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Abstract: - The paper discusses the use of advanced technologies like the Internet of Things (IoT) and cyber-physical systems (CPS) to 

enhance product quality assurance in production industries. It proposes an intelligent approach using machine learning and termed the 

model as ETLViT, which integrates transfer learning models and vision transformers (ViT). The proposed model is a three-layered 

architecture integrated with a cyber-physical system (CPS). The first layer collects images of the processed products using a CPS, while the 

second layer transmits the data to a cloud server. The third layer analyzes the input image and predicts any faults in the product, with results 

also stored in the cloud server. The learning process involves noise removal, feature extraction, and classification, which are performed 

simultaneously by the ensemble model called ETLViT, designed using transfer learning and vision transformers. The result was presented 

with transfer learning models, ensemble model with machine learning and ETLViT. Among all of them, ETLViT outperforms the best.     
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1. Introduction 

The technique of examining arriving data in order to identify and address issues in advance is known as 

predictive quality assessment. By effectively detecting the core reason behind losses as well as averting losses in 

the future, this newly developing area of AI allows producers or manufacturers to reduce losses with respect 

to quality and waste. By using technologies from Industry 4.0, including predictive quality, production 

organisations can overcome a variety of quality assurance issues[1-4]. Computerised root cause assessment, 

predictive insights, as well as notifications and alerts in real-time are the three primary predictive quality 

capabilities (Fig. 1). Computerised root-cause evaluation and prediction assurance technologies can be used by 

manufacturers to find historically undiscovered root causes and continually analyse massive volumes of 

information in order to offer precise assessment of any issue. Additionally, data-driven insights from predictive 

quality can help manufacturers reduce issues with quality. Predictive maintenance, for example uses efficiency 

monitoring techniques to identify potential flaws and fix them prior to they occur. Contrarily, preventative 

maintenance emphasises regular maintenance procedures to lessen the likelihood of downtime and equipment 

failure [3][6]. Predictive quality can also provide real-time warnings and announcements that let the production 

staff know right away as any manufacturing inadequacies are found. This enables them to address the problem 

before it has an impact on output. Information related to manufacturing activities has grown at a never-before-

seen rate as a result of Industry 4.0 along with Internet of Things developments in digitalization. As a result, 

there are now more opportunities for data-driven techniques like Machine Learning (ML) for tracking the 

processes of manufacturing [1]. Machine learning (ML) technologies that effectively employ the advantages of 

ML in mass production have already developed. The requirement of knowledge from production & data science 

is a basic barrier to scaling ML-based projects [2]. The implementation of machine learning (ML), that has been 

beneficial for a variety of purposes in manufacturing sector [1, 2], also a popular strategy for maximizing the 

potential of datasets. Direct collaboration for the advancement of technology is being done via Industry 4.0. 

Every day, decision-making requiring a vast input of data and personalization in the process of production 

confronts both robots and supervisors. One of the key difficulties in this field is the ability to foresee when 
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upkeep for assets would be necessary. The ability to undertake predictive maintenance improves machine 

uptime, expenditures, management, and production grade [3].  

 

Figure 1 Capabilities of Predictive Quality 

In the industrial industry, there has been rising curiosity in the combined use of machine learning methods with 

data visualization in automated maintenance. Numerous studies have recently looked into the potential benefits 

of these innovations to enhance maintenance processes, decrease downtime, and boost efficiency. Two 

examples of this type of research are Cheng et al.'s (2022) [5] comprehensive review of the literature on visual 

analytics as a form of predictive maintenance in the identical industry as well as Nacchia et al.'s (2021) [4] 

systematic representation of the developing deployment of ML methods to conduct predictive maintenance in 

the industry of manufacturing. various studies seek to provide a thorough overview of the state-of-the-art in 

various subjects today, to spot trends and problems, and to point up promising areas for further study. The state-

of-the-art in this field is reviewed by Md et al. (2022) [6], who also emphasize how algorithms on machine 

learning may be used to raise the standard of manufacturing in the overall framework of Industry 4.0. They 

examine different data-driven approaches and techniques that are able to be used to forecast and manage quality 

metrics and they highlight the main obstacles and openings for further study. In the context of Industry 4.0, Lee 

et al. (2019) [7] suggest a quality control ecosystem for automated maintenance. To create a more 

comprehensive and proactive strategy for quality management, researchers underline the significance of 

integrating a number of technologies as well as information sources that involve sensors, Internet of Things 

(IoT) devices, along with data analysis. They also emphasize how predictive management has the ability to 

increase machinery effectiveness and decrease downtime. Employing Matlab tools, Hrehova (2016) [8] suggests 

a prediction model to assess the manufacturing method's efficiency. The model may be used to track and 

examine many quality metrics in real-time because it relies on statistical process control (SPC) methodologies. 

Therefore, the key contribution of the paper are: 

• In this paper, three-tier architecture is proposed including cyber-physical systems and cloud for product 

quality assurance. 

• The methodology explore the ensemble approach of vision transformer with machine learning  for defect 

prediction in manufacturing products.  

• The paper also presented the comparative result evaluation with some state-of-art models as well as with 

existing automated quality assurance system. 

The rest of the paper is organized as: Section 2 presents the literature review for the analyzing the models 

presented for product quality assurance. Section 3 presents the methodology used in this paper. This section 

gives detailed description about the model adopted and algorithms. Section 4 presents the result analysis with 

comparative state-of-art. Section 5 presents the current limitations of work and future research directions. 

Finally in section 6 conclusion of the paper is presented. 
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2. Literature Review 

Traditionally, manufacturers have relied on quality management systems to ensure that their products meet the 

essential standards. This often involves inspecting a sample of the products to verify for any faults or non-

conformities at the end of the production operation. However, there are a couple problems with this tactic. To 

begin with, it is ineffective at avoiding issues from happening altogether and is only good for detecting them 

once they have taken place. Particularly for large-scale businesses, checking every manufactured 

product manually can be laborious, costly, and susceptible to human mistake. The implementation of data and 

analytics to identify developments and patterns in the manufacturing procedure, on the other hand, enables 

producers to foresee and thwart quality issues prior to the materialize. The application of ML techniques for 

predicting quality in manufacture is the topic of the studies by Nalbach et al. (2018) [9] as well as Saadallah et 

al. (2022) [10]. A novel theory of quality assurance that makes use of ML techniques for predicting quality is 

put forth by Nalbach et al. (2018) [9]. They provide an architecture that includes data collection from diverse 

sources, cleaning of data and preparation, machine learning-trained predictive models, and lastly, the 

deployment of these models to anticipate future quality concerns in real-time. On the other hand, Saadallah et al. 

(2022) [10] concentrate on the creation of a system of understandable predictive quality checks for the 

manufacture of electronic products. They first extract information from photos of the electronic parts using deep 

learning methods, and then they utilize a decision tree algorithm to categorize the elements depending on 

whether they are defective or not. By highlighting the crucial elements that influenced the model's choice, a 

gradient-based approach is used to increase the comprehensibility of the model. In order to accomplish this, it is 

possible to analyze data from a variety of sources such as sensor readings, machine logs, and quality control 

audits. By using AI and ML algorithms for recognizing them, manufacturers may spot trends and anomalies in 

data that indicate potential quality issues and take pre-emptive action. 

 

Figure 2 Predictive Quality Analysis 

Diagnostic evaluation entails determining and comprehending the root cause of an already-occurring event. This 

is achievable using pattern-detection algorithms that assist in identifying the fundamental causes of the 

occurrence. Employing data and statistical computations, predictive analysis determines the possibility that a 

future event will occur. This aids in identifying the incident's primary cause and enables preventative measures 

to be taken to stop it from occurring happening in the future. The predictive analysis's capacity to forecast 

enables us to base our decisions on the knowledge we have obtained from studying past data. Recognizing the 

events that are likely to occur in the future allows us to be proactive in preventing potential issues or seizing 

new possibilities [11–15]. A predictive analytics strategy for ensuring the quality of steel billets in a 
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manufacturing process was put forth by Belov et al. in 2022 [16]. A hybrid model for product-process-machine 

needs was created by Voisin et al. (2018) [17] for machine tool maintenance planning as well as part quality 

control. A data-driven strategy for enhancing multistage production processes utilizing predictive maintenance 

and quality assurance analysis was described by Cui et al. in 2022[18]. The difficulties and prospects of Quality 

4.0 were examined by Zonnenshain and Kenett (2020) [19] in terms of quality engineering. Production statistics 

and industrial IoT play a part in enhancing the calibres of production processes, according to Lade et al. (2017) 

[20]. The opportunities and difficulties of quality engineering for additive manufacturing methods have been 

identified by Colosimo et al. (2018) [21]. The enabling methods, concepts, and potential uses of predictive 

manufacturing were given by Pulikottil et al. (2021) [22]. The essential role of Quality 4.0 in improving the 

industrial sector completely was highlighted by Javaid et al. (2021) [23]. In order to attain environmental 

sustainability Kumar et al. (2021) [24] suggested predictive data analysis for managing energy in an intelligent 

manufacturing facility. In the manufacturing sector, Alok et al. (2018) [25] investigated the empirical prediction 

of behavioural intention toward implementing lean approaches. 

3. Methodology 

In this paper, ensemble model is prepared using transfer learning models with vision transformer (ViT) for 

detecting abnormalities in products. This section describes the architecture of the designed model. The article 

highlights the challenges faced by the industry in detecting tiny defects like missing screws during manual 

processing and the overwhelming quantity of products that need to be processed for quality control. To address 

these issues, the authors propose a system that utilizes images of the end product taken at the production line to 

detect defects. The model presented in the paper is a three-layered architecture integrated with a cyber-physical 

system. The first layer is responsible for collecting images of the processed products using a cyber-physical 

system (CPS). The second layer transmits the collected data to a cloud server. Finally, the third layer is 

dedicated to analysing the input image and predicting any faults in the product. The results are also stored in the 

cloud server. This learning process is divided into three steps: noise removal, feature extraction, and 

classification. To accomplish this, an ensemble model is designed with transfer learning and vision transformer 

(ETLViT) has been designed. This model is capable of performing these processes simultaneously. Figure 3 

illustrates the architecture of the ensemble model ETLViT. 

 

Figure 3 Proposed Ensemble Model for Quality Assurance 

The input images in the study were resized to dimensions of 128x128, and pre-trained weights from the 

ImageNet dataset were utilized. A batch size of 64 was consistently employed during the training process. The 

ETLViT model converts the images into 1D-array feature maps. For multiclass classification, the final layer of 
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the model employs the softmax activation function. The Adam optimizer with a learning rate of 1e-5 was 

utilized. The Adam optimizer dynamically adjusts the learning rates for individual parameters using an adaptive 

learning rate technique: 

𝑙 = −∑𝑦𝑜,𝑐log⁡(𝑝𝑜,𝑐)

𝑀

𝑐=1

 (1) 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐶
𝑗=1

 (2) 

Where 𝜎 is termed as softmax function. Here input vector is represented as 𝑧, and the exponential function as 

𝑧(𝑖) represents the standard exponential function for the ith feature vector. The output vector consists of 𝐶 

classes, where the exponential function of 𝑧(𝑗) represents the standard exponential function. For transfer 

learning, VGG19, Resnet50, and Densenet201 models were selected for ensembling with ViT. The ensemble 

model employed in this study, which combines transfer learning and vision transformer, offers several 

advantages. Firstly, it improves performance by leveraging the strengths of multiple models. Secondly, it 

enhances the robustness and generalization of the model by reducing errors and capturing diverse patterns. 

Additionally, the ensemble model utilizes complementary information obtained through different 

transformations, making it more effective in handling vision-based tasks. It also takes advantage of pre-trained 

models for faster initialization, particularly useful when data is scarce. Finally, the ensemble model 

demonstrates enhanced resistance to perturbations through the use of data augmentation techniques. These are 

discussed below: 

3.1 VGG19 

VGG19 is a popular transfer learning model used in this study. It is a convolutional neural network model with a 

total of 19 layers. Out of these layers, 16 are convolutional layers, 3 are fully-connected layers, and there are 5 

max-pooling layers along with a softmax layer. The convolutional layers have a kernel size of 3x3 and a stride 

value of 1. Spatial padding is also applied to preserve the resolution of the image. The ReLU activation function 

is used after each convolutional layer in VGG19, which helps maintain the non-linearity of the model. By 

default, the input image size for VGG19 is set to 224x224 pixels with 3 RGB channels. The spatial dimensions 

of the processed features are reduced through the use of max-pooling layers with a kernel size of 2x2 and a 

stride value of 2. The last fully-connected layer in VGG19 consists of 4096 neurons, and it is connected to the 

softmax layer for classification. The VGG19 model has a total of 19.6 billion learning parameters. 

3.2 ResNet50 

ResNet is a deep neural network that has achieved high performance in various image recognition competitions. 

It addresses the limitations of traditional CNNs by introducing shortcut connections, allowing direct mapping 

from input to output. This architecture, consisting of residual blocks, is widely used for image classification, 

object localization, and detection tasks. ResNet models have simpler structures compared to VGG networks and 

fewer filters. The ResNet architecture includes skip connections that connect the input directly to the output, 

enabling the learning of residual mappings. This overcomes the issue of vanishing gradients and improves the 

performance of deeper layers. The ResNet50 model, in particular, uses a bottleneck architecture and consists of 

several convolutional and pooling layers. It starts with a 7x7 convolutional layer with 64 kernels and a stride 

size of 2, followed by a max-pooling layer with a stride of 2. There are three sets of convolutional layers with 

varying kernel sizes and repeat factors. After the convolutional layers, an average pooling layer is applied, 

followed by a fully connected layer with 1000 nodes and a softmax function. 

3.3 Densenet201 

DenseNet is a fully connected convolutional neural network (CNN) architecture that introduces dense 

connections between layers. Unlike traditional CNNs, DenseNet connects each layer to all preceding and 

subsequent layers, forming dense connections. This design addresses the vanishing gradient problem and 
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improves accuracy in deep neural networks. DenseNet shares similarities with ResNet but incorporates 

distinctive features. It is known for its parameter efficiency, utilizing a small number of parameters per layer. 

Additionally, DenseNet benefits from deep implicit supervision, which improves the flow of gradients 

throughout the network. The architecture of DenseNet consists of dense connections, that exchange information 

across multiple CNN layers. Unlike traditional CNNs, DenseNet concatenates the feature maps that will reduce 

the number of training parameters. The base structure of DenseNet composed of layers such as batch 

normalization, ReLU activation, and 3x3 convolutions at each step. It consists of dense blocks with varying 

number of layers. Each layer within a dense block consists of a bottleneck layer with a 1x1 kernel size, followed 

by a convolutional layer with a 3x3 kernel size. Additionally, an average pooling layer with a stride of 2 is 

included. 

3.4 Vision Transformer  

Let 𝑆⁡ = ⁡ {𝑋𝑖 , 𝑦𝑖}𝑖=1
𝑟  donate a set of 𝑟 images, where 𝑋𝑖 ⁡is an image and 𝑦𝑖 ⁡is its corresponding class label 𝑦𝑖 ∈

⁡{1, 2, . . . , m} and m is the number of defined classes for that set. The objective of the Vision Transformer model 

is to learn the mapping from the sequence of image patches to the corresponding semantic label. The Vision 

Transformer is an architecture inspired by the Transformer model, which has gained popularity for its excellent 

performance in natural language processing tasks. The Transformer uses an encoder-decoder architecture and 

can process sequential data efficiently without the need for recurrent networks. One key feature of the 

Transformer is the self-attention mechanism, which allows it to capture long-range dependencies between 

elements in a sequence. The Vision Transformer adapts this architecture for image-related tasks, leveraging self-

attention to capture relationships between image patches and achieve state-of-the-art performance in computer 

vision. The Vision Transformer is an extension of the Transformer model for image classification tasks. Its main 

objective is to apply the Transformer architecture to non-textual data without incorporating any domain-specific 

design. The Vision Transformer employs the encoder module of the Transformer to perform classification by 

mapping a sequence of image patches to semantic labels. Unlike traditional convolutional neural network 

(CNN) architectures that use filters with a local receptive field, the Vision Transformer utilizes the attention 

mechanism to attend to various regions of the image and integrate information across the entire image. The 

Vision Transformer consists of an embedding layer, an encoder, and a final head classifier. In the first step, an 

image is divided into non-overlapping patches. Each patch is treated as an individual token by the Transformer. 

For an image of size 𝑐⁡ × ⁡ℎ⁡ × ⁡𝑤 (where ℎ is height, 𝑤 is width, and 𝑐⁡is the number of channels), patches of 

size 𝑐⁡ × ⁡𝑝⁡ × ⁡𝑝 are extracted. This creates a sequence of patches (𝑥1, 𝑥2, . . . , 𝑥𝑛) with a length of 𝑛, where 𝑛⁡ =

⁡ℎ𝑤/𝑝^2. The patch size 𝑝 is typically chosen as 16⁡ × ⁡16⁡𝑜𝑟⁡32⁡ × ⁡32, with smaller patches resulting in 

longer sequences and vice versa. 

Linear Embedding Layer : To prepare the input for the encoder, the sequence of image patches undergoes linear 

projection using a learned embedding matrix E, resulting in embedded representations. These embeddings are 

concatenated along with a learnable classification token 𝑣𝑐𝑙𝑎𝑠𝑠, which is necessary for the classification task. 

The Transformer treats the embedded image patches as a set without considering their order. To preserve the 

spatial arrangement of the patches from the original image, positional information (encoded as 𝐸𝑝𝑜𝑠) is added to 

the patch representations. The final input to the encoder is the concatenated embedded sequence of patches 

along with the token 𝑧0, which can be represented as: 

𝑧0 = [𝑣𝑐𝑙𝑎𝑠𝑠; 𝑥1𝐸; 𝑥2𝐸; , , , , , , , , , , , 𝑥𝑛𝐸; ] + 𝐸𝑝𝑜𝑠 , 𝐸 ∈ 𝑅(𝑝2𝑐)𝑥⁡𝑑 , 𝐸 ∈ 𝑅(𝑛+1)𝑥⁡𝑑 (3) 

Either 1-D or 2-D positional encodings yields similar outcomes. As a result, a straightforward 1-D positional 

encoding method is employed to maintain the positional information of the flattened image patches. 

Vision Transformer Encoder : The embedded patches 𝑧0⁡are fed into the Transformer encoder. The encoder 

consists of L identical layers consisting of self-attention block and a fully connected feed-forward dense block 

represented as: 

𝑧𝑙
, = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙 − 1)) + 𝑧𝑙−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙 = 1……………… . 𝑙 (4) 
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𝑧𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧𝑙
,)) + 𝑧

𝑙′
, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙 = 1……………… . 𝑙 (5) 

At the last layer of the encoder, we take the first element in the sequence 𝑧0
𝑡  and pass it to an external head 

classifier for predicting the class label. 

𝑌 = 𝐿𝑁(𝑧0
𝑡) (6) 

Training algorithm is presented below as algorithm 1. For experiment, we have used python for training and 

testing purpose. For this the entire dataset is divided into 70:30 ratio and trained. First of all the denoising CNN 

is trained and further denoised image feature samples are fed into ResNet50 for further training. For training, the 

input image size is taken as 𝟔𝟒 ∗ 𝟔𝟒. The minimum batch size for training was taken to be 64. The maximum 

epoch was taken to be 100. For training denoising CNN, mean square error (MSE) was taken as loss function. 

Notably, these model utilizes approx. 10GB RAM on a high-performance GPU computing. Therefore, this 

model was trained on computing service provided by google i.e., google colab.  

Algorithm 1 Training Process 

Input: 𝐼𝑖 , Input images; 

 Training dataset, 𝑇𝑑 = {𝐼𝑖
𝑛}, 𝑤ℎ𝑒𝑟𝑒⁡𝑛 ∈ 𝑠𝑖𝑧𝑒(𝑇𝑑) 

Output: 𝑂𝑖
𝑛, Product Type 

1: Initialization: epochmaxdenoise {maximum epoch for denoising), epochmaxcnn {maximum epoch for 

detection} 

2: For i=1: epochmaxdenoise 

3: DIi←DenoisingCNN(𝐼𝑖),                    DIi is the denoised image  

4: For j=1:epochmaxcnn 

5: 𝑂𝑖
𝑛← ETLViT DIi),                    DIi is the denoised images 

6: While 𝑙𝑜𝑠𝑠⁡⁡reaches convergence do  

7: Minimize(𝑙𝑜𝑠𝑠⁡⁡) 

8: end 

9: Return 𝑂𝑖
𝑛 

 

4. Results and Discussion 

This section focuses on the implementation details, result analysis, and a comparison with state-of-the-art 

models for quality assurance. The designed model is implemented on the Tesla P100-PCIE GPU provided by 

Google Colab, using Keras and Tensorflow as the backend. Sub-section 4.1 provides a description of the dataset 

used in the implementation. In Section 4.2, performance evaluation metrics are discussed, explaining how the 

model's performance was measured. Subsection 4.3 presents the result analysis, providing detailed information 

about the performance of the designed model. This section also presented the comparative analysis, comparing 

the proposed model with existing state-of-the-art models for quality assurance. This comparison helps to assess 

the effectiveness and superiority of the designed model in detecting abnormalities in products, highlighting its 

advantages over other approaches. 

4.1 Dataset Description 

This paper focuses on using data samples of defective and non-defective casting product images for quality 

inspection. The dataset is sourced from Kaggle [26][27] and specifically involves images of submersible pump 

impellers. Submersible pump impellers are vital components that enable fluid circulation in pumps. When fluids 

enter the centrifugal pump, they flow into the center of the impeller, and as the impeller rotates, the velocity of 

the fluid increases, ultimately pushing it outwards through centrifugal force. The impeller's role is crucial in 
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pump functionality, highlighting the criticality of high-quality casting for submersible pump impellers. The 

study presents images of these impellers, including samples of defective products and normal product images. 

Additionally, the paper employs another dataset, the NEU Metal Surface Defects Database [28], for 

performance analysis. This dataset contains 1,800 grayscale images showcasing six typical surface defects found 

on hot-rolled steel strips, namely rolled-in scale, patches, crazing, pitted surface, inclusion, and scratches 

4.2 Performance Evaluation Parameters 

The designed model is evaluated on following metrices:  

Accuracy = (TrP + TrN)/(TrP + TrN + FlP + FlN) (2) 

Recall / Detection Rate = TrP / (TrP + FlN) (3) 

Precision = TrP / (TrP + FlP) (4) 

F1_Score = 2* (Precision* Recall) / (Precision + Recall) (5) 

Where, 𝑇𝑟𝑃 = True Positive (condition when both actual and predicted values are of defective quality). 

𝑇𝑟𝑁 = True Negative (Condition when both actual and predicted values are of good quality). 

𝐹𝑙𝑃 = False Positive (Condition when actual is defective and predicted is of good quality). 

𝐹𝑙𝑁 = False Negative (Condition when actual is of good quality and predicted is defective). 

4.3 Result Analysis 

The table 1 provides a performance comparison of different transfer learning (VGG19, ResNet50, and 

Densenet121), ensemble model of transfer learning and machine learning (ResNet50+SVM, and ResNet50+k-

NN) and ETLViT (Vgg19+ViT, Resnet50+ViT, and Densenet121+ViT) for Casting Product Quality Inspection. 

The metrics evaluated include accuracy, precision, recall, and F1-score. Based on the table, it can be observed 

that the Vgg19 and Densenet121 models achieve an accuracy of 0.84, while the Resnet50 model achieves a 

slightly higher accuracy of 0.89. The ensemble models, such as Resnet50+SVM and Resnet50+k-NN, perform 

even better with accuracies of 0.93 and 0.92, respectively. Additionally, the models combined with Vision 

Transformers (ViT), such as Vgg19+ViT, Resnet50+ViT, and Densenet121+ViT, demonstrate exceptional 

performance with accuracies, precision, recall, and F1-scores of 0.99, indicating highly accurate predictions 

across the board. In summary, the models Vgg19+ViT, Resnet50+ViT, and Densenet121+ViT exhibit the 

highest performance across all evaluation metrics. These models achieve a remarkable accuracy, precision, 

recall, and F1-score of 0.99, indicating exceptional predictive capabilities. The table 2 provides a performance 

comparison of different transfer learning (VGG19, ResNet50, and Densenet121), ensemble model of transfer 

learning and machine learning (ResNet50+SVM, and ResNet50+k-NN) and ETLViT (Vgg19+ViT, 

Resnet50+ViT, and Densenet121+ViT) for metal surface quality inspection. Based on the results, the models 

Vgg19+ViT, Resnet50+ViT, and Densenet121+ViT achieve the highest accuracy and overall performance with 

scores of 0.98 across all metrics. The combination of Vision Transformers with these models enhances their 

performance, resulting in highly accurate and reliable predictions. If accuracy and overall performance are the 

primary considerations, these models should be preferred for machine learning tasks. Below in figure 4(a) 

represents the confusion matrix of ETLViT models designed using Vgg19+ViT, Resnet50+ViT, and 

Densenet121+ViT. Figure 4(b) represents the training and validation accuracy of the model and it was observed 

that all three models with vision transformer improvised the  result. Similarly, fig 4(c) represents the training 

and validation loss of the model and it was observed that all three models with vision transformer improvised 

the  result. 
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Table 1. Performance Comparison for Casting Product Quality Inspection  

Models Accuracy Precision Recall F1-score 

Vgg19 0.84 0.85 0.85 0.85 

Resnet50 0.89 0.88 0.89 0.89 

Densenet121 0.84 0.84 0.83 0.84 

Resnet50+SVM 0.93 0.94 0.93 0.93 

Resnet50+k-NN 0.92 0.92 0.91 0.91 

Vgg19+ViT 0.99 0.99 0.99 0.99 

Resnet50+ViT 0.99 0.99 0.99 0.99 

Densenet121+ViT 0.99 0.99 0.99 0.99 

Table 2. Performance Comparison on Metal Surface Quality Inspection 

Models Accuracy Precision Recall F1-score 

Vgg19 0.82 0.81  0.76 0.78 

Resnet50 0.79 0.88 0.81 0.84 

Densenet121 0.85 0.85 0.86 0.85 

Resnet50+SVM 0.96 0.96 0.96 0.96 

Resnet50+k-NN 0.96 0.96 0.96 0.96 

Vgg19+ViT 0.98 0.94 0.95 0.95 

Resnet50+ViT 0.98 0.97 0.98 0.98 

Densenet121+ViT 0.98 0.98 0.98 0.98 
 

   

   

   

Figure 4 Training and Validation Performance of ETLViT for Quality Assurance 
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Figure 5 shows a comparative analysis of automated quality assurance with existing state-of-art techniques. For 

the gradient, Boosted Tree [29] accuracy is 93%, For CNN [30] accuracy is 86%, for XGBoost [31] accuracy is 

93%, for CNN [32] accuracy is 94%, for CNN [33] accuracy is 95% and the proposed model (ETLViT) has 

maximum accuracy of 99%. The table shows that the ETLViT model has the highest accuracy score of 99%. 

This suggests that the ETLViT model outperforms the other state-of-the-art models in automated quality 

assurance and it can be inferred that ETLViT ensures quality assurance model has achieved more robust results. 

 

Figure 5. Comparative Analysis of Automated Quality Assurance State-of-Art Models 

Table 3. Feature Comparison  

Models Intelligent Automated Cloud Storage Noise Removal 

[30] GB Yes No No 

[31] CNN Yes No No 

[32] CNN Yes No No 

[33] CNN Yes No No 

Proposed (ETLViT) ETLViT Yes Yes Yes 

The feature comparison in Table 3 effectively justifies the proposed work presented in the paper through the 

distinct capabilities of the proposed ETLViT model. Unlike other models [30]-[33] which primarily utilize 

Gradient Boosting or Convolutional Neural Networks and lack automation and advanced features, the ETLViT 

model stands out. The proposed methodology is marked as “Intelligent”, indicating its use of machine learning 

techniques, likely combining transfer learning and vision transformers for enhanced decision-making and 

problem-solving. Moreover, the ETLViT model is designated as “Automated”, highlighting its ability to operate 

with minimal human intervention, a crucial aspect for efficient and consistent quality assurance. The inclusion 

of cloud storage and noise removal features further emphasizes its suitability for modern production 

environments, where handling large data sets and ensuring accuracy in quality assessment are dominant. 

Therefore, in summary, the ETLViT model’s advanced features shows itself as superior, intelligent, and 

automated solution for product quality assurance using machine learning. 

5. Conclusion 

In conclusion, this paper highlights the importance of implementing cyber-physical systems (CPS) in production 

industries to enhance and make it intelligent automated quality assurance processes. By integrating CPS into 

quality assurance procedures, businesses can achieve consistent production processes. Moreover, the use of CPS 

enables significant time savings by automating various aspects of quality control that would otherwise require 

manual labor and inspection. To combat this, the paper has presented a machine learning based approach to 
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enhance quality assurance in production industries by leveraging cyber-physical systems (CPS) and advanced 

technologies such as transfer learning models and vision transformers. The proposed methodology, known as 

ETLViT, is a three-layered architecture that integrates CPS with an ensemble model for defect detection in 

processed products. The first layer of the architecture collects images of the processed products through the use 

of CPS, ensuring real-time data acquisition. The second layer facilitates the transmission of collected data to a 

cloud server, enabling seamless access and storage. Finally, the third layer performs image analysis and fault 

prediction, utilizing the ensemble model to simultaneously execute noise removal, feature extraction, and 

classification tasks. The paper presented the performance comparison of various transfer learning (VGG19, 

ResNet50, and Densenet121), ensemble model of transfer learning and machine learning (ResNet50+SVM, and 

ResNet50+k-NN) and ETLViT was conducted. The result showed that the combination of Vision Transformers 

(ViT) with various models, including Vgg19+ViT, Resnet50+ViT, and Densenet121+ViT, demonstrated better 

performance as compared to others. Therefore, the integration of Vision Transformers further enhanced the 

performance of these models, resulting in accurate and reliable predictions. Future research directions may focus 

on further optimizing the ensemble model, exploring different configurations of the CPS integration, and 

investigating it in real industrial environments. 
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