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Abstract: - The convergence of technological innovation, particularly deep learning (DL), with the importance of responsibility for the 

environment in achieving environmental sustainability. Deep learning (DL) offers to improve sustainability in different areas. This paper 

discusses DL breakthroughs and their applications in accomplishing SDGs, renewable energy, and environmental health. This discovers 

problems in reconciling technological innovation with caring for the environment by investigating the uses of deep learning in diverse areas 

and measuring their environmental implications. Furthermore, it explores CNN and LSTM techniques in Deep learning for incorporating 

environmental factors into the development, application, benefits and challenges of DL technologies to promote sustainability. This study 

aims to provide insights and recommendations for creating a harmonious link between technical advancement and ecological responsibility 

in the pursuit of environmental sustainability by conducting a comprehensive review of existing literature. There are three indicators: MAPE, 

RMSE, and MAE. The MAPE, RMSE, and MAE results are provided based on 7.5, 15, and 30 minutes, indicating low forecast accuracy.    

Keywords: Deep Learning, Sustainability, Sustainable Development Goals, Artificial Intelligence, Convolutional Neural 

Networks (CNN), Long-Short-Term-Memory (LSTM). 

1. Introduction 

Deep learning is an instance of Artificial Intelligence, in which technology has transformed several sectors, 

including sustainability. Deep learning is increasingly acknowledged for its impact on reducing energy use and 

environmental deterioration. It emphasized the economic and ecological impacts of learning and tweaking neural 

network models, highlighting the need for supportable methods in Artificial Intelligence study [1]. Environmental 

sustainability in the age of deep learning is a delicate balancing act that requires a thoughtful approach to 

technology innovation. While AI and deep learning provide solutions to complicated problems, they also represent 

risks that, if not addressed, could accelerate environmental deterioration. Energy use, electronic waste, and data 

centre carbon footprints all highlight the significance of using sustainable methods when developing and 

deploying DL technology. These novel tools have significant potential to promote sustainable practices, 

particularly in energy efficiency and environmental health [2][3]. 

Deep learning's ability to absorb massive volumes of data and infer nuanced patterns has resulted in significant 
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advances in a variety of industries, including healthcare, finance, transportation, and entertainment. However, a 

major problem looms over this technological revolution: the influence on environmental sustainability. The 

integration of deep learning technology into numerous businesses has enormous promise for optimizing 

operations, increasing efficiency, and opening up new opportunities [4]. Deep learning's benefits are apparent, 

ranging from autonomous vehicles reducing traffic congestion to healthcare systems identifying diseases with 

unparalleled accuracy. However, as we leverage the power of deep learning to drive innovation, we must 

simultaneously address the pressing need to maintain ecological responsibility and avoid negative environmental 

repercussions. 

CNNs (Convolutional Neural Networks) are deep learning models developed for visual data processing. They use 

convolutional layers to extract spatial patterns, pooling layers to reduce feature maps, and fully connected layers 

for classification. CNNs have transformed computer vision, reaching cutting-edge performance in image 

recognition and analysis tasks [5]. LSTMs (Long Short-Term Memory) are a sort of recurrent neural network 

architecture that detects long-term dependencies in sequential input. LSTMs use memory cells with gates to 

selectively store or discard information over time, thus being useful for memory-intensive tasks like natural 

language processing, interval prediction, and audio recognition [6]. 

The present research seeks to investigate the complicated interplay between technological advancement, 

particularly in the field of deep learning using CNN and LSTM technology, and the importance of ecological 

responsibility in achieving environmental sustainability. This study aims to shed light on how technological 

innovation can be used to address environmental concerns while reducing negative ecological repercussions by 

investigating the uses, challenges, and potential of deep learning in promoting sustainability. This research intends 

to add to the continuing conversation on balancing technological advancement with ecological responsibility in 

the age of deep learning, using a multidisciplinary approach that blends insights from environmental science, 

computer science, and sustainability studies. 

2. Literature Survey 

Deep learning has been used to predict the prospect of solar power plants and climate change. Othman et al. (2020) 

applied deep learning to forecast the upcoming manufacture of a photovoltaic power ability within Tunisia, 

proving the efficacy of these technologies in simulating renewable energy generation under changing climatic 

conditions. 

Mookkaiah et al. (2022) presented a clever IoT-based compact waste managing structure that uses the vision of 

computer technology. This system uses artificial intelligence algorithms to interpret visual data acquired by IoT 

sensors, allowing for more efficient monitoring and improvement of solid waste management processes. 

AI and deep learning skills have been applied to forecasting photovoltaic (PV) construction [7]. Cordeiro-Costas 

et al. (2022) used both ML and DL models to improve the accuracy of PV production estimates [8]. These models 

can better anticipate future PV energy output by using previous data and weather patterns, allowing for more 

effective planning and control of renewable energy resources. This study demonstrates the potential of deep 

learning in optimizing solar energy integration into the power grid, resulting in a more sustainable and reliable 

energy infrastructure [9]. 

In the recycling business, Deep learning has been used to improve trash management. Noh's (2021) proposal for 

a reused clothing categorization scheme integrating AI and IoTs highlights their potential [10]. Artificial 

intelligence and machine learning were utilized to maximize the generation of environmentally friendly biofuels 

from renewable resources. [11]. Deep learning helps detect faults in renewable energy systems. Pierdicca et al. 

(2020) suggested a deep learning-based method for detecting anomalies in photovoltaic photos, demonstrating 

AI's effectiveness in maintaining renewable energy systems [12]. Deep convolutional generative adversarial 

networks (DCGANs) have been used to generate synthetic datasets for solar cell defect analysis, marking 

significant progress in the area [13]. 

Mahmoud and Slama [14] created a powered AI communal system for energy administration that is centred on 

peer-to-energy trading. The method maximizes customer benefits and renewable energy use through 

reinforcement learning techniques. Mirjalili et al. [15] compared ML and DL approaches, including DNN, 
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AdaBoost, SVR, and KNN, to predict energy equilibrium in mixed structures using renewable energy systems. 

The study found that KNN and DNN algorithms outperformed other methods in predicting the equilibrium of 

energy. In the recycling firm, Deep Learning (DL) have helped to improve waste management procedures. Noh's 

(2021) unique proposal for a recycled clothing classification system that incorporates AI and Internet of Things 

(IoT) technologies demonstrates how these tools can streamline garment sorting procedures [16]. This not only 

increases efficiency but also encourages the reuse of textile materials. Furthermore, AI and machine learning 

algorithms are optimizing the development of environmentally friendly biofuels using sources of renewable 

energy, indicating its potential to minimize reliance on fossil fuels while minimizing environmental damage. 

These applications demonstrate the revolutionary power of DL in improving sustainability in the recycling 

industry. 

3. Methodology 

3.1. Deep Learning 

Deep learning is the process of identifying patterns, anomalies, and correlations in big datasets to predict outcomes 

[17]. The methods combine machine learning, statistics, and database systems. Using software and methodologies, 

this information can be used to reduce risks, boost revenue, and reduce expenses [18]. 

Data mining is becoming increasingly popular in both the private and public sectors, thanks to advancements in 

business and technology. Computer networks, neural networks, and the client/server computer model are 

examples of developments that connect databases and advance search algorithms. This paradigm enables desktop 

users to access centralized data resources, while researchers can aggregate data from multiple sources into a single 

search source [19][20]. 

 

Figure 1: Data processing. 

Deep learning is a strong collection of approaches for neural networks. This technology allows computational 

models with various processing layers to learn from data at different levels of abstraction. 

These models have made significant progress in various disciplines, including speech recognition and object 

identification [21][22]. Neural networks are physiologically inspired yet not precise replicas of brain cells, serving 

as metaphors for data processing. Neural networks' full potential can be realized through their use in many 

applications. Machine learning is a promising method for improving data prediction and business classification 

due to its capacity to "learn" from data, non-parametric nature, and generalizability [23].  

3.2. Sustainable Development Goals (SDG) 

The Sustainable Development Goals (SDGs) are a revolutionary global agenda that aims to address major social, 

economic, and environmental concerns while promoting sustainable development worldwide. These 17 

interconnected goals, endorsed by all UN Member States in 2015 as part of the 2030 Agenda for Sustainable 

Development, include a diverse set of targets and indicators aimed at eradicating poverty, protecting the 

environment, and ensuring prosperity for all. The SDGs, which range from ending hunger and promoting gender 

equality to battling climate change and building resilient infrastructure, give a comprehensive framework for 

making the world a more just, inclusive, and sustainable place by 2030. The SDGs provide a road map for 

addressing the root causes of inequality, environmental degradation, and social injustice by mobilizing 

governments, businesses, civil society, and individuals to take collective action, paving the way for a future in 

which prosperity is shared, ecosystems are protected, and human rights are upheld for current and future 
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generations. 

In achieving the SDGs, DL has the potential to greatly contribute (Table 1). However, ethical and responsible use 

requires thorough regulatory control. Responsible and innovative use of deep learning will significantly impact 

the future of sustainable development. 

Table 1: General Uses for AI in the Supportable Growth Aim 

SDG Goal Application 

No Poverty They are expecting poor areas, maximizing societal safety 

costs, and enhancing microfinance facilities. 

Zero Hunger precision agriculture, crop yield prediction and disease 

detection. 

Good Health and Well-being Predicting sickness outbreaks, providing telemedicine 

services, and utilizing AI for diagnosis. 

Quality Education AI-assisted marking, Personalized education. 

Gender Equality Study of gender prejudice statistics. 

Sustainable water as well as sanitation Water quality evaluation, water shortage forecast, and 

enhancing water supply arrangements. 

Decent Work and Economic Growth Improving production, job creation, and prediction 

financial movements. 

Industry, Innovation, and 

Infrastructure 

predictive maintenance, lowering maintenance costs and 

optimizing operations. 

Reduce Dissimilarities Classifying and anticipating dissimilarity within society, 

AI in establishing policies, and targeted measures to reduce 

inequality. 

Climate Action Developing and improving climate models, predicting 

climate change, and tracking carbon footprint. 

3.3. The CNN and LSTM technology used in Solar Energy Forecasting 

To enhance solar energy forecasting, it employs a convolutional neural network (CNN) and long short-term 

memory (LSTM). This hybrid deep learning model (CNN-ALSTM) extracts properties of unprocessed 

information and performs reforesting with an LSTM neural network. The CNN layer extracts important features 

from time series data, including latent information that can increase prediction accuracy. The CNN layer enhances 

prediction performance with two convolution kernel layers, one 16 3 × 1 and one 32 3 × 1. 

The vector of features from CNN's second layer was sent onto the LSTM layer for prediction. Each feature vector 

element corresponds to one of the LSTM layer's 32 units. The attention mechanism prioritizes feature amounts 

that are highly relevant to the present output. The attention mechanism's output vector is then managed by an FC 

layer through the unfolding procedure. The expected AC2 amount for the following moment is output. 

The LSTM algorithm is ideal for predicting time series data. Previous research suggests that combining CNN and 

LSTM improves predicting performance for several applications [24][25]. CNN improves LSTM's ability to 

extract characteristics from experimental data. The attention mechanism assigns weights. The attention method 

assigns precise weightage values to the LSTM output vector, improving the model's prediction capabilities. 

3.3.1. Long-Short-Term-Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a form of recurrent neural network (RNN) architecture that aims 

to solve the vanishing gradient problem and detect long-term dependencies in sequential data. LSTMs are made 

up of memory cells that can retain information over long periods, allowing them to remember significant context 

from previous inputs. These memory cells feature gates, such as input, forget, and output gates, that control the 

flow of information and allow the network to selectively store or discard information over time. LSTMs are 

commonly employed in natural language processing, time-series prediction, and speech recognition because they 

successfully capture temporal dependencies. They have shown higher performance in cases requiring the recall of 
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previous inputs, making them a strong tool for modelling sequential data and addressing issues in many domains. 

 

Figure 2: The LSTM model structure. 

The LSTM cell structure successfully addresses gradient explosion/vanishing issues. The LSTM model flowchart 

has four critical elements: cell state, input, forget, and output. Input, forget, and output gates are utilized for 

updating, maintain, and delete cell state information. In Overall Forecasting Framework, The neural network 

known as the LSTM gathers high-latitude characteristics from the dataset. The Attention Mechanism assigns 

varying weights to output pieces of the LSTM hidden layer. 

3.3.2. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a subset of artificial neural networks developed to process and 

analyze visual data such as images and video. CNNs are made up of layers that use convolutional operations to 

recognize spatial patterns and features in the input data. CNNs learn to automatically extract low-level 

characteristics such as edges and textures in early layers before progressing to more abstract and high-level 

features in later layers. Pooling layers reduce feature maps to improve translation invariance, whilst activation 

functions add nonlinearity to the network [26]. CNNs have transformed computer vision tasks, reaching cutting-

edge performance in picture classification, object detection, and segmentation, among other things, and have 

found broad use in a variety of fields like as autonomous vehicles, medical imaging, and facial recognition. 

3.3.3. The Selection of Clustering Algorithm 

The clustering method divides raw data into four groups, each representing a season. Four sets of information 

have been learned and evaluated individually with the suggested CNNALSTM structure. The section includes 

tests on several clustering techniques. During the training stage, we evaluate clustering techniques such as FCM, 

k-means, and Self Organizing Map (SOM) (Figure 3) to divide the training dataset into four categories. 

 

Figure 3: Accuracy of various clustering methods in the training phase. 
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SOM outperforms standard clustering techniques in terms of season label accuracy (Figure 3). The SOM 

algorithm's clustering results may impact the forecasting model's prediction ability. The self-organizing map 

(SOM) algorithm's number of iterations ranges from 500 to 1000, with debugging intervals of 100. The batch size 

is specified at 15 or 30. 

3.4. DL in Renewable Energy 

It uses advanced machine learning to improve the generation, forecasting, and management of solar, wind, and 

hydroelectric power. DL analyzes a wide range of data, including weather trends and energy records, to improve 

efficiency and reliability. It forecasts sun irradiance, wind speeds, and hydropower outputs to maximize energy 

production and grid stability. 

 

Figure 4: AI and DL in Renewable Energy 

Advancements in deep learning are driving significant transformations in the renewable energy sector. New 

technologies have increased effectiveness and environmental sustainability, attracting interest from researchers 

and industry practitioners. Deep learning applications in renewable energy fall into various categories as shown 

in Figure 4. Deep learning plays a significant role in defining the future of renewable energy. It found that energy-

efficient DL models play an important role in renewable energy research [1]. 

Artificial intelligence and deep learning (DL) have altered several fields, including renewable energy. 

Photovoltaic (PV) power facilities have made significant improvements in detecting faults and maintaining system 

health. The solAIr system, which integrates AI with renewable energy infrastructure, serves as a prime example 

[12]. SolAIr uses deep learning to automatically detect faults in PV power facilities. 

3.5.  DL in Environmental Health 

Deep learning (DL) is gaining popularity in environmental health due to its skill to procedure and study large 

volumes of information, leading to deeper visions and faster treatments (see Figure 5). AI has the ability to 
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transform healthcare across multiple fields. DL methods have greatly improved diagnostic procedures for common 

neurological disorders, including epilepsy. Deep learning (DL) automates feature abstraction from EEG and MRI 

information, refining the effectiveness and correctness of epileptic seizure detection.  

 

Figure 5: Application of AI and DL in environmental health. 

The COVID-19 pandemic underlined the importance of AI, ML, and DL technologies for reacting to global health 

disasters. The use of AI-based ML and DL techniques for COVID-19 diagnosis and treatment. These approaches 

include non-invasive detection measures, severity scores, illness transmission models, medication manufacture, 

and vaccine development. AI tools have been used to analyze enormous amounts of data, including COVID-19 

case data and social media, yielding valuable insights about outbreak patterns, transmission channels, and impacts. 

Machine learning and deep learning have helped protect against epidemics and monitor public health, 

incorporating security at airports, medical monitoring, and disease detection. These developments not only 

improve pandemic management but also pave the possibility for using AI to regulate future health crises [27]. 

Deep learning has also been employed in biomedicine and healthcare. It identified gender discrepancies in 

biomedical technologies utilized in Precision Medicine and made recommendations for optimizing their 

application to enhance global health and reduce inequality [28]. A smart helmet prototype for industrial safety 

that uses AI to monitor worker conditions and assess threats in real-time [29]. Deep learning is used to improve 

environmental health by predicting, detecting, and managing numerous hazards. 

4. Result and Discussion 

This study compares the suggested model, which combines LSTM and attention mechanism, to the MLP and 

LSTM models alone. This research focuses on the importance of AC2 as a training model input. The MAPE 

results are reported in Figure 6, 7, 8. The RMSE results are presented in Figure 9, 10, 11. The MAE results are 

presented in Figure 12, 13, 14. 

Using the grouping and prediction phases described in this results in lower prediction accuracy. A 30-minute time 

interval reduces data volume to 25% of that of a 7.5-minute interval. When comparing alternative time intervals, 

a 30-minute interval leads to lower forecast accuracy. Adding more training data improves prediction accuracy. 

 

Figure 6: PV power forecast outcome 7.5 minutes ahead for MAPE. 
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Figure 7: PV power forecast outcome 15 minutes ahead for MAPE. 

 

Figure 8: PV power forecast outcome 30 minutes ahead for MAPE. 

 

Figure 9: Figure: PV power forecast outcome 7.5 minutes ahead for RMSE. 

 

Figure 10: Figure: PV power forecast outcome 15 minutes ahead for RMSE. 
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Figure 11: Figure: PV power forecast outcome 30 minutes ahead for RMSE. 

 

Figure 12: PV power forecast outcome 7.5 minutes ahead for MAE. 

 

Figure 13: PV power forecast outcome 15 minutes ahead for MAE. 

 

Figure 14: PV power forecast outcome 30 minutes ahead for MAE. 
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these figures. 

The forecasting model outperforms other models with enough training data at the experimental clustering, 

training, and prediction stages. The clustering procedure separates the original PV data into four separate clusters. 

Each clustered dataset is trained using a hybrid deep learning architecture that combines CNN and LSTM. The 

deep learning framework outperforms other forecasting approaches like MLP and LSTM. The AM method 
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significantly impacts forecasting results in studies with ALSTM. The proposed methods provide even greater 

performance improvements. The proposed model shows good performance on the RMSE indicator. Compared to 

the RMSE indication, the MAE indicator accurately represents the prediction value error. The suggested model 

outperforms existing models in the MAE indicator for intervals within 7.5 minutes. The suggested model 

outperforms existing models in predicting intervals within 7.5 minutes, but not within 15 or 30 minutes. 

To achieve this balance, strategies include promoting energy-efficient computing practices, establishing ethical 

guidelines for AI development and deployment, encouraging interdisciplinary collaboration among stakeholders, 

and actively engaging stakeholders in decision-making processes to make sure that sustainability issues are 

integrated into technology design and implementation. By implementing these techniques, stakeholders may 

maximize the promise of DL technologies while minimizing their negative environmental implications, resulting 

in a more sustainable and resilient future. 

5. Challenges of Deep Learning on an Environment Basis 

Deep learning (DL) has various issues when employed in environmental scenarios, including: 

Data Quality and Quantity: DL models require a substantial amount of high-quality data for training, that can 

be scarce or difficult to get in environmental applications. Inadequate or biased datasets might result in incorrect 

predictions and unreliable outcomes. 

Computational Resources: DL algorithms are computationally costly and need significant processing power, 

which may present difficulties in resource-constrained contexts. High computing costs may restrict the scalability 

and accessibility of deep learning solutions, especially in remote or impoverished countries. 

Interpretability and Explainability: DL models are typically complicated and hard to read, making it difficult 

to grasp how they make their predictions. Lack of transparency can undermine trust and acceptability of deep 

learning-based outcomes, particularly in delicate environmental decision-making scenarios. 

Transferability and Generalization: DL models trained on particular data sets may struggle to adapt to new or 

unknown environmental conditions. Transfer learning strategies can help alleviate this issue, but achieving 

consistent performance across a variety of environmental situations remains a substantial difficulty. 

Ethical and Social Implications: Deep learning algorithms have the potential to perpetuate or exacerbate existing 

biases and injustices, particularly in environmental justice settings. Ethical concerns like data privacy, algorithmic 

fairness, and social equality must be properly addressed to guarantee that DL technology helps all communities 

and stakeholders. 

Energy Consumption: DL training methods require a significant amount of energy, which contributes to carbon 

emissions and environmental impact. To address this issue, green AI organizations strive to build energy-efficient 

deep learning algorithms and improve hardware infrastructure. 

Data Security and Privacy: Environmental datasets may include sensitive information, like location or personal 

identifiers, generating worries regarding data security and privacy. To protect sensitive knowledge and prevent 

unwanted access, DL systems must implement strong data security features. 

Regulatory and Policy Frameworks: The legislative landscape for DL in environmental applications is currently 

emerging, with little guidance on topics such as data governance, responsibility, and accountability. Creating clear 

legal and legislative frameworks is critical to ensuring the proper and ethical application of DL technology in 

environments. 

6. Conclusion 

This paper examines the use of deep learning (DL) to promote sustainability in several fields, including 

environmental health and renewable energy. AI can help achieve 134 out of 169 SDG targets, making it an 

effective device for encouraging sustainable practices. The rapid growth of Deep Learning technique emphasizes 

the need for directing monitoring to maintain transparency, safety, and ethical norms. Deep Learning can improve 

energy management, problem detection, and grid stability in the renewable energy sector. These technologies 
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have shown analytical study for photovoltaic power plants, improving the efficiency and sustainability of 

renewable energy systems. 

Integrating DL in environmental health has improved exposure modeling and disease prediction by analyzing 

complicated spatial data more efficiently. These technologies improve diagnostic accuracy and efficiency, as well 

as environmental monitoring. To fully utilize deep learning for sustainability, various issues must be addressed. 

Challenges in DL include a lack of explainability and transparency, huge data dimensionality, integration with the 

next-generation wireless networks, and ethical and privacy problems. By incorporating ecological factors into the 

development, implementation, and usage of DL technologies, stakeholders can realize AI's changing promise 

while mitigating negative environmental repercussions. Moving forward, coordinated efforts are required to 

address the difficulties and opportunities given by DL in promoting sustainability, ultimately paving the path for 

future generations to live more sustainably and resiliently. 
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