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Abstract: - Reactive power support to the local distribution grid becomes mandatory as it highly impacts the network's voltage profile and 

active power loss. Reactive power support improves the performance and efficiency of the grid. However, higher compensation to the line 

increases losses, deteriorates the voltage profile, and occupies the investment cost. The location of these reactive power compensators (RPC) 

also influences the network's performance. This paper presents a multi-objective strategy for optimal reactive power compensation to get 

techno-economic benefits. An objective function, which includes technical and economic criteria, has been formulated. The proposed MOF 

includes weighted distributed objectives that are minimized to get a trade-off solution. The proposed MOF has been minimized using three 

different heuristic algorithms, i.e. TLBO, GA and PSO. The proposed strategy has been tested on 56 buses 11 KV Gurukul distribution 

network located at Bhavnagar, Gujarat, India. NR load flow has been utilized to investigate losses and bus voltages.    

Keywords: Reactive Power Compensator(RPC), Multi Objective Function(MOF). Genetic Algorithm(GA), Particle Swarm 

optimization(PSO), Teaching Learning Based Algorithm(TLBO), Active Power Loss, Voltage Profile Improvement. 

I. INTRODUCTION 

The addition of a Power Compensator  can reduce the inductive reactance component of the line loading, hence 

minimizing reactive losses and making the capacitor a source of reactive power. Since power distribution systems 

are the last point of contact between consumers and the bulk power system, they represent an important research 

topic. However, in a distribution network, reactive power flows invariably result in significant power losses. 

Reactive power flow losses might become much more significant at high loads. Additionally, these fluxes cause a 

substantial voltage drop in some distribution network locations. Distribution businesses should strive to optimize 

their operations by reducing losses and raising voltages at various buses. Using devices that achieve efficient 

voltage control, reactive power management, and power factor control is crucial to ensure minimal loss and 

appropriate voltage levels at various distribution network locations. One of the essential pieces of equipment 

needed to accomplish these goals is the shunt capacitor. Distribution engineers must choose the best position and 

size of capacitors to be put at various load levels to minimize loss, enhance voltage profile, and adjust power factor 

to the greatest extent possible under various operational limitations. Therefore, one of the main concerns of electric 

power utilities is always the best approach to allocating capacitors in electrical distribution networks. Significant 

contributions to the capacitor placement strategy for voltage control and subsequently loss prevention have been 

made by a number of writers. The primary difficulties with this approach are, Location for  capacitors, Deciding 

on the right CB size, The use of CBs to fulfill the necessary goals of power flow management, voltage regulation, 

and loss reduction. The benefits of varying capacitive volt-amp reactive (VARs) in response to load variations 

have been known since the 1940s. Before the 1950s, there was a trend toward minimizing loss at the substation 

by placing capacitors. However, because pole-mounted equipment was more readily available and the 

arrangement made financial sense, the trend shifted to installing capacitors closer to the loads on primary 

distribution feeders after that time. 

II. LITERATURE REVIEW 

Several researchers employed classical techniques [1–3] to address the issue of optimal capacitor placement. Khodr 

et al. introduced a methodology based on mixed integer linear optimization [4] to determine the best location and 

size of static and switched shunt capacitors in a radial distribution system. Jabr utilized the mixed integer linear 

programming (MINP) [5] method to achieve the optimal arrangement of fixed and switched-type capacitors in a 
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radial distribution network. This research aimed to reduce the expenses related to capacitor banks, peak power, and 

energy losses while meeting specific physical and technical limitations. Franco et al. have developed a multi-

objective MILP strategy [6] based on Pareto principles. This technique aims to solve the problem of optimally 

allocating voltage regulators and capacitors in radial distribution networks. Oliveira et al. suggested a mixed integer 

nonlinear programming (MINLP) approach [7] to reconfigure capacitor allocation to minimize energy losses in 

radial electrical networks. Wu et al. developed a method based on loop analysis [8] to determine the most efficient 

size of a capacitor in order to minimize power loss in distribution networks during everyday operation. Segura et 

al. presented an interior point technique (IPM) [9] for solving the optimal capacitor placement problem in radial 

distribution networks.  

The optimal placement problem of capacitors in a radial distribution system for variable load levels is regarded as a 

nonlinear optimization problem with a non-differentiable objective function.  

This is because the costs of the capacitors change discretely while the system load changes continuously throughout 

the day. Hence, the conventional optimization methods are inadequate for effectively solving optimal capacitor 

placement problems. 

Neagle and Samson [10] proposed an approach for the best distribution of capacitor banks (CBs) to compensate 

for reactive power. Cook [11] presents a novel approach considering energy loss, peak power loss, and demand 

reduction (KVA).  

Grainger and Lee [12] introduced a novel approach in which certain feeder sections have distinct wire diameters. 

Lee SH and Grainger JJ [13] further discuss the issue by incorporating switching and fixed capacitor banks into a 

radial distribution network model. In their study, the authors introduced an approach that integrates the cost of CBS 

to identify cost-effective alternatives. In their study, the authors presented a strategy for reactive power 

compensation in the primary distribution network that allows for continuous monitoring. 

Ulinuha et al.[14] proposed using Evolutionary-Based Algorithms to optimize large distribution systems with 

different types of nonlinear loads. This technique achieves the best scheduling of Load Tap Changers and switched 

shunt capacitors to reduce energy loss, improve the voltage profile, and incorporate harmonics. Various 

methodologies, including previously utilized analytical and interactive methods [15, 16], have been introduced for 

this objective. Nevertheless, these methods required significant processing resources, prompting the development 

of alternative approaches that employed heuristic techniques and reduced issue formulations. When seeking 

outcomes that better represented the reality of the problem, conductors with different sections and non-uniformly 

distributed loads were considered [17]. Ziari et al.[18] introduced a modified discrete Particle Swarm Optimization 

(PSO) method to determine the optimal placement and rating of fixed and switching capacitor banks throughout 

the distribution network. Taher and Bagherpour proposed a hybrid honey bee colony optimization (HBCO) 

technique [19] to optimally place shunt capacitor banks in the IEEE-25 and IEEE-37 bus test systems. The 

suggested MOF integrates loss minimization while ensuring that buses' total harmonic distortion (THD) remains 

within an acceptable range. In their study, Szuvovivski et al. [20] present a system for assigning CBs and VRs to 

regulate bus voltage, reactive power demand, and power factor. Genetic algorithms (GA) and optimal Power Flow 

(OPF) have been employed to determine the optimal solution. The recommended technique has been 

implemented for three distinct load levels: Light, Middle, and Heavy. The global criterion approach transforms a 

multi-objective function into a single-objective function. A 70-bus test system is employed to evaluate the 

methodology. 

III. PROBLEM FORMULATION 

The problem of optimal reactive power compensation has been investigated to find a cost-effective solution for 

improving system performance indicators. This involves determining a reactive power compensator's right location 

and size for an ideal distribution system. The proposed technique has been tested on a 56-bus 11KV distribution 

network in Bhavnagar, Gujarat. This complex optimization problem is non-convexed, multi-objective, and non-

linear. It involves a weighted distributed multi-objective function minimization type. The proposed M.O.F. was 

reduced using three distinct heuristic techniques, namely Genetic Algorithm (G.A.), Teaching-Learning-Based 

Optimization (TLBO), and Particle Swarm Optimization (PSO), implemented in MATLAB.  
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The primary objective of this problem is to determine the most efficient dimensions and capacity of the Reactive 

Power Compensator (R.P.C.) to minimize active power loss in the distribution network while improving the voltage 

profile. An initial analysis was conducted using a loss-sensitive analytical approach to narrow down the search area 

for the optimization problem. This approach identified the prospective locations of candidate buses that are both 

sensitive to loss reduction and experiencing poor voltage regulation. Fig.2 displays the Geographic Information 

System (G.I.S.) map and single-line diagram of the 56bus 11kv Gurukul distribution network. Fig.1 depicts a 

schematic representation of the proposed approach for the optimization problem. The 11kv Gurukul network is an 

urban feeder responsible for providing electricity to the city region. The network parameters are displayed in Table 

1. The N.R. load flow approach has been utilized to assess several network performance metrics. The network 

voltage profile and branch losses are depicted in Fig.5 and Fig.4, respectively. 

 

Fig. 1 Problem Formulation for ORPC problem 

Table 1 Network data of gurukul network 

1 Name of the feeder Gurukul 

2 Type of feeder URBAN 

3 Feeder voltage level 11 kv 

4 Total length of feeder 8.39 KM 

5 Type of  conductor 55MM2 AAAC 

 

 

Fig. 2 G.I.S Map of 56 bus gurukul distribution network 



J. Electrical Systems 20-6s (2024): 2475-2490 

  2478 

 

Fig. 3 Single line diagram of 56 bus gurul network 
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Fig. 4 Power loss across each line section of the network 
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Fig. 5 Voltage profile of the network 
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A. Potential location for RPC deployment using sensitivity analysis 

Sensitivity analysis is used to identify the optimal location for capacitors in a radial distribution system. Assessing 

these potential places aids in narrowing down the search area during optimization methods. Placing capacitors at 

those locations necessitates using sensitivity analysis as the most effective method for minimizing actual power 

losses in the system. The Loss Sensitivity Factor (LSF) is calculated to identify potential locations for 

placing  Capacitor bank. Additionally, there is a load connected between k, with an adequate power of Pk+1,eff + 

jQk+1,eff. Furthermore, Sensitivity analysis is used to identify the optimal location for capacitors in a radial 

distribution system. Assessing these potential places aids in narrowing down the search area during optimization 

methods. Placing capacitors at such locations necessitates using sensitivity analysis as the most effective method 

for minimizing actual power losses in the system. The Loss Sensitivity Factor (LSF) is calculated to 

identify potential locations for placing Capacitor bank. 

The active power loss in the line section between buses k and k+1 is calculated by, 

2 2

1, 1,

, 1 , 1 2

1

..........................(1)
k eff k eff

Loss k k k k

k

P Q
P R

V

+ +

+ +

+

+
=   

Now, the LSFs can be obtained with the help of following equation, 
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LSFs are computed from load flows using the (1) and (2),and values aresorted in decreasing order for all line 

sections of the given system. LSFs determine the order in which buses are considered for RPC installation. The 

buses with lower voltage [v < 0.96p.u] will be chosen for RPC installation from the sequence of LSFs. An 

optimization algorithm is used to determine the appropriate size of RPC at candidate buses. The potential locations 

which are consider for placement of RPC are 4,32,24,26,13,11,37,34. 

IV. METHODOLOGY 

Optimal sizing of CBs have been addressed  using three different heuristic algorithms i.e. GA,TLBO and PSO.  

 

A. Optimal sizing of RPC using GA 

The optimal size has been determined using a real-time Genetic Algorithm (RGA). The genetic algorithm is an 

iterative method that begins with a collection of randomly created solutions called the initial population. The 

objective function and fitness are computed for every solution in the set. Selection operators produce a group of 

selected populations by using these fitness functions. The solution in the pool is used to employ the crossover and 

mutation operators to generate novel solutions. The procedure is executed iteratively, with a predetermined 

number of solutions in the pool of the selected population. The solution optimizes with each iteration until the 

optimal solution is achieved. The GA selection technique involves choosing reasonable solutions from the initial 

population to create offspring. The selection process involves randomly choosing good solutions from the initial 

population, with a bias towards the most fit individuals. Table 2 shows algorithm specific parameters using GA 

approach. Fig.6 shows the flowchart of RPO problem using GA. 

Table 2 Algorithm specific parameters of GA 

Sr no Component of Genetic Algorithm Method 

1 Crossover Probability 0.95 

2 Mutation Probability 0.2 

3 No. of Population 80 

4 No of generation 50 



J. Electrical Systems 20-6s (2024): 2475-2490 

  2480 

 

 

 

Fig. 6 Flow chart of GA to solve RPO problem 

 

Result of optimal sizing using GA 

Fig.7 shows the convergence graph of the objective function wherein the objective function converges to a 

minimum value with an increase in the number of generations. 

 

Fig. 7 Convergence curve of MOF using GA 

Table 3 shows the optimal size of RPC given from GA corresponding to the potential locations. Table 4 shows 

the comparison of various network performance parameters before and after optimal placement of RPC. 
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Best f itness

Mean fitness

Capacity of RPC devices

5 Selection Method Stochastic Uniform 

6 Crossover Method Arithmetic 

7 Mutation Method Adaptive feasible 

8 Termination Method Maximum generation 

9 Objective function Min[Active Power loss] 

10 Nos of Population 100 
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Considerable voltage improvement and loss reduction can be seen after implementing the proposed strategy, as 

shown in Fig.8 and Fig.9 

Table 3 Optimal size of RPC using GA approach 

Bus No 4 32 24 26 13 11 37 34 

KVAR in P.U 0.202 .118 .109 .011 0 0 .0178 .101 

 

Table 4 Network performance parameters comparison using GA approach 

Types of Quantity Before After 

Total Active Power Loss in KW 109.75 69.75 

Total Reactive Power Loss in KVAR 42.25 28.15 

Tail End Voltage in KV 10.54 10.42 

Voltage Deviation Index 0.04507 0.03443 
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Fig. 8 Comparison of voltage profile using GA 

 

 



J. Electrical Systems 20-6s (2024): 2475-2490 

  2482 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

A
ct

iv
e

 P
o

w
e

r 
lo

ss
 in

 P
U

Line Section No

 Before

 After

GA Approch

 

Fig. 9 Comparison of Power loss using GA approach 

B. Optimal sizing of RPC using PSO 

Particle Swarm Optimization [21] is a computational technique that draws inspiration from the behavior of flocks 

of birds, schools of fish, and herds of animals. These groups can adapt to their environment, locate plentiful food, 

and evade predators by utilizing tactics that involve exchanging knowledge. This behavior gives them an 

advantage in terms of evolution. The PSO was inspired by flock behavior and was developed as an optimization 

tool for complicated mathematical problems. When a group of birds flies over an area, they must find a place to 

land. Figuring out where the entire group should land is challenging since it depends on different aspects, such as 

finding enough food while minimizing the danger of predators. From this perspective, the bird's motion can be 

seen as choreography; the birds move in perfect synchronization until they find the best place to land, and then 

the entire flock lands simultaneously. In the given scenario, the flock's migration occurs only when all swarm 

members can exchange information. Otherwise, each animal would settle at a different location and time. The 

challenge of identifying the optimal landing location is an optimization problem. 

An optimization problem aims to identify the variable, represented by the vector X = [x1,x2,x3, ...,xn], that 

minimizes or maximizes the function f, based on the given optimization formulation f(X). However, the function 

f(X) is referred to as a fitness or objective function. It assesses the quality of a position X, specifically the 

desirability of a landing point as perceived by a bird. This evaluation is based on multiple survival criteria. Each 

particle in a swarm of P particles is associated with a position vector Xmi = [xm1,xm2,xm3, ...,xmn] and a velocity 

vector Vmi = [Vi1,Vi2,Vi3, ....,Vmn] at iteration m. The Equation(3) is utilized to update these vectors along the j 

dimension. 

𝑣𝑖
𝑛+1 = 𝑊 ∗ 𝑣𝑖

𝑛 + 𝐶1𝑘1
𝑛(𝑃𝑏1

𝑛 − 𝑃𝑖
𝑛) + 𝐶2𝐾2

𝑛(𝐺𝑏
𝑚 − 𝑃𝑖

𝑚)………………………….(3) 

                 Where, 

W=Partical’s Motion 

 𝑃𝑏1
𝑛  = Particle’s personal best position at iteration m. 

𝑃𝑖
𝑛= Particle’s current position at iteration m. 

𝐶1, C2  = Individual-cognition parameters. 

𝑘1
𝑚, 𝐾2

𝑛= random value parameters at iteration m[0 ,1]. 
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After updating of velocities for all the particle, move the particle to their new location, 

𝑃𝑖
𝑚+1 = 𝑃𝑖

𝑚 + 𝑉𝑖
𝑚+1…………………………………….(4) 

In the Present analysis, the population vector or solution vector of RPC size between the lower and upper bound 

becomes Swarm particles. Active power loss becomes a fitness function. Furthermore, it is used to find personal 

best and global best solutions in each iteration. The PSO-algorithm specific parameters are shown in Table 5. 

Fig.10 shows operational flow chart to solve optimal sizing problem using PSO. 

 

Fig. 10 Flowchart of PSO for RPO 

Table 5 Algorithm specific parameters of PSO 

W(Weight) .65 

C1(Acceleration constants) 1.65 

C2(Acceleration constants) 1.75 

Results of  optimal sizing problem using PSO 

The Table 6 displays the optimum size of the RPC that match to the prospective locations. The Table 7 displays 

the comparison of several network performance attributes before and after the appropriate placement of RPC. The 
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Fig.12 and Fig.13 demonstrate a substantial increase in voltage and a decrease in power loss following the 

implementation of the suggested technique. The graph in Fig.11 illustrates the convergence of the objective 

function, showing how it approaches the minimal value as the number of generations grows. 

Table 6 Optimal size and location of RPC using PSO approch 

Bus No 4 32 24 26 13 11 37 34 

KVAR in P.U 0.2073 0 0.1136 0 0 0 0 0.2841 

Table 7 Performance parameter using GA approach 

Types of Quantity Before After 

Total Active Power Loss in KW 109.75 70.06 

Total Reactive Power Loss in KVAR 42.25 28.15 

Tail End Voltage in KV 10.42 10.55 

Voltage Deviation Index 0.0450 0.03405 

 

Fig. 11 Convergence curve of MOF using PSO 
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Fig. 12 Voltage profile comparison chart using PSO approach 
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Fig. 13 Power loss comparison chart using PSO approach 

 

C. Optimal RPC sizing using TLBO 

Rao et al. [22,] and Rao and Patel [23] have proposed a teaching-learning process optimization approach that is 

influenced by the impact of a teacher on the performance of students in a classroom. This strategy involves studying 

a population of learners and considering different themes provided to the learners as diverse design variables. The 

learner's output is then evaluated as the fitness value for the optimization problem. The teacher is widely regarded 

as the most optimal solution for the entire population. The optimal solution refers to the most favourable value of 

the objective function, while the design parameters are the specific parameters that are used in the objective 

function of the given optimization problem. The TLBO algorithm consists of two distinct phases: the 'Teacher 

phase' and the 'Learner phase'. Rao et al. [22, 23] extensively analyse the functioning of both of these stages. The 

functioning of the TLBO algorithm is elucidated in a manner analogous to the teacher and learner stages. The 

TLBO algorithm has been utilized to address optimal sizing problems, where the learner class consists of the 

population of problem variables, specifically the size of the RPC. The student's ranking is determined by evaluating 

the objective function. The individual who achieves the minimum value of the goal function will assume the role 

of a teacher for other students. The present analysis focuses on the purpose of minimizing losses, where the active 

power loss of the network is used as an indicator to evaluate each solution to the problem. TLBO made two 

modifications to the solution population during the teacher and student phases. The operation flow chart of TLBO 

utilized to address the sizing problem is depicted in Fig.14. The algorithm-specific parameters for Teaching-

Learning-Based Optimization (TLBO) are displayed in Table 8. 
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Fig. 14 Flow chart of TLBO to solve RPO problem 

Table 8Algorithm specific partakers for TLBO 

Objective function Active power loss in KW 
Nos of subjects(Design variables) 08 

Nos of students 10 

Name of subject(Design variable) Capacity of RPC device in kvar 

Bound of variables 0 to 0.5 P.U 

Value of constant TF 1 

Termination Criteria [Ploss(i+1)-Ploss(i)]<tolerance limit[0.001] 

50 Iterations 

 

Results of  optimal sizing problem using TLBO 

Fig.15 shows the convergence graph of the objective function wherein the objective function converges to a 

minimum value with an increase in the number of generations. It shows that objective function converge rapidly 

to optimal value. Table 9 shows the optimal size of RPC given from GA corresponding to the potential locations. 
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Table 10 shows the comparison of various network performance parameters before and after optimal placement 

of RPC. Voltage profile and Power loss comparison graph with TLBO are shown in Fig.16 and Fig.17 

Table 9 shows the results of RPO problem; it includes potential locations and corresponding optimal capacity of 

RPC devices. All three heuristic algorithms have been applied to minimize the proposed MOF index value and 

retrieve compromised solutions. Fig.18 shows a comparative bar chart for various network performance 

parameters, i.e., active loss (KW), reactive loss (KVAR) and minimum bus voltage (KV). 

 

Fig. 15 Convergence curve of MOF using TLBO 

Table 9 Optimal size of RPC using TLBO approach 

Bus No 4 32 24 26 13 11 37 34 

KVAR in P.U 0.1208 0.0175 0 .1082 .1111 0 .0528 .1757 

Table 10 Performance parameters  comparison using TLBO approach 

Types of Quantity Before Compensation After Compensation 

Total Active Power Loss in KW 109.75 69.75 

Total Reactive Power Loss in KVAR 42.25 27.25 

Tail End Voltage in KV 10.56 10.41 

Voltage Deviation Index 0.0450 0.0341 
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Fig. 16 Voltage profile comparison chart using TLBO approach 
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Fig. 17 Power loss comparison chart using TLBO approach 
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Fig. 18 Comparative analysis of result 

V. CONCLUSION 

This paper presents the optimum allocation of RPC (Reactive Power Compensation) to minimize active losses in 

the distribution grid. Three distinct heuristic algorithms, namely PSO, TLBO, and GA, have minimized the 

objective function. The outcomes of the optimization methods, namely TLBO, PSO, and GA for the RPO 

problem, exhibit consistency and comparability. The algorithms consistently yield good outcomes, effectively 

reducing losses and enhancing voltage. However, GA gives more promising results than TLBO and PSO, which 

can be seen from the results. The current methodology has been used on a distribution network of 57 buses in 

Gurukul. The proposed methodology helps the network operator to reap more benefits from the investment made 

in RPC.   
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