Dataset description and experimental preparation 

In this study, we assess the MNIST dataset training performance of two distinct models for federal learning. 

Convolutional neural networks and Soft max regression are among the models. 

MNIST is a handwritten digital dataset of 10,000 test samples and 60,000 training samples. The MNIST dataset 

consists of images that are each 28 by 28 pixels in size, with a grey value assigned to each pixel. 

 

Soft max regression.  The modeling process starts with converting the MNIST test images into probability 

distributions using the ( )maxSoft  function, then calculating the cross-entropy between the true and predicted 

distributions, and finally updating the parameters using gradient descent to achieve convergence of the loss function. 

MLP. i.e. multilayer perceptron neural network. In this experiment, two hidden layers are set. 

CNN Convolutional layer (Convolutions, Cl), pooling layer (Subsampling, S2), convolutional layer (C3), pooling 

layer (Subsaglng, S4), convolutional layer (C5), fully connected layer (F6), and output layer (OUTPUT) make up 

the model's eight network layers in total. The convolutional kernel's dimensions are 5 by 5, and the model has eight 

network layers in total. ReLU serves as the activation function.  

The TensorFlow framework was used to implement the experimental portion of this paper. The MNIST CNN and 

MNIST Soft max models are employed in the experiments. The MNIST training samples are evenly divided to 20 
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end devices for the MNIST Soft max model, with each end device receiving 3000 examples. Additionally, each 

end-device underwent 93 rounds of local training on its local dataset for each global iteration utilizing. 

In order to simulate the effect of dirty data on the model in a real learning scenario, this paper attempts to do so by 

modifying the labels in the dataset. Previous studies have shown that the accuracy of the model is only affected 

when the proportion of dirty labels is greater than 0.7. To test this idea, this paper randomly modifies a certain 

proportion of the dataset labels in the training of the CNN model using different proportions of noisy datasets. 

Figure 4 shows the results of the change in model accuracy when the proportion of noisy labels was varied from 

0% to 100%. When the proportion of noise labels is below 70%, the accuracy of the model still reaches 0.9; while 

when the proportion of noise labels exceeds 70%, the accuracy of the model drops sharply. Therefore, in order to 

evaluate the effectiveness of the ecFL algorithm in model cleaning, this paper randomly modified the sample labels 

in the MNIST dataset with more than 70% to simulate the dirty data situation in the FL environment. 

 

Figure 4 Accuracy of models trained on datasets with different noise label ratios 

B. Kan value setting 

In order to fully analyse the performance of ecFL in terms of model cleaning and improving the efficiency of FL 

communication, this paper conducted experiments and measured the similarity between the global and local 

parameters of the Soft max regression model, CNN model and MLP model during each iteration. Their cumulative 

distributions are illustrated in Figure 4. A comparison is made between the traditional federal learning approach 

using a dataset trained without the addition of noise labels and with the addition of noise labels. In the Soft max 

regression model, the similarity between the global model and the local model is close to 1.0 when trained with the 

noise-labelled dataset, whereas with the noise-labelled, the similarity between the two is distributed between 0.7 

and 1.0, which is significantly lower than the result of training with the noise-labelled dataset. A similar situation 

was observed in the CNN model and the MLP model. 

In order to verify that the ecFL algorithm can accurately remove dirty models in the presence of dirty models and 

achieve the training accuracy in the dirty model-free condition, a set of tests around specific thresholds is performed 

in this paper. In the Soft max regression model, tests were conducted around 0.97, with the set of thresholds 

{0.95,0.955,0.96,0.965,0.97,0.975,0.98,0.985} set; In the CNN model, the set of thresholds 

{0.9995,0.9996,0.9997,0.9998,0.9999} was set around 0.9998 for the test; in the MLP model, the set of thresholds 

{0.9990,0.9991,0.9992,0.9993,0.9994. 0.9995}. The experimental results showed that the ecFL algorithm was able 

to obtain the best performance when the threshold values were set to 0.9999, 0.9995 and 0.98 for the MNIST CNN 

model, MNIST MLP model and MNIST Soft max regression model, respectively. (Figure 5) 
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A  softmax 

 

B CNN 

 

C  MLP 

Figure 5 Cumulative distribution of cosine similarity between global and local model parameters 
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C. Results and analysis 

A whole model was first trained on a dataset without dirty labels as a control in order to assess the effectiveness of 

this paper's method for cleaning models and lowering network footprint. The Soft max regression model then 

underwent experiments, with the outcomes being examined. 

In the studies, the dirty tags are evenly distributed across 16 end devices, and each device is given a random set of 

LAN addresses. The model's learning rate was set to   = 0.001. Figures 6(a) and 6(b) show the relationship 

between the accuracy and training loss of the model during the global iterations as measured in this study. 

 

A The accuracy of softmax through different learning methods 

 

B The loss value of softmax through different learning methods 
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C Training time for different learning methods of softmax 

Figure 6 Performance of Soft max regression models learned by different means 

Due to the high local training round epoch of 93 for the end device, the global model accuracy has reached above 

0.8 at the first global aggregation of the server. Overall, ecFL was effective in model cleaning, with a steady 

improvement in model accuracy and a significant reduction in training loss. In contrast, model accuracy under the 

traditional FL approach without model cleaning was extremely unstable, with no significant downward trend in 

training loss. Both models trained under the ecFL approach had significantly lower loss values compared to models 

trained under the FL approach without dirty labels, and there was only a 1% decrease in accuracy, and both were 

significantly higher than models trained under the traditional FL approach without model cleaning. 

This research adds random delays to explain the transmission process of the model in the network based on the 

distance between various devices and the server and the status of the server devices, and plots them in Figure 6(c) 

in order to replicate the training period of FL. According to the experimental findings, the ideal training time for 

the same number of repetitions is achieved by the ecFL technique with device clustering and edge aggregation, 

whereas the training times for the conventional FL and the ideal FL without dirty labels are comparable. The 

proposed ecFL approach requires 10.3% less training time than the conventional FL [25]. 

D. Experimental analysis on CNN models 

The CNN model was subjected to similar testing, with 8 malicious endpoints and a 0.001, 0.5droput = =  

learning rate. This study evaluated how well the three learning techniques—conventional FL, ecFL, and FL without 

dirty labels—performed when used to train the Soft max regression model and the CNN model. With a data noise 

ratio of 0.7, the findings in Figures 7(a) and 7(b) show that the ecFL method of model accuracy is much superior to 

the traditional FL without model cleaning. After only 5 global iterations, ec FL reduces the model's training loss by 

80%, hastening the model's convergence. The accuracy of the conventional FL technique without model cleaning 

is only 0.7 when looking at the graph vertically, under the identical conditions, after 50 global iterations, with just 

a 33% decrease in the loss value. The ecFL approach only needs two iterations to attain the same accuracy that the 

standard FL method does, but the traditional FL method without model cleaning needs thirteen [26,27]. 

Compared to the FL training method without dirty labels, the ecFL method was close in accuracy, with only a 2.1% 

drop. Furthermore, the training results of the conventional FL method without model cleaning were much worse 

than the results of the ecFL method with model cleaning. This also indirectly indicates that the removal of local 

model parts that do not match the global trend does not affect the correctness of the overall model results. At the 
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same time, this paper introduces a delay in the traditional FL model update process to simulate the network 

conditions in real scenarios. According to the experimental results in Figure 7(c), the training time of the ecFL 

method with device clustering and edge aggregation is 30.8% shorter than that of the conventional FL method for 

the same number of iterations. 

 

A The accuracy of CNN through different learning methods 

 

B The loss value of CNN through different learning methods 

 

C Training time for different learning methods of CNN 

Figure 7 Performance of CNN models learning by different means 
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E. Communication efficiency evaluation 

In Table 1, a comparison of the performance of conventional FL, ecFL and FL without dirty labels in terms of 

reducing communication latency is summarized, where the number of communication iterations is 50 for all three. 

Overall, when the number of iteration rounds is the same, the communication time required for conventional FL 

and FL without dirty labels is similar, indicating that the presence of a dirty model has a greater impact on the model 

training time, but a smaller impact on the communication time. The proposed ecFL method requires significantly 

less communication time than conventional FL when the number of iterations is the same. this indicates that through 

device clustering and edge aggregation, the ecFL method is able to significantly reduce the time required for model 

uploading and downloading, thus effectively reducing the network latency in the federation learning process. 

Table 1 Communication time consumed by different learning methods 

 Traditional FL e FL FL without dirty labels 

Soft max regression model 344.1 296.2 290.3 

CNN model 616.8 411.7 620.1 

 

In order to get a more intuitive view of the performance of the proposed ecFL in optimizing FL communication 

efficiency, a metric called effect  is designed in this paper. For a given learning accuracy, effect  is defined as the 

normalized value of the total number of local updates that need to be uploaded under conventional FL compared to 

the total number of local updates that need to be uploaded under ecFL mode. 

t e

t

effect
 



−
=    （12） 

Where t  denotes the total number of local updates to be uploaded without clearing the model, and e  denotes 

the total number of local updates to be uploaded in ecFL mode. Intuitively, the larger effect  is, the better ecFL 

performs in terms of improving communication efficiency. In this paper, we measure the effect  of ecFL in MNIST 

Soft max regression model and MNISTCNN model with different precision. The results of effect  for different 

model accuracies are given in Table 2. 

Table 2 Results for sffsct  on different model accuracies 

 
i
 e

 
sffsct

 

MNIST CNN model with an 

accuracy of 0.6 

100 30 0.74 

MNIST CNN model with an 

accuracy of 0.8 

330 40 0.92 

Soft max regression model with an 

accuracy of 0.85 

10 18 0.7 

Soft max regression model with an 

accuracy of 0.87 

230 20 0.96 

For the Soft max regression model, this paper investigates the impact of the ecFL learning approach for model 

accuracies of 0.85 and 0.87. At 0.85 accuracy, conventional FL requires 10 model updates to be uploaded, while 

ecFL only requires 18, which means that ecFL reduces the network footprint by 60%. When accuracy is increased 
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to 0.87, conventional FL requires 230 model updates to be uploaded while ecFL only requires 20. With model 

cleaning, ecFL eliminates 96% of local updates, significantly reducing communication costs. 

For the CNN model, due to its slow convergence rate, this paper examines the performance of ecFL in improving 

the efficiency of federal learning communication at 0.6 and 0.8 precision. At 0.6 precision, ecFL reduces the number 

of local updates by 74% compared to conventional FL, which is equivalent to 90 fewer updates. When the precision 

was increased to 0.8, conventional FL required 330 updates to be uploaded, while ecFL only required 40 updates 

to be uploaded, meaning that ecFL reduced the number of model updates by 92%, significantly improving 

communication efficiency. 

Based on the experimental results in Figure 8, an evaluation of the execution time of 1,000 tasks was performed 

without using the paper's scheme clustering method and with scheduling of the clustered tasks. The results show 

that the average execution time of the tasks on the terminal was 5.804 seconds without the use of the clustering 

method of this paper's scheme, whereas with the use of this method the average execution time of the tasks was 

reduced to 3.761 seconds, a reduction of approximately 35.2%. 

 

Figure 8 Comparison of task execution time before and after ecFL clustering 

Figure 9 shows the task scheduling time before and after adding the task clustering algorithm for task numbers of 

1,000, 3,000, 5,000, 7,000 and 10,000. As the number of tasks increases, the advantage of task scheduling via task 

clustering becomes increasingly apparent. This is because when the number of tasks is large, the resources that 

match the tasks can be found faster for scheduling when the tasks are clustered using this paper's scheme. By 

clustering tasks, the efficiency and accuracy of task scheduling can be improved, thus optimizing the performance 

of the whole system. The rescheduled tasks are executed at a more even time, reducing the waste of resources and 

load imbalance. 
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Figure 9 Time spent per 100 tasks scheduled before and after ecFL clustering 

VI. CONCLUSION 

In order to increase federation learning's communication effectiveness and model resilience, this research presents 

an edge-based federation learning framework dubbed ecFL. By using mobile edge nodes as the main nodes for 

cloud-edge communication, ecFL introduces the idea of clustering based on device network locations and 

overcomes the latency issue brought on by high server concurrency. Calculating the cosine similarity between the 

global model parameters is the key concept of ecFL. To ascertain whether the local update complies with the global 

model's convergence tendency, the cosine similarity between the parameters of the global model and the local 

update is computed. The mobile edge nodes will only gather and aggregate the local updates when the similarity 

rises beyond a predetermined threshold, accomplishing the model cleaning objective. In order to show the 

effectiveness of ecFL in terms of model cleaning and communication efficiency improvement, experiments on the 

two learning models Soft max regression and CNN are conducted in this study. With ecFL, the network footprint 

was effectively decreased by 95% compared to classical federated learning, and the convergence performance was 

improved to a 30.8% improvement over the CNN model. The use of federated learning in a distributed setting has 

been greatly enhanced by the introduction of the ecFL framework. 
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