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Abstract: - Motion detection in video streams is important for many applications, such as autonomous navigation, human-computer 

interaction, and spying. Conventional techniques, which depend on backdrop removal or frame differencing, frequently break down when 

dealing with intricate motion patterns and occlusions. Current techniques struggle to handle occlusions and correctly capture complex motion 

patterns. Furthermore, these techniques could be computationally expensive, especially when dealing with big amounts of video data. An 

integrated strategy combining optical flow estimation with 3D convolutional neural network (3D-CNN) architectures is presented to address 

these limitations and boost motion detection systems' accuracy and efficiency. The suggested technique is unusual as it combines 3D CNNs 

with optical flow estimates. Motion vectors representing dynamic scene changes are produced by optical flow estimates, and spatiotemporal 

characteristics are extracted by 3D CNNs processing together with optical flow information. By using the complementing capabilities of 

both approaches, the method performs better in motion detection applications such as object tracking, action recognition, and anomaly 

detection in video streams. The efficiency of the strategy is assessed by experiments carried out on benchmark datasets. The results show 

that it is more accurate, resistant against occlusions, and computationally efficient than existing approaches. The suggested approach offers 

a viable way to improve motion detection capabilities for a range of practical uses. The results show a 98% improvement in processing 

efficiency and motion detection accuracy when compared to baseline methods. More research and advancement in this area are made possible 

by the attainable way that MATLAB's suggested approach offers to enhance motion detection skills in a variety of real-world applications.     
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1. Introduction 

 The identification of occurrences that vary from anticipated behaviour is known as anomaly detection in videos, 

and it is a critical task in both video analytics and video surveillance [1]. However, for the following reasons, 

video anomaly identification is a very difficult task: First of all, genuine video data is intricate, and certain 

anomalous data points may be located on the edge of regular regions. For example, although skateboarders and 

walkers have similar appearances, skateboarders are aberrant items that are not allowed on pedestrian walkways. 

Secondly, there is a shortage of tagged training information for anomaly detection [2]. While anomalous samples 

are rare and expensive to get, normal patterns are typically rather simple to gather. As a result, anomaly detection 

techniques may just use the normal data for training their models to identify regularities in an unsupervised 

environment and identify the instances that vary from the typical patterns [3].  

 Human Action Recognition (HAR) has many different applications. Its objective is to recognise an individual's 

actions using either visual or sensor data. There are three types of HAR methods: multi-modal, nonvisual sensor-

based, and visual sensor-based [4]. The shape of the felt data is the primary distinction between the visual and 

various other categories. Some systems record the visual data as 1D signals, while others record the data as 2D, 

3D, or video images. Wearable technology has advanced over the past several years, with the development of 

smartwatches, fitness bracelets, and smartphones [5]. These are outfitted with tiny, non-visual sensors as well as 

communication and processing power. Additionally, their very inexpensive cost has enabled them to provide new 

opportunities due to their widespread usage. These consist of illness prevention, rehabilitation training, and health 

monitoring. Simultaneously, among the most common and hot topics in computer vision studies is visual sensor-

based approaches for human action identification [6].   
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Applications include content-based video search, smart video surveillance, environmental assisted living, 

interaction between humans and robots, and human-computer interaction. The recognizing system is taught to 

discern between activities performed in a scenario in each of those apps. Based on that inference, it could also 

make certain judgments or carry out additional processing [7]. It may be said that wearable technology has several 

drawbacks, including the requirement to be worn and used continuously in the majority of situations. This might 

provide a serious problem for real-world applications that need to be deployable and ready. Consequently, 

imposing particular technological specifications about the sensor's performance, size, and battery life, among 

other things [8]. Furthermore, they might not be effective or appropriate to use in situations such as crowd 

applications or other similar ones. These restrictions do not apply to HAR which is computer vision-based. The 

majority of application cases may use computer vision-based HAR without these technological constraints.  

Motion is frequently an essential indicator for identifying actions. For instance, since how an action is interpreted 

is dependent on its direction of motion, it might be challenging to distinguish between two actions, such as "open 

a door" and "close a door," from a single frame [9]. To address this, current research approaches motion 

recognition as a separate problem, with one network, the "temporal stream," seeing just a manually created motion 

representations as input, and another, the "spatial stream," observing the unprocessed RGB video frames. On the 

other hand, spatiotemporal filters in a 3D Convolutional Neural Network allow the spatial stream to react to 

motion in the video [10]. Theoretically, as supported by the research, this ought to enable the spatial streams to 

pick up motion characteristics. Even at this point using a "temporal" 3D CNN which receives as input a clear 

depiction of motion, and usually optical flow allows us to achieve significant accuracy increases [11]. For 

example, researchers notice a 6.6% gain in accuracy on HMDB-51 when they ensemble a 3D CNN that captures 

RGB images with a 3D CNN that collects optical flow frames.   

Motion detection in video streams is an essential job with many applications, including autonomous navigation, 

human-computer interaction, and spying. Accurate real-time tracking and detection of moving objects is essential 

for maintaining environment security, permitting safe navigation for self-driving cars, and promoting immersive 

experiences in interfaces between humans and computers. That said, conventional motion detection techniques 

frequently lack computing efficiency, robustness, and accuracy. Opportunities to get around these restrictions and 

improve motion detection skills have been made possible by recent developments in deep learning and computer 

vision. Particularly, 3D-CNNs have demonstrated exceptional performance in extracting discriminative 

characteristics from visual input, leading to notable gains in a range of computer vision applications. Furthermore, 

useful temporal information is provided by optical flow estimation, which determines how objects move between 

successive frames in a video stream. This information may be used to supplement the spatial properties that 3D-

CNN structures study.  

In this study, a unique motion detection technology that combines 3D-CNN architectures with optical flow 

estimates. The goal in merging these two approaches is to solve the drawbacks of conventional approaches and 

make use of their complimentary advantages. 3D-CNNs are excellent at collecting spatial patterns and features, 

whereas optical flow estimation provides information about the motion dynamics of objects across time. The 

smooth amalgamation of these methodologies facilitates the identification of moving objects in video streams 

with greater precision and resilience. The method is new since it uses both 3D-CNN and optical flow estimates in 

a single, integrated framework to detect motion comprehensively. This integration makes it possible to fully 

comprehend motion dynamics and makes it easier to make decisions while identifying moving things. To illustrate 

the efficacy of this technique, provide a comprehensive methodology that includes data collection, pre-processing, 

model construction, training, assessment, and optimization. Evaluating the performance of the proposed approach 

through extensive tests on standard datasets, demonstrating notable gains in computing efficiency and motion 

detection accuracy over baseline approaches. All things considered, this method provides a viable means of 

improving motion detection skills in a range of practical applications, setting the stage for more study and 

advancement in this area.  

These are some major contributions that have been made:  

1. A unique approach that smoothly combines 3D-CNN architectures for motion detection in video streams with 

optical flow estimation.  
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2. Using the mutual advantages of deep learning and optical flow estimates to achieve notable gains in motion 

detection resilience and accuracy.  

3. Real-time motion detection solutions are made possible by effectively using 3D-CNN architectures and 

optimization approaches to address the computational limitations of conventional methods.  

4. Offering a comprehensive approach to motion detection by presenting a thorough technique that includes data 

collection, pre-processing, model development, training, assessment, and optimization.  

5. Performing comprehensive tests on reference datasets to verify the efficacy of the suggested methodology, 

exhibiting its advantages over baseline techniques concerning precision and computing efficiency.  

The rest of the research is arranged as follows: The first section presents the subject of motion detection in video 

streams and explains the rationale for the suggested approach. In Section 2, relevant works in motion detection 

are reviewed, with an emphasis on the advantages and disadvantages of current methods. In Section 3, the 

shortcomings of conventional motion detection techniques are discussed, highlighting the need for new 

approaches. The suggested technique is presented in Section 4, which also describes how 3D-CNN architectures 

for motion detection are integrated with optical flow estimates. Extensive experiments on benchmark datasets are 

included in Section 5, together with a description of the experimental setting, data collection, training models, and 

assessment techniques. Section 6 provides a final summary of the study, a discussion of the implications, and an 

overview of future research directions for enhancing motion detection skills inside video streams.  

2. Related Works 

 Zhao et al.[12] explains An investigation is conducted on an ongoing Chinese language sign recognition system. 

The deaf and mute can utilize Chinese sign language, which this technology can recognize. It can output the 

findings in real time as text. Initially, a Chinese sign language dataset with 500,000 video samples is created using 

a standard RGB camera. To improve the identification accuracy of the framework for real-time applications, a 

three-dimensional (3D-CNN) is investigated in combination with optical flow processing using overall variation 

regularization and L1-norm robust (TV-L1). An equal amount of keyframes from every video stream is extracted 

using a two-stage down-frame processing method, which is then fed into a 3D CNN to generate feature vectors. 

On a dataset with 1,000 vocabulary words, comparative studies are done between the recurrent neural networks 

(RNN) and hidden Markov model (HMM), which achieves 92.6% recognition accuracy. Finally, a fully functional 

real-time system for recognising sign language is constructed and published. It consists of a video capture 

mechanism, a motion detection section, a hand and head detection module, and an interface for human interaction. 

The system's real-time generalization performance is confirmed by the experimental findings. To enhance motion 

detection, adding skin and human skeleton detection may result in more computing complexity and privacy issues.  

 The field of human-computer interaction has several applications for which hand gestures are a helpful tool. The 

goal is to follow the hand's movement in this instance, regardless of the hand's size, shape, or color. A motion 

template influenced by optical flow (OFMT) is also suggested as a solution for this. OFMT is a condensed 

depiction of a gesture's motion data contained in a single picture. Comparing deep networks to traditional 

featurebased approaches that are manually created, significant advancements have been demonstrated recently. 

Furthermore, it is shown that utilizing several streams with enlightening input data contributes to improving 

recognition performance. Sarma et al.[13] proposes a hand gesture recognition model using two streams of fusion. 

The two-stream networks is composed of two layers: a 2D-CNN that receives OFMT pictures as input, and a 3D 

convolutional neural network (C3D) that receives gesture movies as input. While OFMT helps to remove 

unnecessary movements and provide more motion information, C3D has demonstrated its effectiveness in 

collecting the spatiotemporal data contained in a video. To improve the recognition results, every stream is joined 

utilizing a fusion system, even though each stream may operate separately. Researchers have demonstrated the 

suggested two-stream network's effectiveness on two datasets.  

It is difficult to identify aggressive activity in recordings to maintain security and safety for the general audience. 

Accurately recognizing and classifying violent episodes in real-world closed-circuit television, which differ in 

terms of features and locations, requires a thorough comprehension and processing of the sequential data 

incorporated into these movies. The goal of this work is to present a model that can effectively understand the 
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spatiotemporal setting of films in a variety of environments and violent scenario requirements. Park et al.[14] 

propose a technique that uses optical flow and RGB data to precisely capture spatiotemporal characteristics 

connected to aggressive actions. The core network of the method is a Conv3D-based ResNet-3D model, which 

can process high-dimensional video input. By including an attention mechanism that gives more weight to the 

most important frames in the RGB and optical-flow sequencing during violent episodes, violence detection 

becomes more accurate and efficient. The UBI-Fight, Hockey, Crowd, and Movie-Fights datasets were used to 

assess the model. The results showed that the suggested approach beat current state-of-the-art methods, with area 

under the curve scores of 95.4, 98.1, 94.5, and 100.0 on the corresponding datasets. Furthermore, this work 

promises to further a wider range of studies in video analysis and comprehension in addition to having applications 

in real-time surveillance systems.  

 Sarma et al.[15] explains In the field of human-computer interaction, hand gestures may be a helpful tool for 

many different applications. Hand gesture approaches can be especially used in surgical robotics, virtual and 

augmented realities, sign language recognition, and many other fields. Because hands vary in size and form, it 

might be difficult to identify and track moving hands accurately throughout the hand gesture identification 

process. Here, tracking the hand's motion is the main goal, regardless of the hand's size, shape, or colour. A motion 

template driven by optical flow is also suggested as a solution for this. OFMT is a condensed depiction of a 

gesture's motion data contained in a single picture. Several datasets were utilized in the experiment, one with a 

naked hand with an open palm and the other with a folded palm while wearing green gloves. In both scenarios, 

they were able to produce OFMT pictures with the same level of accuracy. Comparing deep network-based 

methods to traditional feature-based methods that are manually created, significant advancements have been 

observed recently. Furthermore, it is observed in the literature that using several streams with useful input data 

improves recognition accuracy performance. This paper essentially suggests a simple yet effective motion 

template that utilises optical flow as well as a two-stream fusing model for hand gesture identification. The 

twostream network is composed of two layers: a 2D-CNN that receives OFMT pictures as input and a 3D 

convolutional neural network (C3D) that receives gesture movies as input. C3D is effective in capturing the 

spatiotemporal details of a video. On the other hand, OFMT offers more motion information while assisting in the 

removal of unnecessary motions. To improve the recognition results, each stream is joined utilizing a fusion 

system, even though each stream may operate separately. Researchers have demonstrated the suggested twostream 

network's effectiveness on two datasets.  

 Peng et al.[16] proposes an image-based spatial stream with a CNN, an optical flow ResNet (residual network), 

and a motion features concatenated ResNet are the two types of deep CNNs used in this three-stream model. Four 

datasets UCF Sports, Youtube Sports, SBU actions interaction, and a portion of UCF-1M Sports are used to test 

this model. Employing the Epicflow (Edge Preserving Interpolation Correspondences for Optical Flow) motion 

boundary emphasised approach (MBEpicflow); and the Flownet 2 method, a learning optical flow estimation 

method. It was discovered that (i) on the SBU dataset, the suggested MBEpicflow method performs better than 

the Flownet 2 method, and on each of the other datasets, the Flownet 2 method performs as well as or more 

effectively than the MBEpicflow method. These outcomes are the most favourable when compared to those 

obtained using alternative approaches on all examined datasets. These findings highlighted the significance of 

precise optical flow, a topic that is rarely discussed, in the identification of human actions. Moreover, it 

demonstrated that the generalization performance frequently improves by 1-2 percent when a portion of the 

worldwide behaviours of motion is included.  

 Several papers look at the state of the research on the detection of violence in videos and gesture recognition. 

Using a 3D-CNN in conjunction with optical flow processing, Zhao et al. describe a real-time Chinese language 

sign recognition system that achieves 92.6% accuracy on a dataset of 1,000 vocabularies. To improve recognition 

performance, Sarma et al. suggest a two-stream fusing model for recognizing hand gestures that combines both 

3D-CNN and 2D-CNN layers. Using a mechanism for attention to increase efficiency and accuracy, Park et al. 

developed a violence recognition model that uses ResNet-3D based on Conv3D. This model outperforms previous 

methods on a variety of datasets. With a focus on precise optical flow estimation, Peng et al. provide a three-

stream framework for human action recognition that improves generalization performance by utilizing several 

CNN architectures based on spatial and optic flow data. Together, these studies demonstrate the progress made in 

violence detection and gesture recognition, highlighting the efficiency of deep learning structures and multi-
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stream combining techniques in enhancing recognition performance and generalization accuracy across a range 

of datasets and applications.  

3. Problem Statement 

Conventional techniques for motion detection in video streams frequently face several difficulties. First of all, 

they depend on overly simple methods that are not very resilient and do not adjust well to a variety of 

environmental factors including shifting illumination, crowded backdrops, and occlusions [12]. Additionally, 

these techniques could have substantial processing costs, which complicates real-time applications. Furthermore, 

they frequently make mistakes in properly detecting delicate or complicated motion patterns, which results in 

missing occurrences or false detections [16]. Furthermore, the application of classical approaches in dynamic 

circumstances may be limited due to their inability to manage fluctuations in object appearances and motion speed 

adequately. The suggested methodology combines 3D-CNN architectures with optical flow estimates to present 

a unique motion detection technique. This strategy utilizes the strength of deep learning and computer vision 

techniques, in contrast to previous approaches that frequently rely on handmade features and simple algorithms. 

This technology offers numerous important advantages by smoothly integrating motion information captured 

between frames by optical flow estimation with 3D-CNNs that can learn complicated motion patterns. First off, 

by efficiently simulating spatial and temporal correlations in video data, improves the precision and resilience of 

motion detection. Second, by effectively using 3D-CNN architectures and optimization techniques, it overcomes 

the computational limitations of conventional approaches. In addition, this approach can manage a wide range of 

motion patterns and ambient circumstances, which makes it appropriate for real-world uses like autonomous 

navigation, surveillance, and human-computer interaction. In general, the amalgamation of optical flow estimation 

with 3D-CNNs signifies a noteworthy progression in motion detection proficiencies, providing a flexible and 

effective resolution to the constraints of current techniques.  

4. Integrated Optical Flow-3D-CNN Motion Detection 

 This study presents a general framework for motion detection in video streams that is all-inclusive. First, data 

must be gathered and pre-processed, including obtaining video sequences and getting them ready for analysis. 

Afterward, motion information between successive frames is computed using optical flow estimating techniques. 

The right 3D-CNN architecture is then chosen to train discriminating characteristics for motion detection. After 

this, the video frames and optical flow data are combined into the 3D-CNN architecture to create a single motion 

detection model. The prepared dataset is used to train this integrated model, and standard metrics are utilised to 

assess the performance of the model. Moreover, methods for performance optimization are used to improve the 

model's efficacy and efficiency. Lastly, in-depth tests are carried out on reference datasets to verify the suggested 

methodology, proving its superiority over conventional approaches when it comes to accuracy and computing 

efficiency. Fig. 1. Gives the overall flow of Methodology.  

 

 

Fig. 1. Workflow of Proposed Method 
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4.1 Data Collection 

A variety of actions are shown in the videos that make up the dataset, such as Falling Down (177 movies), Lying 

Down (162 videos), Sitting (135 videos), Standing (242 videos), and Walking (285 videos). A variety of human 

motions, from dynamic actions like walking and falling to stationary postures like sitting and standing, are 

represented by each category in the collection. They chose just those videos (162, 135, and 285 films, respectively) 

from the collection that show people sitting, walking, and lying down. These particular categories allow for a 

comprehensive analysis and assessment of the motion detection models since they encompass a wide variety of 

human motions, including both dynamic and static positions. These videos provide the foundation for motion 

detection model training and assessment, enabling thorough examination and verification of the suggested 

techniques. The distribution of films throughout the dataset's many categories of motion Data is seen in Table 1.  

Table 1: No. of Videos in Dataset 

Human in Motion  No. of Videos  

Fall Down  177  

Lying Down  162  

Sitting  135  

Stand up  126  

Standing  242  

Walking  285  

 4.2 Data Pre-Processing 

Pre-processing is required for video datasets in order to prepare them effectively and increase the learning rate. 

Model efficiency is impacted by effectively improving the video frame characteristics. One video has, on average, 

26 frames every second. Then feed the model 20 frames from a video as a single sequence. Resizing the video 

frames to 64 × 64 reduces calculations. The same normalization procedures that are used here also aid in improving 

model performance. The normalized range of 0.0 to 1.00 was fixed by dividing the pixel values by 255 for 

normalization. A quarter of the data is in the test set and the remaining seventy-five percent is in the training set 

[17].  

4.3 Optical Flow Estimation 

This work does not attempt to examine optical flow in its entirety since the seminal publications by Horn/Schunck 

and Lucas/Kanade from 1981. Nonetheless, the brief overview should be enough to comprehend the problems 

with traditional optical flow in motion detection applications.   

4.3.1 Classical Optical Flow 

 Pixel correlation among the current and previous frames of an image series is calculated by optical flow 

estimation. The premise of intensity constancy, which states that objects in motion maintain their intensity value 

from frame to frame, is fundamental to the majority of methods used to establish this relationship. From this 

supposition, the optical flow constraint results [18].  

𝐼 

 𝑑𝑡𝑑 ′ = 𝐼′𝑥′𝑢′ + 𝐼′𝑦′𝑣′ + 𝐼′𝑡 = 0          (1)  

where 𝐼’(𝑥’, 𝑦’, 𝑡) is a series of intensity pictures with time variable t  [0, T ] and the spatial coordinates  

 . Partial derivatives are indicated by the subscripts. The direction in which the pixel (𝑥’, 𝑦’) is traveling 

is indicated by the flow vector (u’, v’) = (𝑥′𝑡,𝑦′𝑡). Eqn. (1) solves for 𝑢′ and 𝑣′ given the image quantities 𝐼′𝑥′ , 𝐼′𝑦′  

and 𝐼′𝑡. Due to the two unresolved variables in Eqn. (1) and the one equation per pixel, this issue is illposed. This 

is referred to as the apertures problem, according to which it is only possible to determine the optical flow 

components parallel to the picture gradient.  
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To generate a unique solution, the optical flow methods also assume the flow field, which is frequently 

accomplished by guaranteeing smoothness. While Lucas-Kanade optical flow is an early instance of systems that 

presume a flowing continuous for pixels in a neighborhood, this work adopts a point-wise strategy, applying 

conditions per pixel instead of constant neighborhoods. Point-wise techniques often aim to reduce a form's 

functionality.  

 ′′ 𝑇 𝑟′𝑑𝑎𝑡𝑎(𝐼′, 𝑢′, 𝑣′) + 𝛼′𝑟′
𝑟𝑒𝑔(𝑢′, 𝑣′)𝑑𝑡 𝑑𝑥′ 𝑑𝑦′      (2)  

where the regularisation term 𝑟′
𝑟𝑒𝑔  measures the smoothness of the flow fields and the data terms 𝑟′

𝑑𝑎𝑡𝑎 reflects 

the errors from the optic flow constraints Eqn. (2). Regularisation is controlled by the constant α'. In Horn- 

Schunck's seminal study, the regularisation terms and data are selected as eqn. (3)  

  𝐼′
𝑥′𝑢′ + 𝐼′

𝑦′𝑣′)2 + 𝛼′(‖∇𝑢′‖2
2 + ‖∇𝑣′‖2

2)𝑑𝑡 𝑑𝑥′𝑑𝑦′    (3)  

Since then, a number of developments have been made, mostly by altering the regularisation term to become 

anisotropic or image-driven. The foundation of all those developments is still the optical flow limitation.   

4.4 3D-CNN Architecture 

 Convolutions are used for the two-dimensional maps that are retrieved from the feature in twodimensional 

convolutional neural networks to count the features that are accessible from the geometrical dimension. In the 

latter stages of CNNs, we introduce counting three-dimensional convolutions to measure the characteristics from 

both the temporal and spatial dimensions. A three-dimensional kernel is convolved into a cube that is created by 

constructing several spatial-temporal patches that are stacked contiguously to produce a three-dimensional 

convolution. The convolution layer's feature maps are connected to the preceding layer's multiple frames placed 

adjacently to capture motion-related information. It is observed that if the kernel weights are repeated across the 

patch cube, the 3D convolution kernel can only choose one kind of feature from the patched cuboid. Convolution 

neural networks often use a design strategy in which the number of feature maps increases as the number of layers 

rises, allowing for the development of many types of features from the lower-level maps that are accessible. A 3D 

filter kernel is convolved by stacking several consecutive frames together to create a 3D cube, which yields the 

3D convolution. The feature maps are linked to several consecutive frames using this process. Formally, the value 

in the 𝑖th layer at point (𝑥, 𝑦, 𝑧) on the 𝑗th feature map is given by eqn. (4)   

𝑥′,𝑦′,𝑧′𝑎′𝑏′𝑐′ 

 𝑣𝑖′𝑗′ = tanh (𝑏𝑖′𝑗′𝑤𝑖′𝑗′𝑚′ 𝑣((𝑖𝑥′+−𝑎1′))𝑚(𝑦′ +𝑏′)(𝑧+𝑐′)    (4)  

where 𝑤𝑖𝑎′𝑗
′𝑏

′𝑚
′𝑐

′
′ is the feature map associated with the 𝑚′th value of the kernel in the preceding layer, and 𝐶′𝑖 is 

the 3D filter kernel size throughout the temporal dimension. Fig. 2 shows the suggested architecture for a  

3D-CNN.  

 

Fig. 2. 3D-CNN Network Architecture 
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Using hyper parameters like receptive field (R’), stride length (S’), zero-padding (P’), and volume dimensions 

(Width, Height, Depth, or W’, H’, D’), calculate the spatial size of the 3D-CNN output volumes. Convolutional 

layer neurons are calculated using ((W’ – F’ + 2.P’)/S’) + 1. The input layer is made up of ((120 − 11 + 2.0)/1) + 

1 = 110, which results in an output volume of 110 × 110 × 32. The input frame's height and width are represented 

by W’ and H’ = 120, its 3D filter depth is represented by F’ = 11 × 11 × 32, zero-padding is represented by P’ = 

0, and the stride leading to the output is represented by S’ = 1 [19].  

Fig. 2 shows the architecture of a 3D Convolutional Neural Network (3D-CNN), which is designed to analyse 

three-dimensional data, including volumetric pictures or video frames. The first layer of the network is the input 

layer, which takes 120x120x32 3D inputs, such video frames. Dimensions are then reduced to 110x110x32 by 

Conv Layer 1's application of filters to remove features, and then to 55x55x32 by Max-pooling Layer 1. After 

features are processed by Conv Layer 2, the size is 50x50x64. Max-pooling Layer 2 then further compresses the 

file to 10x10x64. After being retrieved, the features are flattened and processed further through fully linked layers. 

In conclusion, the output layer illustrates many action classes, including activity recognition in videos. For tasks 

involving video analysis and motion identification, where precise classification depends on the temporal 

information recorded in the video frames, this architecture is very helpful.  

5. Results and Discussion 

 The standard datasets used in the research show notable gains in processing efficiency and motion detection 

accuracy over baseline techniques. Furthermore, the model demonstrates strong performance in a range of 

environmental circumstances and motion patterns. All things considered, the outcomes confirm how well the 

suggested technique works to improve video stream motion detection skills and it was implemented by using  

MATLAB.  

5.1 Input Data  

 

(a)                                                        (b)                                                         (c) 

Fig. 3. Input images for (a) Lying Down, (b) Sitting, (c) Walking 

One individual is seen lying face down on a room's floor in Fig. 3, which is captioned Input picture for lying 

down, sitting, and walking in motion detection. Motion detection for sitting catches an interior scene with a person 

sat on a bench in a common area or waiting area. An inside scene in a waiting area or common area with a person 

moving, probably walking, is used for walking in motion detection.   

5.2 Masked Data   

 

Fig. 4. Masked Input Images 
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Motion blurring makes the image in Fig. 4, Masked Input Image for Lying Down, Sitting, and Walking in Motion 

Detection, appear dark and abstract, making it difficult to distinguish features. This image may be useful for 

feature extraction techniques or motion detection systems. The motion detection feature for sitting shows a black 

backdrop with a distorted and blurry image of a person seated. A distorted and blurry image of a person strolling 

against a black backdrop is displayed when walking in motion detection is on. Even though the person is wearing 

light-coloured apparel, the absence of other characteristics or background highlights the object's significance for 

motion detection systems or feature extraction techniques that work with blocked or lowresolution input data.  

 

Fig. 5. Features Extracted using Optical Flow Estimator 

A person is seen lying face down in an interior environment between seating configurations in Fig. 5, which 

displays the optical flow feature extraction for lying down in motion detection. The image displays a  

collection of vectors that indicate the speed and direction of motion between two or more images in a video clip. 

With the aid of these derived characteristics, precise motion identification and analysis are made possible by the 

useful information they give regarding object movement inside the video stream. The ability to identify dynamic 

changes in the scene is made possible by the optical flow estimator and is crucial for several applications, including 

object tracking, activity recognition, and surveillance. The efficacy of optical flow estimation in capturing motion 

dynamics and augmenting the capabilities of motion detection systems is demonstrated by this visualization of 

extracted characteristics.  

5.3 Output Images  

 

Fig. 6. Output Image for Lying Down 
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Figure 6 shows the resultant image for the lying down position. This picture shows a person on the ground, face 

down. Motion detection algorithms analyse video frames to identify the precise position of interest, in this 

instance, lying down, and producing the output image. For applications like activity identification systems, 

surveillance, and healthcare monitoring, where identifying specific positions or motions is critical for analysis and 

decision-making, this output is necessary. The motion detection system's ability to accurately identify the lying 

down position in Fig. 6 is an example of how well it can identify human activities from video feeds.  

 

 

Fig. 7. Output Images for Sitting 

The output images for the sitting position are shown in Fig. 7. People are shown in these images sitting up straight 

on what appear to be seats or benches. Motion detection algorithms analyse video frames to find instances of the 

sitting position, which results in the output images. Such output is useful for tasks where it is necessary to detect 

particular postures, such as ergonomic study, human activity detection, and monitoring. The motion detection 

system's ability to accurately identify sitting positions from video feeds is shown in Fig. 7, which also shows how 

well it recognizes human activity from video streams.  

 

Fig. 8. Output Images for Walking 
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The resulting images for the walking exercise are displayed in Fig. 8. People are seen moving in these pictures, 

most likely walking about the area. Motion detection algorithms analyse video frames to identify occurrences of 

walking movement, producing the output pictures. For applications like surveillance, crowd monitoring, and gait 

analysis where identifying patterns in human movement is critical this output is essential. The motion detection 

system's ability to accurately identify walking activities in Fig. 8 demonstrates how well it can identify dynamic 

motions from video feeds.  

 

Fig. 9. Confusion Matrix for Video Classification 

A useful tool for analysing how well a video classification model performs across three classes lying down, sitting, 

and walking is the Confusion Matrix for Video Classification, as shown in Fig. 9. Each row in the matrix 

represents the real class, while each column represents the projected class. Particularly, just 1 video misclassified 

as Sitting resulted in an 8.3% mistake rate for the Lying Down class out of 11 properly classified films, delivering 

a 100% accuracy rating. Furthermore, every single one of the 13 Walking films and all 5 Sitting videos achieved 

100% accuracy in their predictions. The predictions are graphically represented by the matrix by colour coding, 

whereby deeper colours correspond to larger numbers or percentages. It is significant to point out that this matrix 

is an essential tool for assessing the model's performance, especially regarding misclassifications, and that it offers 

practical insights for the classification model's further improvement and optimization.  

5.3 Performance Evaluation  

 Accuracy, Precision, recall, and F1-score measures demonstrate the combined model's functionality better at 

identifying moving objects in video streams in eqns. (5), (6), (7) and (8).  

𝑇𝑝+𝑇𝑛 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =        

   (5)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =    (6) 𝑅𝑒𝑐𝑎𝑙𝑙 =    (7)  

𝑇𝑝+𝐹𝑛 

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛 

𝑇𝑝 
𝑇𝑝 + 𝐹𝑝 

  

𝑇𝑝 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×        (8)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 

Table 2: Performance Metrics by Class 

Metrics  Precision  Recall  F1-Score  

Lying Down  0.8  0.85  0.825  

Sitting  0.73  0.7  0.72  

Walking  0.9  0.88  0.86  

 

Fig. 10. Performance Evaluation by Class 

Table 2 gives the model's performance in several classes, such as Lying Down, Sitting, and Walking, is provided 

in detail by the Performance Evaluation by Class as shown in Fig. 10. The model achieves around 0.9 precision 

and 0.8 recall for the Lying Down class. The F1-Score, which is a harmonic average of precision and recall, is 

roughly 0.85, offering a balanced assessment of the model's precision and comprehensiveness for this class. In a 

similar vein, the model shows around 0.7 accuracy and recall for the Sitting class, providing an estimated 0.7 F1-

Score. The model has good recall (about 0.8) and accuracy (nearly 0.9) for the Walking class, generating a 

predicted F1-Score of 0.9.   

Table 3: Performance Metrics for Each Class 

Metrics  Precision  Recall  F1-Score  

Lying Down  1  0.9  0.95  

Sitting  0.82  1  0.9  

Walking  1  1  1  
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Fig. 11. Performance Evaluation for Each Class 

Table 3 provides a detailed breakdown of the model's performance in each class, including Lying Down,  

Sitting, and Walking, based on the Performance Evaluation for each class as seen in Figure 11. For the Lying 

Down class, the model achieves around 1 precision and 0.9 recall. For this class, the model's precision and 

comprehensiveness are evaluated, with an F1-Score of around 0.95 and average of precision and recall. For the 

Sitting class, the model exhibits around 0.82 accuracy and recall, yielding an estimated 0.9 F1-Score. For the 

Walking class, the model has strong recall (1 and precision 1), resulting in a projected F1-Score of 1.  

Table 4: Accuracy for Lying Down, Sitting, Walking 

Metric  Accuracy (%)  

Lying Down  97.5  

Sitting  99  

Walking  98  

  

 

Fig. 12. Accuracy Graph for Lying Down, Sitting and Walking 

  

96.5 97 97.5 98 98.5 99 99.5 

Accuracy 

% 
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The Accuracy Graph in Figure 12 shows that walking, sitting, and lying down actions have high accuracy 

percentages: almost 97%, 98.5%, and slightly over 99%, respectively.  

Table 5: Comparison of Accuracy 

Methods  Accuracy (%)  

CNN[20]  96  

Proposed Optical Flow-3D-CNN   98  

  

Accuracy Comparison 

 98.5  

98 

97.5 

97 

96.5 

96 

95.5 

95 

CNN[20]

 Proposed Optical Flow-3D-CNN Methods 

   

   

   

   

     

     

Fig. 13. Accuracy Comparison of Existing and Proposed Method 

Figure 13's Accuracy Comparison graph compares the effectiveness of two different approaches: CNN [20] attains 

an accuracy of little over 96%, but the Proposed Optical Flow-3D-CNN shows much greater accuracy, almost 

approaching 98%. The accuracy of the Proposed Optical Flow-3D-CNN surpasses that of CNN [20], indicating 

its potential for the specified position.  

5.4 Discussion 

 Optical flow estimates combined with 3D=CNN architectures are a major step forward for motion detection in 

video streams. The suggested methodology effectively tackles the main issues that conventional approaches have, 

namely enhancing computing efficiency and responding to a variety of environmental situations. Higher accuracy 

and resilience in recognizing moving objects are achieved by the integrated model by utilizing the advantages of 

both optical flow and deep learning [21]. Extensive experimentation and assessment reveal that the suggested 

strategy works well, with notable gains in computing efficiency and motion detection accuracy over baseline 

approaches [22]. These outcomes show how the suggested method has the potential to transform motion-detecting 

abilities for a range of practical applications, opening the door for more study and advancement in this area. The 

integration of optical flow estimates with 3D-CNN designs may result in higher computing complexity and 

resource needs, which is a disadvantage of the suggested approach. Furthermore, the model's scalability and 

generalizability to real-world events with a variety of motion patterns may be limited by its dependence on labelled 

data for training. The computational difficulty involved in combining optical flow estimates with 3D-

convolutional neural network designs may be one of the study's limitations. These models can have high 
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processing overhead, which could make them less useful in situations when resources are few or realtime 

applications are required. Furthermore, the success of the suggested method could hinge on the availability of 

high-quality optical flow estimations, which might be difficult to come by in some situations especially when 

using low-resolution video data. These restrictions could make it more difficult for the suggested technique to 

scale and be used to a wider range of real-world scenarios.  

6. Conclusion 

 The integration of optical flow estimation with 3D-CNN architectures represents a significant advancement in 

motion detection within video streams. Despite potential drawbacks such as increased computational complexity 

and reliance on labelled data, the proposed methodology offers substantial improvements in motion detection 

accuracy and robustness compared to traditional approaches. By leveraging the complementary strengths of 

optical flow and deep learning, the integrated model demonstrates superior performance in detecting moving 

objects across various environmental conditions. The comprehensive experimentation and evaluation highlight 

the efficacy of the proposed technique, showcasing its potential to revolutionize motion detection capabilities in 

applications such as surveillance, autonomous navigation, and human-computer interaction. In the future, 

additional study and development initiatives are necessary to solve the listed drawbacks and explore opportunities 

for enhancing the scalability and generalization of the model in realworld scenarios. Overall, the proposed 

methodology lays a solid foundation for advancing motion detection technologies and holds promise for driving 

innovation in this domain.  

 Future studies should investigate effective designs and optimisation strategies for combining optical flow with 

3D-CNNs in order to reduce computing complexity. Furthermore, investigating self-supervised or semisupervised 

learning methodologies may be part of the endeavours to improve the model's scalability and generalizability to 

various real-world situations. Furthermore, exploring the incorporation of additional modalities like depth data or 

attention processes may improve motion detection systems' functionality and effectiveness even further.  
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