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Abstract: - Combinatorics discrepancy theory studies the ways in which a given state deviates from the ideal. A set system's disparity in its 

classical form has been shown to be bound in certain situations. Though they may not hold for other types of discrepancy, no mathematician 

has been able to produce an example that defies these limits as of yet. Due to the large number of set systems (kmn for m sets and n elements, 

each choosing one of k possible values), it is not viable to use traditional techniques, such as human reasoning or computer brute forcing, 

to identify the few set systems with a significant discrepancy. However, in a 2021 preprint, Adam Zsolt Wagner shows how the deep cross-

entropy method—a popular Neural Network (NNs)-based Reinforcement-Learning (RL) technique—could effectively find examples that 

disprove open conjectures in two other combinatorial subfields: pattern avoidance and graph theory. Therefore, in light of these encouraging 

findings, we wondered if Wagner's method could help us find examples that defy the upper bound of discrepancy variations. To start 

answering this question, we examined whether Wagner's approach might be extended to find set systems that exhibit significant 

inconsistencies, either as classical or variant (prefix and fractional in our instance) systems. Our findings could help approximation 

algorithms, which employ discrepancy theory to tackle certain problems, as well as discrepancy theory itself. 
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1. Introduction 

Within the field of combinatorics, discrepancy theory explores the differences that exist between a real-world 

situation and the ideal condition that an individual would like to attain. The investigation of deviations from set 

systems, particularly when quantified in classical forms, is at the core of discrepancy theory. These classical forms, 

which often adhere to certain bounds, provide a mathematical problem that has not yet been completely solved, 

especially when taking into account variations of discrepancies such as classical, prefix, and fractional 

discrepancies. The volume of set systems in this sector is enormous and grows exponentially with the number of 

sets and elements involved. As a result, traditional techniques such as manual analysis or brute-force calculation 

are not sufficient to detect instances with large disagreement. Particularly in the aftermath of advances in Artificial 

Intelligence (AI) and Machine Learning (ML), the fascination with discrepancy theory and its difficulties has 

prompted a move towards novel computational techniques [1]–[3]. Such as Reinforcement Learning (RL) is a 

potentially fruitful approach that has gained recognition for its achievements in a number of fields, including 

financial market research, vehicle navigation, and even conquering difficult strategic games like chess and Go 

[4]–[16]. These accomplishments demonstrate how RL may be used to handle intricate, strategic decision-making 

processes, much like combinatorial decision-making in discrepancy theory. Adam Zsolt Wagner's groundbreaking 

work [17], presented in his 2021 preprint, illustrated the effectiveness of the deep cross-entropy method—a RL 

technique—by using it to find counterexamples in graph theory. This accomplishment opens the door to further 

research into the possibility of using comparable methods to discrepancy theory in an effort to find high 

discrepancy set systems that may defy current theoretical limitations. Wagner's deep cross-entropy approach is 

being modified for use in discrepancy theory as part of our study, with an emphasis on finding set systems that 

exhibit high levels of discrepancy. In order to identify the set systems with the largest discrepancy values, the 

methodology combines combinatorial analysis and ML algorithms to sort through the enormous number of 

potential set systems. This technique is promising not only for improving our knowledge of discrepancy theory 

but also for applying it to adjacent areas where discrepancy measurements are important, such as approximation 

algorithms. Through the implementation of this research, we hope to improve the deep cross-entropy method's 

accuracy and computational efficiency while adjusting it to the intricate needs of discrepancy analysis. This means 

creating specialised Neural Networks (NNs) models for fractional combinatorial analysis, enhancing signal 

creation, and optimising the process both algorithmically and at the machine level. Early experiments have 

produced promising results: the NNs is able to identify set systems with high levels of discrepancy in fractional, 

prefix, and classical categories. In addition, new directions in combinatorial analysis could be triggered by cross-

disciplinary innovation that draws inspiration from disciplines like physics or chemistry. Successfully integrating 

discrepancy theory with RL techniques has significant ramifications. Such developments could transform 

computational tactics in many sectors that depend on discrepancy measures, beyond the mathematical satisfaction 

of finding high-discrepancy set systems. This includes improving the computational tools used in scientific and 

technical applications as well as creating approximation methods that are more effective.  
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The paper is as follows; in the following section, we'll look at the study's backdrop. The related works are 

presented in Section 3. The pre and post methodology are provided in Sections 4 and 5, respectively. The 

experimental analysis is done in Section 6, and we wrap up the paper with some conclusions and ideas for future 

research in Section 7. 

2. Background 

A branch of combinatorics called discrepancy theory studies the difference between desired and actual states in 

set systems. According to this theory, the amount of imbalance that can occur when elements are not distributed 

equally across overlapping sets is measured as discrepancy. Lower and upper limitations have been determined 

for classical discrepancy; however, it is still unclear whether these bounds apply to varieties of discrepancy such 

as fractional and prefix. The goal of classical discrepancy analysis is to find the absolute difference between the 

counts of red and blue elements in each set of m sets with n elements, all of which are coloured either red or blue. 

To portray the disparity of the set system, the goal is to identify the colouring that minimises this disagreement 

across all sets. This study addresses the use of a NNs method to detect high-discrepancy set systems in both 

classical and variant forms. The method is influenced by [17] research on the deep cross-entropy method. The 

objective is to investigate if set systems that beyond established discrepancy bounds can be found using such 

computational techniques, thus refuting current hypotheses. The concept of discrepancy goes beyond its 

traditional definition to include variations such as fractional and prefix discrepancies, which bring new challenges 

and avenues for study. Fractional discrepancy provides a richer mathematical landscape for analysis by allowing 

set elements to be fractionally included. The computation of discrepancy is further complicated by prefix 

discrepancy, which adds a maximisation step across subsets of items. Therefore, these variants raise unanswered 

problems, especially about the applicability of the traditional discrepancy bounds. Spencer's theorem2, in 

particular, offers an upper constraint on discrepancies for set systems, contingent on the number of sets and 

elements; however, its validity with respect to fractional and prefix discrepancies is still questionable. The 

discrepancy problem is modelled in this study using NNs, more precisely via Multi Layer Perceptrons (MLPs), as 

function approximators. These networks adjust the weights of their input vectors to approximate the function 

mapping to the relevant disparities through layers of linear and nonlinear transformations (activation functions). 

In the framework of discrepancy theory, we modify [17] deep cross-entropy approach, which was first used in 

graph theory. The approach may be able to find very discrepant set systems, especially in the less-explored areas 

of fractional and prefix discrepancies, which could provide novel perspectives and push the boundaries of current 

mathematical understanding. The achievements of ML in diverse complex systems analysis, which imply that it 

is feasible to find high-discrepancy set systems that may defy accepted theoretical limitations, serve as the driving 

force behind this computational exploration. Essentially, the process consists of repeatedly modifying the NNs 

parameters in order to reduce the variation across sets. The goal is to find configurations that may highlight 

mathematical characteristics of these systems that may have been missed in the past. A deeper comprehension of 

the underlying complexity of fractional and prefix discrepancies in particular can be provided by examining these 

mathematical concepts in more detail. Finding high-discrepancy set systems is only one goal of using NNs in this 

situation; another is to comprehend the underlying structures and processes that give rise to these differences. By 

exposing nuances in discrepancy theory that have escaped conventional mathematical study, this computational 

experiment may offer a new angle on this age-old mathematical conundrum. Therefore, this study aims to explore 

the depths of discrepancy theory by utilising NNs and representing the connection between computational learning 

and mathematical theory. We aim to question established paradigms in the discipline and gain new insights by 

converting the mathematical structures of discrepancy into computational models. A promising direction towards 

furthering our grasp of discrepancy theory is the use of NNs to explore high-discrepancy set structures. It shows 

how computer techniques can be used to supplement classical mathematical analysis, which could result in new 

discoveries about combinatorial structures and their characteristics. This examination into the use of NNs in 

discrepancy theory research not only broadens the methodological toolkit that mathematicians can employ, but it 

also fits with the larger trend of combining computational and analytical methods in scientific research. 

3. Related Works 

When encoding the parameters of a combinatorial optimization—variable-length inputs are required—which a 

NNs can handle. Recurrent Neural Networks (RNNs) are used as the front-end model in PtrNets, which were first 

introduced by [18], one of the first neural combinatorial optimization techniques. A succession of points is placed 

on the plane, and each point's Cartesian coordinates is processed one at a time by the RNN. The RNN technique 

is carried out by [19], who improve the Ptr-Net technique by combining it with RL. By keeping the RNN decoder 

to handle changing input size and eliminating the RNN encoder, [20] further improve this method. Graph—is one 

of the main applications of the Graph Neural Network (GNN) class of encoding networks for neural combinatorial 

optimization. In an arbitrary graph with an arbitrary number of nodes, GNN learns the message forwarding policy 

between nodes. Among the first to demonstrate that a GNN-based framework can solve a wide variety of 

combinatorial optimization issues on graphs uniformly are [21]. By using a more advanced Graph Convolutional 
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Network (GCN) structure, [22] expand on the work [23]. GCN is used well by [24] to address combinatorial 

optimization issues on graphs with billions of edges. [25] enhance the quality of the combinatorial optimization 

solutions by applying unsupervised learning on GNN. The encoding networks that are most pertinent to our 

research are those that utilise the Transformer encoder. [26] solve the numerous routing issues by concurrently 

encoding the Cartesian coordinates of all the nodes provided by the problem using this kind of encoder. Using the 

same encoder as [26], [27] generate solutions with a markedly higher quality by utilising RL training and inference 

methods that are better suited for combinatorial optimisations. However, in order to solve MIP instances, where 

constraints and variables constitute a bipartite network weighted by constraint coefficients, [28] learn efficient 

branch-and-bound variable selection policies. The weapon-target assignment problem is a well-known 

combinatorial optimization problem that is solved by [29] using a bipartite graph. Given a matrix that specifies 

the value that each bidder attributes to each item up for sale, [30] determine appropriate auction regulations. 

4. Pre-Methodology 

In 2021, [17] published a study that presented a new way to apply the deep cross-entropy approach to graph theory 

problems, demonstrating how effective it is for solving high-dimensionality combinatorial problems. This 

approach lacks sensitivity to the scale of combinatorial problems and has a specific learning mechanism that 

makes it stand out from other swift algorithms. It is therefore different from more conventional methods such as 

human deduction or extensive computer brute forcing. Potential counter examples are produced via the deep cross-

entropy approach through a series of repetitive processes. The procedure begins by generating a large number of 

random graphs, using a probability distribution function based on NNs to direct the process. Then, each graph is 

assessed and given a score according to how relevant it is to the particular conjecture; the graphs with the highest 

scores are chosen to be examined further. After that, the process iteratively improves the distribution function's 

weight parameters to raise the possibility of creating graphs that closely resemble the highest-scoring examples. 

The technique creates an adjacency matrix that is representative of a graph by employing NNs as a probability 

distribution function to systematically identify the best vector element at each step and produce these graphs. An 

auxiliary vector reflecting the current prediction emphasis helps with this procedure, which calls for an in-depth 

understanding of the graph's structure. The NNs can correctly determine the order of the graph's edge predictions 

thanks to this dual-vector input mechanism. Once a predetermined number of random graphs have been created, 

these are evaluated and given a score that indicates how likely it is that they will serve as counter examples to the 

conjecture being studied. Based on the details of the conjecture, the scoring function is computed with the goal of 

guiding the learning process to produce graphs with the necessary counter example properties. By repeatedly 

iterating, the approach gets closer to discovering a legitimate counter example by fine-tuning the probability 

distribution to favour the formation of high-scoring graphs. [17] method involves changing the NNs weights in 

the third stage to improve the network's capacity to produce graphs that more closely match the highest-scoring 

examples from earlier iterations. The efficacy of the technology mostly stems from this learning process, which 

allows the NNs to adjust and enhance its graph formation strategy over time. Although there are easier techniques 

to create random graphs, this NNs-based method excels because of its capacity for dynamic learning. The network 

iteratively improves its probability distribution, gradually favouring graph layouts that achieve high scores for the 

specified metrics. This methodical weight adjustment, which embodies the idea of a function approximator, 

progressively transforms the network's output towards the ideal solution under the guidance of gradient descent, 

back propagation, and cross-entropy principles. Tailored to the complex requirements of proving conjectures in 

graph theory, Wagner's deep cross-entropy approach is an advanced fusion of NNs technology with probabilistic 

modelling. Through iterative learning and adaptation, the method presents a viable way to find counter examples 

in combinatorial problems, demonstrating how ML techniques can progress mathematical study. 

5. Post-Methodology 

[17] code must first be implemented and modified to fit discrepancy theory, effectively making sure the 

fundamental setup functions, before we can search for matrices with a high discrepancy. Next, we must ensure 

that the scoring function is well-defined in order to provide the model with sufficient signal to discriminate 

between desirable and less desirable incidence matrices. Finally, we optimise for speed because we don't want to 

have to wait weeks to get any noteworthy results. 

5.1 Basic Setup 

[17] finds counter examples in graph theory using the deep cross-entropy method, but his code is built in a way 

that makes it easily adaptable to other combinatorics subfields. As a result, the majority of our setup choices and 

the majority of our code were developed on his foundation. Python is used to write [17] code, as well as ours, 

presumably because it is a simple language with a wealth of excellent ML and NNs libraries. The calc score 

function, which accepts an instance as input and returns the instance's score, was the only part of the code that 

needed to be changed in order to make the method work with prefix discrepancy. The objective is to identify high 

(prefix) discrepancy matrices, so we designed our scoring function (calc score) to accept an incidence matrix as 

input and output the prefix discrepancy of the matrix (Equation 7) as a score. In this manner, matrices with 

extremely high prefix discrepancy should be found by the network over time. Should this transpire, we will have 

effectively demonstrated the applicability of [17] approach to discrepancy theory, and therefore potentially to 
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refute some of the conjectured upper bounds. [17] code adaptation for fractional discrepancy was a little more 

difficult because the NNs now has to produce continuous numbers rather than just zeros and ones. The scoring 

function (calc score) is defined similarly to the prefix discrepancy function, with the exception that it now yields 

the fractional discrepancy as the score. 

5.2 Further Improvements 

We wanted to tackle the difficult prefix and fractional discrepancy issues in combinatorial set systems by 

modifying [17] deep cross-entropy method. [17] approach, first used in graph theory, scores random graphs, 

iterates the creation process based on highest scores, and employs NNs to find counter examples to conjectures. 

This strategy is distinguished from more conventional brute force or heuristic methods by its ability to handle the 

large dimensionality of combinatorial problems with resilience and by offering a unique learning process. Initially, 

we faced a challenge where the NNs was unable to distinguish between more and less desired matrices in situations 

when there was a prefix difference. Similar to classical discrepancy, prefix discrepancy is quantified as a discrete 

quantity that is constant amongst identically sized matrices. For example, a lot of 7 × 7 matrices usually receive a 

prefix discrepancy score of 2. Because of this, in the event that every matrix receives the same score, the NNs will 

not receive the feedback it needs to determine which matrices are better. As a result, the learning process is no 

more efficient than random generation. We changed the scoring system to take into account both the number of 

colorings that led to the given discrepancy and the discrepancy value in order to improve our methodology. This 

intricate scoring system is shown in Equation (1). 

𝑐𝑎𝑙𝑐_𝑠𝑐𝑜𝑟𝑒(𝐴)  =  𝑝𝑟𝑒𝑓𝑖𝑥 − 𝑑𝑖𝑠𝑐(𝐴)  −  0.0001 ∙ 𝑙𝑛(𝑐𝑜𝑢𝑛𝑡)                                                                                                               

(1) 

In this case, "count" refers to the total number of colorings that resulted in the observed difference. Through this 

modification, the NNs will be directed to concentrate on more promising candidates by giving preference to 

matrices that obtain their score with fewer colorings. This will produce a stronger learning signal. Getting the 

network to create and learn from fractional matrices was the issue for fractional discrepancy. The outputs of the 

network were first directly translated into the matrix elements by mapping them using a sigmoid function to a 

continuous range between zero and one. But this process produced identical matrices, which significantly reduced 

the network's capacity to process a variety of input. While each matrix was based on the predictions of the network, 

we made sure that each one would differ somewhat from the others by adding a noise component to the output 

values to add variability. This strategy was beneficial at first, but it eventually caused stagnation. Unlike in binary 

contexts, where it can output values close to zero or one to show high confidence, the network found it difficult 

to convey confidence in its predictions. In order to get around this, we used an image recognition technique and 

built up the network to produce a set of probabilities over a specified range of values (e.g., 0.0 to 1.0 in 0.1 

increments). By varying the probability distribution over these steps, this technique helped the network convey 

confidence and uncertainty more effectively and enabled a more sophisticated manner of producing fractional 

matrices. This was essential because [17] process was iterative. To improve performance, we carried out a number 

of machine-level adjustments. The Numba just-in-time compiler was the first tool we used. It greatly increases 

the speed at which Python code can be executed, particularly when NumPy functions and loops are used. In order 

to lessen memory utilisation and speed up processing, we additionally optimised our data structures by designating 

lower precision data types where appropriate. We also parallelized the matrix generation and evaluation operations 

because we knew they were independent jobs. By scaling the computation across numerous CPUs, we were able 

to significantly reduce the time needed for each iterative cycle of the approach by utilising multi-threading and 

cloud computing resources. In addition to expanding the [17] application to a wider range of combinatorial issues, 

we have also increased the method's efficiency and efficacy in discovering high-discrepancy matrices by 

modifying it to address prefix and fractional discrepancies in set systems. 

6. Experimental Analysis 

We put the strategies outlined in Section 5 into practice and assessed their effectiveness in identifying significant 

discrepancies for each of the three variants—fractional, prefix, and classical. At first, we employed the same NNs 

as [17], who employed three hidden layers with 128, 64, and 4 neurons, respectively. Ultimately, we tripled the 

number of neurons in each layer to increase learning for prefix and fractional inconsistencies. 

6.1 Classical Discrepancy  

We wanted to confirm whether our NNs can approach the top bounds proved for classical discrepancy, even 

though our ultimate goal is to find counter examples for prefix and fractional discrepancy. It is practically 

impossible to create a zero-one matrix of size 7 × 7 with a (classical) discrepancy greater than 3 since 7 × 7 

matrices have an upper bound of discrepancy of 3. However, the majority of 7 × 7 matrices have a disparity of 2. 

Thus, our goal was to determine if our network could locate one of the few 7 × 7 matrices that had a classical 

discrepancy of 3, or in other words, hit the upper bound. As seen in Fig. 1, our NNs gets off to a good start by 

consistently identifying matrices with higher scores. These matrices all have a classical discrepancy of 2, although 

the number of colouring decreases over time. But rather than going all the way to 3, the score rises quickly before 

plateauing, for unknown reasons, at a value equal to four colorings after 500 iterations. The fact that our NNs can 

automatically identify patterns in the data to maximise the provided score function without prior knowledge of 
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the issue setting is still an intriguing outcome, though. Finding even one 7 × 7 matrix with a classical discrepancy 

of 3 is difficult because there are very few of them. The model is obviously capable of learning, so even if it did 

not achieve the established upper bound, it might still be able to find counter examples to easier issues. Maybe 

our choices of parameters wasn't the best ones. For instance, altering the learning rate could cause the NNs to 

locate these few matrices with a three-discrepancy. In actuality, insufficient learning rate causes even well-

designed NNs models to become trapped in local optima. As a result, we think it would be worthwhile to repeat 

the experiment with various learning rates (or other significant parameters). However, there was sufficient 

evidence for this theory to proceed to the forms of discrepancy. 

 
Fig. 1. Our NN learns to reduce the number of colorings for matrices with a classical disparity of 2 (left) to just 4 in roughly 500 iterations, 

which corresponds to scores of roughly 1.999700 to 1.999861, respectively (right) 

 

6.2 Prefix Discrepancy 

Instead of focusing on finding an incidence matrix with a large classical discrepancy, we repeated the experiment 

and tried to find one with a high prefix discrepancy. The results show that our model performs exceptionally well 

in identifying matrices with a prefix discrepancy of 3 (refer to Fig. 2, left). After just 30 iterations, the average 

score of the top 10% was almost 3. Before discovering more than 100 matrices with a prefix discrepancy of 3, the 

network only produced about 30,000 random matrices due to the NN's 1000 random matrix generation every 

iteration. We conducted the experiment 100 times because the deep crossentropy approach is random. As a result, 

we obtained an average of 21,540 random matrices before identifying one with a prefix discrepancy of 3. On the 

other hand, we required more than three million random matrices (or more than 100 trials on average) when we 

sampled from a uniform distribution before we discovered a matrix with a prefix discrepancy of three (refer to 

Table 1). These preliminary findings are really promising: it is evident that the NNs can learn constantly over time 

without any prior problem knowledge. At approximately 23 iterations, the most remarkable learning occurs (refer 

to Fig. 2, left). This is because, once the NNs has identified one matrix with a prefix discrepancy of 3, it can 

rapidly produce over 100 other matrices with the same disparity, which causes the average score of the top 10% 

to grow significantly. Incorporating the count variable into the scoring function (calc score) also produced the 

desired results: the network consistently improves the top 10% score, which indicates that fewer colorings from 

the initial iteration are being generated by the network (refer to Fig. 2, right). Later, the NNs finds a matrix with 

a prefix discrepancy of 3, so it can eventually go from a few colorings that result in a prefix discrepancy of 2 to 

zero colouring with a prefix discrepancy of 2. It's unclear why this jump is feasible for prefix discrepancy but not 

for classical discrepancy. Maybe there are more matrices with a prefix discrepancy of 3, indicating that, in 

situations when the task is marginally easier than in the prior trial, our model performs flawlessly. Or maybe, 

compared to classical discrepancy, prefix discrepancy is less susceptible to learning rate fluctuations. To achieve 

our ultimate objective, we will now swap out the 7 × 7 matrices for m × n matrices with 𝑚 << 𝑛.  

 
Fig. 2. Compared to classical discrepancy, our model performed better on prefix discrepancy. It could produce 

10% of matrices with a prefix discrepancy of 3 (left) in just 30 iterations. The signal problem was resolved when 

the number of colorings was included to the scoring function. This allowed the NN to learn from the very first 



J. Electrical Systems 20-5s (2024): 2861-2868 

 

2866 
 

iteration on each subsequent iteration, even in cases when most or all of the matrices still had a prefix 

discrepancy of 2 (right) 

Table 1. We found that our NN approach was over 150 times more efficient than a naive approach for 

identifying a single matrix with a prefix discrepancy of 3. Our NN technique was nearly ten thousand times 

more efficient for finding a hundred such matrices. The displayed results are averages from more than 100 trials 
Task Method # matrices 

Find 1 matrix pref-disc. 3 naive 141,584 

NN 21,540 

Find 100 matrices pref-disc. 3 naive 314,158,400 

NN 28,510 

  
6.3 Fractional Discrepancy 

Lastly, we assessed the network's ability to identify 7 × 7 matrices with a substantial fractional disparity. Yet, we 

did not apply [17] suggested NNs model this time. Alternatively, we employed the fractional combinatorics model 

we recently constructed. In addition, we did not utilise the scoring function because fractional discrepancy does 

not have the problem of needing to "jump" from one discrete discrepancy to the subsequent discrete discrepancy, 

such as from a discrepancy of 2 to a discrepancy of 3. Over the first 60,000 iterations, as shown in Fig. 3, our new 

NNs model was able to continuously learn and improve the average top 10% score; however, after that, it appeared 

to plateau at a top 10% average of 2.00. The new model we created effectively learned how to identify matrices 

with fractional values that result in a high disparity, which is an already encouraging outcome. Surprisingly, the 

outcome we got is even better than we had anticipated—the score actually hovers slightly above the 2.00 mark, 

indicating that the network can consistently identify at least a few matrices with a fractional discrepancy higher 

than 2. It's interesting to note that binary matrices with a classical discrepancy of three were produced when we 

substituted the closest integer (zero or one) for each fractional value in these matrices. As a result, our model was 

able to locate matrices with the largest potential classical discrepancy indirectly. Our novel model made it possible 

for us to reward desired behaviour with a signal that was more discriminating, which resulted in these incredibly 

difficult-to-find binary matrices after discretization. We believe more experiments should be conducted to address 

these pertinent topics. However, it is yet unknown if this characteristic also applies to matrices larger than 7 × 7. 

Moreover, modifying a few of the input parameters could produce a different—possibly even better—result. For 

example, obtaining these binary matrices directly (without discretization) is one possibility.  

 
Fig. 3. Our new model was able to detect matrices with a fractional disparity bigger than 2, even though it required up to 60000 iterations 

7. Conclusions and Future Works 

We explored the use of the deep cross-entropy method, which was originally applied in graph theory, to solve 

discrepancy theory problems, with a focus on matrices with high discrepancy levels (classical, prefix, and 

fractional), after being inspired by Wagner's preprint (2021). Through machine-level and algorithmic 

optimisations, as well as enhanced signal generation—especially with a unique NNs model specifically designed 

for fractional combinatorics—we increased the program's efficiency. Promising results from studies showed that 

the NNs could recognise matrices with greater differences in all three categories. Notably, in binary situations, 

our fractional model outperformed Wagner's method and produced higher signal, demonstrating the promise of 

this approach for detecting high-discrepancy examples. These promising results support the need for additional 

study. In order to fully assess the model's effectiveness and discover more information, further steps should 

involve undertaking extensive testing with different matrix sizes, NNs parameters, and expansion into higher 

dimensions. Furthermore, multidisciplinary methods influenced by disciplines such as chemistry may present new 

ways to improve the model. This advanced NNs model goes beyond discrepancy theory and may prove useful in 

challenging current theories in fractional combinatorics and related fields. 
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