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Abstract: - Mountainous region geological hazards are a leading cause of natural disasters, resulting in significant human and economic 

losses. Regional topography, landforms, lithology, plant life, geological circumstances, and meteorology all have a significant impact on 

their creation. Gansu, situated in the interior of Northwestern China, features Lanzhou as its capital and primary urban center, positioned 
in the southeast of the province. Geological risks, particularly landslides, mudslides, and avalanches, present significant challenges to 

Gansu Province. Consequently, local authorities are actively devising customized strategies to mitigate these hazards and foster 

sustainable development. In this research work, an Assessment of Geological Hazard Management using Dynamically Stabilized 
Recurrent Neural Network and Beluga Whale Optimization Algorithm (AGL-HM-DSRNN-BWOA) is proposed. Initially, the input raster 

data are gathered from the Normalised Difference Vegetation Index (NDVI) dataset. The input raster data is then pre-processed using 

Adaptive Actor-Critic Bilateral Filter (A2CBF) to reduce noises and increase the overall quality of the raster data. To classify the 

geological hazards, the pre-processed raster data are fed into a neural network named DSRNN. The geological hazard is accurately 

categorized as low risk, medium-low risk, medium-high risk, high risk using proposed DSRNN. In general, DSRNN does not express 

some adaption of optimization strategies for determining optimal parameters to promise exact classification for managing geological 
hazard by assessment. Therefore, Beluga Whale Optimization Algorithm (BWOA) is proposed to enhance weight parameter of DSRNN 

classifier, which precisely assess for managing the geological hazards. The efficiency of the proposed AGL-HM-DSRNN-BWOA 

approach is evaluated using a number of performance criteria, including accuracy, sensitivity, specificity, ROC, mean square error, root 
mean square error, mean absolute error. The proposed AGL-HM-DSRNN-BWOA method attains 22.36%, 25.42% and 18.17% higher 

accuracy, 21.26%, 15.42% and 19.27% higher sensitivity, 28.36%, 25.32% and 28.27% higher F-measure compared with existing 

methods, such as the Risk assessment and its influencing factors examination of geological hazards in typical mountain environment 
(RA-IFA-GH-TME), Feasibility study of land cover categorization under normalized difference vegetation index for landslide risk 

assessment(LCC-NDVI-LRA), and Multiple hazard exposure mapping under machine learning for Salzburg, Austria (MH-EM-SSA-ML) 

respectively. 

Keywords: Adaptive Actor-Critic Bilateral Filter, Beluga Whale Optimization Algorithm, Dynamically Stabilized 

Recurrent Neural Network, Geological Hazard Management Assessment. 

 

I. INTRODUCTION 

Rocky geological risk factors are a leading cause of natural disasters, resulting in significant losses of 

human and economic. Regional topography, landforms, lithology, vegetation, environmental situations, 

meteorology all have a significant impact on their creation. Based on topography and structural characteristics, 

the risk estimation of geological hazards examines the occurrence including regional disasters distribution [1, 

2]. Since the twenty-first century, as a fundamental step in forecasting geological risks, developing strategies for 

disaster prevention and mitigation. Geological hazard risk assessment has gained popularity as a topic among 

academics and is now a key part of global efforts to prevent and reduce disasters, also play a vital role in 

disaster management [3, 4]. Gansu Province in China blends history, adventure, and natural wonders, featuring 

the Gobi Desert and Qilian Mountains alongside ancient Silk Road villages. Iconic Buddhist cave temples such 

as Mogao Caves and Yungang Grottoes adorn its landscape, adding to its allure. [5, 6]. Several geological 

hazards, including landslides, debris flows, collapses, and like are common in the area due to its unique 

environment, which includes manifold rainstorms, highest mountains, more faults. These hazards have become 

a major barrier to the region's ability to sustain socioeconomic development [7, 8]. Geological hazards like 

landslides, debris flows, and collapses present a significant obstacle to sustainable socio-economic growth in 

Gansu Province. There's a pressing need to comprehensively analyze the spatial and temporal dynamics of these 

hazards [9, 10]. However, research on risk assessment with the factors influencing mountainous geological risks 

in Gansu remains limited. Given the province's cultural richness, diverse population, and unique traditions, 

conducting such assessments is crucial amid its rapid expansion and efforts toward balanced, sustainable 

development [11, 12]. Recent advancements in geographic information system (GIS) led to successful studies 

on assessing environmental hazards. The investigation of key and influencing factors is not given the same 

weight as spatial pattern analysis in the present hazards risk estimation [13, 14].  
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The risk estimation has consistently progressed from qualitative to quantitative analysis from the viewpoint 

of investigation methodologies. Common assessment models, include analytical hierarchy process (AHP), 

expert score; fuzzy comprehensive estimation, artificial neural network (ANN), principal component analysis, 

information quantity mode [15]. The first three quantitative assessment methods have basic operating and 

implementation requirements. Human subjectivity heavily influences the assignment of index weights during 

system building. ANN predicts accurately, but the process of modeling is involved; modeling requires more 

reliable basic data, this is hard to gather large-scale research [16, 17]. The principal component analysis method 

reduces co-linearity among evaluation indicators by aggregating multiple components into a comprehensive 

indicator. However, it does not consider the geographical features of the indicators. The mentioned evaluation 

methodologies have constraints and may not entirely capture the geographical distribution of geological hazards 

and influencing factors in Gansu. Notably, Gansu is renowned for its water-pipe tobacco cultivation, 

particularly around Lanzhou and farther west. Moreover, the vast grasslands of Gansu sustain substantial 

livestock populations, with sheep constituting approximately half of these herds. Nevertheless, the information 

quantity mode determines the optimal consolidation of important components with bigger contributions for 

geological hazards, so produce an effectual risk appraisal for hilly geological dangers [18, 19]. 

Geological hazard is a concept created through the United Nations in the framework of the UN Sustainable 

Development Goals, as well as Agenda twenty one, which promotes mitigation of risks and disaster 

preparedness as part of a sustainable development program. Geological-hazard evaluations have risen in recent 

years, particularly when many natural hazards have afflicted a region. More damage can be done by geological 

hazards than by any one hazard, as they can jeopardize human life and have an impact on infrastructure, 

transportation, and the environment. Flooding is a greatest risks posed by nature that has occurred on a regular 

basis in recent years around the world. These drawbacks in the existing approaches motivated to do this work. 

The aim of this project was to create a geological hazard assessment for managing the geological hazard, 

this model based on the Normalised Difference Vegetation Index with input raster data and DSRNN optimized 

with Whale Optimization Algorithm. 

The main contribution of this research work is summarized as follows, 

• In this research work, An Assessment of Geological Hazard Management using Dynamically 

Stabilized Recurrent Neural Network and Beluga Whale Optimization Algorithm (AGL-HM-

DSRNN-BWOA) is proposed. 

• In pre-processing the raster data are noise reduction and improving the quality using Adaptive 

Actor-Critic Bilateral Filter (A2CBF). 

• Dynamically Stabilized Recurrent Neural Networks (DSRNN) is currently regarded as the most 

influential methods for classifying the efficacy of geological hazards. 

• The obtained outcomes of proposed AGL-HM-DSRNN-BWOA algorithm is comparing to the 

existing models such as RA-IFA-GH-TME [20], LCC-NDVI-LRA [21], and MH-EM-SSA-ML 

[22] methods respectively. 

Remaining manuscript is structured as: unit 2 outlines the Literature Survey, unit 3 displays the proposed 

method, unit 4 presents the results with discussions, unit 5 concluding this manuscript. 

II. LITERATURE SURVEY 

The literature presents a number of research projects on deep learning-based geological hazard managing 

assessment; this section evaluated some of the most recent studies. 

Lin et al. [20] have presented Risk assessment with their influencing factors exploration of geological 

hazards in typical mountain environs. To determine the spatial pattern along influencing risk factors, the 

information quantity mode together with geo detector were used to build an evaluation index scheme under 

eight indicators: elevation, slope, normalized variance vegetation index, lithology, landuse category, average 

annual rain, remoteness from rivers and faults. The findings revealed that the environmental hazard was 

generally higher in southeast and lower in northwest, with a substantial spatial agglomeration pattern. Fully 

disclosing the danger has crucial implications for the local government's development of tailored preventative 

efforts. The method attains higher accuracy and lower sensitivity. 

Dahigamuwa, et al. [21] have presented land cover categorization depending on normalized variance 

vegetation index for landslide risk valuation. The land cover categorization algorithms using NDVI from 

satellite pictures and its potential utility in predicting landslides. The technique may be able to effectively assess 

how land cover affects landslide dangers using NDVI as a stand-alone indicator. Another advantage would be 
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the ability to use satellite imaging to quickly identify undesirable activities, including deforestation. The 

categorization approach was used to a landslide-prone terrain in Oregon, USA. The results of five distinct 

classification methods—KNN, decision tree, ANN, Gaussian support vector machine (GSVM), and quadratic 

discriminant analysis—indicate that the NDVI-based land cover categorization was valid. The method attains 

higher sensitivity and lower specificity. 

Nachappa et al. [22] have presented multiple hazard exposure mapping utilizing machine learning for 

Salzburg, Austria. A variety of exposure maps were created for thirteen flood and landslide influencing factors, 

including elevation, slope, aspect, topographic wetness with stream power indices, normalized variance 

vegetation index, geology, lithology, precipitation, land cover, distance from roads, drain. Divide the flood and 

landslide inventory data as training and validation using the commonly employed splitting ratio. The method 

attains higher specificity and lower accuracy. 

Ahmad et al. [23] have presented four machine learning including statistical methods based geohazards 

susceptibility assessment with upper Indus basin. To produce susceptibility maps for geohazards including 

landslides and debris flows, Frequent Ratio (FR), Weights-of-Evidence (WoE), Logistic Regression (LR), and 

Stochastic Entropy (SE) were used. To achieve this, field data, historical hazard records, and remote sensing 

techniques were integrated to build a geohazard inventory. Investigations were conducted into the spatial 

relationship between hazard distribution and thirteen conditioning factors: slope, land cover, geology, elevation, 

the yearly average rainfall, the slope aspect, the remoteness from rivers, the profile curves, the stream power 

index, the topographic wetness index, the normalized variance plants index, and the land cover. The method 

attains higher ROC and lower sensitivity. 

Zhang and Feng [24] have presented Multi sensor Information Fusion based Mine Geological Disaster Risk 

Assessment with Management. The multi sensor data integration was used for risk assessment of environmental 

hazards in mining. First describes the multisource data fusion process, which necessitates that the sensor first 

gather signals. It pre-processes the signals the sensor provides, and lastly examines the D-S evidence theory and 

BPNN fusion process in multi sensor data. A multisensor data integration technique were used to explore the 

deformers in the research region, evaluate their deformation and damage features, and assess the risk and 

susceptibility of the critical slopes. The method attains lower RMSE and higher MSE. 

Prasetyo and Sembiring [25] have presented Tsunami Vulnerability and Risk Assessment in Banyuwangi 

District utilizing machine learning along Landsat eight image data. Machine learning was used to boost the 

vegetation index and intended to construct tsunami vulnerability assessment utilizing Vegetation Index 

collected from the Landsat eight satellite picture dataset and improved with KNN, RF,SVM. Although tsunamis 

were a frequent occurrence in Indonesia, there was no trustworthy indicator to assess and keep an eye on the 

coast based on the biophysical features of the earth surface or practical LULC. The vegetation index of LULC 

measures the severity of a tsunami's impact on a specific location. The method attains lower MSE and higher 

RMSE. 

Dahim et al. [26] have presented Enhancing landslide management including hyper-tuned machine learning 

with deep learning approaches. To evaluate landslides in the Aqabat Al-Sulbat Asir region of Saudi Arabia 

using finely calibrated machine learning and deep learning algorithms, and to provide sensitivity and 

uncertainty assessments. Floods and landslides have had a major effect on people's lives, property, and natural 

resources. The growing human footprints in weak geological areas have resulted in an increase in the frequency 

of landslides, rendering landslide control a vital endeavour to mitigate the detrimental impact. The machine 

learning model was Random Forest (RF), while the deep learning model was Deep Neural Network (DNN). The 

grid-based search technique was utilized to optimize the hyper tuned models, which were then used to forecast 

LSM. This method attains lower mean absolute error and lower sensitivity. 

III. PROPOSED METHODOLOGY 

In this sector, an assessment of Geological Hazard Management using Dynamically Stabilized Recurrent 

Neural Network and Beluga Whale Optimization Algorithm (AGL-HM-DSRNN-BWOA) deliberated. Block 

diagram of proposed AGL-HM-DSRNN-BWOA method is in Figure 1. It covers such stages as Adaptive 

Actor-Critic Bilateral Filter, Dynamically Stabilized Recurrent Neural Network, and Beluga Whale 

Optimization Algorithm. Thus, detailed explanation about every steps given below, 
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Figure 1: Block Diagram of Proposed AGL-HM-DSRNN-BWOA Method 

A. Data Acquisition 

The input raster data is collected through Normalised Difference Vegetation Index (NDVI) dataset [27]. 

This information are used for generating multi-source spatial data, which may then be united in the projected 

the WGS1984 coordinate scheme and packaged into a single 30m quality raster data. 

B. Pre-Processing using Adaptive Actor-Critic Bilateral Filter 

The pre-processing using Adaptive Actor-Critic Bilateral Filter (A2CBF) [28] is discussed here. The input 

raster data is pre-processed using A2CBF to remove noise and improving the quality of raster data. Adaptive 

approaches, such as adaptive actor-critic algorithms, have the ability to continuously modify their settings in 

response to changing geological conditions. This adaptability is essential for dealing with the dynamic and 

changing character of geological threats. The fundamental purpose of adopting adaptive actor-critic approaches 

and bilateral filters in geological hazard management is to increase risk assessment accuracy. This entails more 

accurately anticipating the likelihood and severity of geological events. This is due to the range kernel qualifies 

quantities related to raster data values. These are shown in equation (1) 
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thj − raster data between two consecutive states. When filtering input is corrupted with smaller perturbations 

that are commonly imperceptible it has been shown in equation (2) 
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Where, 
g
jf denoted as a state, jf̂ is a ground-truth smoothed raster data, the filtering input raster data and 

the factors has been shown in the equation (3) 
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Each step from state 
)0(f  and explores towards

zf , where z  is total number of steps, s implies ordinary 

BF, g signifies
thz−  adaptive width-setting scheme for kernel range. In this method, the raster data point has 

the high quality of the filter to raster data resizing which has given in the equation (4) 
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Where, 
g
ja denotes an action for each raster data in pre-defined set. Here, Adaptive Actor-Critic Bilateral 

Filter (A2CBF) is removed noise and increased the quality of raster data and the pre-processed raster data are 

given to geological hazard assessment process. 

C.  Geological Hazard Assessment using Dynamically Stabilized Recurrent Neural Network 

This section describes the geological hazard assessment using DSRNN [29]. DSRNN is proposed to 

managing the geological hazard  by assessment and it classifies as low risk, medium-low risk, medium-high 

risk, high risk. Dynamically Stabilized Recurrent Neural Networks are built to deal with consecutive data and 

temporal constraints. DSRNN would more likely improve the model's capacity to detect and learn complicated 

temporal trends in geological data, which is critical for hazard management. The main aim is anticipated to be 

more precise forecasting of geological dangers. This entails predicting when and where geological events will 

occur based on previous data and observable patterns. Skip-coefficients are configured as learnable parameters 

so that the DSRNN architecture can be stabilized by the network to measure the hidden state in equation (5) 
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Where, tg is a hidden state of the network, k denotes as a parameter, i is a diagonal matrix, (.))( g is an 

activation function and tw is the input. For updating the skip coefficients and ensure the RNN states never 

diverge, regularize is applied to the loss function. This is continuously differentiable to the equilibrium point, 

which may be easily deemed to have the same origin. With the help of mean value theorem, the line connecting 

equilibrium point is given in equation (6) 

...).(),(1 tohwwpepwpep t

ww

pp

ttwt

ww

pptttpt

f
t

f
t

f
t

f ++=

=

==

=+                                                (6) 

Where, tp denotes as state, 
fp is the equilibrium pair, (.)e  is the neighbourhood of the equilibrium pair 

and toh .. implies high order for true nonlinear scheme. In particular, given a normal RNN without any skip 

connections, BPTT is established. This can be expressed in equation (7), 
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Where, t indicates error of RNN, T is the time-step. To demonstrate BPTT for the DSRNN for the 

situations, it gives two examples. Equation (8) reveals recurrent weight matrix's reatest singular value to show 

how the BPTT affects the gradient. 
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The errors are tracked back via a few branches until they reach the tree's edge, which represents the specific 

partial derivatives. It has to approach this problematic as an endeavour to go back four time steps, one or two 

steps at a time. This is shown in equation (9) 
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reach )( 6−tg , every pair of (i, j), here DSRNN managing the geological hazard by assessment, the associated 

term is given in the equation (10) 
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derivation for DSRNN of parameter )2( =k , here the DSRNN has verified and extracted the 

bank cheque information automatically, and converted legal amount information using the proposed algorithm. 

Finally proposed DSRNN is managed the geological hazard by assessment and classified as low risk, medium 

low risk, medium high risk, high risk. In this work, BWOA is employed to optimize the DSRNN optimum 

parameters Tandgt . Here BWOA is employed for turning the weight and bias parameter of DSRNN. 

D. Optimization using Beluga Whale Optimization Algorithm 

In this section, Optimization using Beluga Whale Optimization Algorithm [30] is discussed. Here the 

DSRNNs weight parameters Tandg t
 are optimized using BWOA.BWOA, a nature-inspired optimisation 

technique, is intended for worldwide optimization. This means it has the capacity to exhaustively explore the 

solution space, which is useful for models using deep learning in geological hazard management while looking 

for optimal or near-optimal setups. The major purpose of applying the BWOA in deep learning for geological 

hazard management is most likely to identify optimal or near-optimal configurations for the models created 

using DSRNN. This entails optimizing hyper parameters and infrastructure to improve model performance. 

Especially, the absence of a transfer parameter during the transition from exploration to exploitation phase 

directly influences the performance of the algorithm. The initiation of BWOA involves the initialization step. 

1) Stepwise processing of BWOA 

The stepwise processing is delimited to acquire better value of NEGCN using BWOA. Initially, BWOA 

makes equal distributing populace to enhance the parameters Tandg t of NEGCN. Ideal solution promoted 

using BWOA algorithm. 

Step 1: Initialization 

The beluga whales are initially lured to the ocean current because it is rich in nutrients. The initial 

population is displayed in equation (11) 

















=

qaa

q

kk

kk

K

,,1

,11,1

...

.........

...

                                                                                                          

(11) 

Generate the positions of the search agents in matrix K  is denoted as Size; where a the population is size 

of the search agents, q implicates design variables. 

Step 2: Random generation 

Generate the input parameters randomly afterward the initialization. The ideal fitness value selection is 

depending upon their explicit hyperparameter situation. 

Step 3: Fitness Function 

The outcome is determined by initialization and random responses. The fitness is computed using the 

equation (12) 

][ TandgOptimizingFunctionFitness t=                                                                        (12) 

Step 4: Exploration Phase  

This is inspired by the swimming behaviour of beluga whales, which display social-sexual behaviours in 

different positions, two beluga whales swim as pair closely using two modes. Thus, the beluga whales' pair 

swimming affects the search agents' positions. In this, the positioning of the search agents is updating by 

equation (13), 
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Where, G  is the current iteration, 
1

,
+G
ijK  epitomizes new positioning of 

thj− beluga whale on 
thi−

dimension, jc  is chosen from d-dimension randomly, wherein the current positioning of thj −  beluga whale on 

jc  dimension indicates
G

cj i
K ,  the current position of 

the−
 and 

thj −  beluga whale represented as

G
ceK 1,  and 

G
cj i

K ,  respectively .Where E  random beluga whale 1(r , )2r  is randomly chosen (0, 1) to upgrade the 
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random operators )2sin( 2r  and )2(cos 2r . Figure 2 shows the flowchart for Beluga Whale Optimizing 

DSRNN. 
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Figure 2: Flowchart for Beluga Whale Optimizing DSRNN 

 

Step 5: Exploitation phase for optimizing Tandgt  
Exploitation is the final stage; the goal of exploitation is to identify the best options within the promising 

areas. BWOAs exploitation phase is expressed in Equation (14) 
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The current iteration denotes G , a random beluga whale as well as current positioning of
thj −  beluga whale 

implies )(kt
eL  , whereas 

)(kt
jL   implies new positioning of

thj − beluga whale. The whole beluga whales are 

represented as
1)( +kt

JL  and G
bestK respectively, 43 randr   are random numbers. 

Step 6: Termination  

The weight parameter Tandgt of generator from DSRNN is optimized under BWOA will repeat step 3 

iteratively until fulfil the halting criteria 1+= IterIter . Finally, DSRNN has managed the geological hazard by 

assessment with higher accuracy. 

IV. RESULT AND DISCUSSION 

The experimental outcomes of the AGL-HM-DSRNN-BWOA technique are conferred in this sector. The 

proposed AGL-HM-DSRNN-BWOA method is implemented in Python platform with 12 GBRAM, Intel ®core 

(7M) i3-6100CPU @ 3.70GHz processor under performance metrics. The raster data are found using the NDVI 

dataset, NDVI values were calculated for each site location. NDVI was calculated by atmospherically adjusted 

Landsat TM data with spatial resolution of 30m x 30m. Data points are chosen stochastically 1km x 1km grid 

respectively. Bigger data sets typically take more time for training a model. The amount of sampling raster data 

or locations in collection with related NDVI values is an important consideration. Furthermore, the system's 

effectiveness is confirmed by contrasting the performance indicators of the proposed AGL-HM-DSRNN-

BWOA approach with those of the existing methods, like RA-IFA-GH-TME, LCC-NDVI-LRA, and MH-EM-

SSA-ML respectively. 

A. Performance measures 
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This is a crucial step for determining the exploration of optimization algorithm. 

Performance measures to evaluate to access performance such as accuracy, sensitivity, specificity, ROC, MSE, 

RMSE, MAE. 

1) Accuracy 

Accuracy refers to the ability to measure a precise value. A statistic known as accuracy can be used to assess 

the performance across all classes. This is quantified by the following equation (15) 

( )

( )

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
                                                                           (15) 

Here TP  specifies True Positive, TN  signifies True Negative, FP  implies False Positive, FN  implies 

False Negative. 

2) Sensitivity 

It measures the performance of a machine learning model to identify positive instances. In other words, it 

measures how likely it will get a positive result. This is calculated by equation (16) 

( )FNTP
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+
=                                                                                                    (16) 

3) Specificity 

The fraction of True Negative accurately detected by the model is measured as specificity. This is also 

called as True Negative Rate. This is given in equation (17) 

( )TNFP
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+
=ySpecificit                                                                                                     (17) 

4) ROC 

ROC curve portrays the true positive rate or sensitivity Vs false positive rate or 1-specificity. It is given in 

equation (18), 
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5) Mean Square Error 

This is calculated by averaging, or taking the mean, of all squared errors determined from data in relation to 

a function. The mean square error is given in equation (19), 


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−=
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1

                                                                             (19) 

6) Root mean square error 

This is a two basic performance measures for a regression mode. It calculates the average variation among 

predicted values and actual values. This is given in equation (20), 


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7) Mean absolute error 

This is often used in deep learning and regression applications to assess the accuracy of an algorithm's 

predictions. It calculates the average total disparity amongst the expected and actual values. The formula for 

Mean Absolute Error is as follows equation (21) 

n

xy
ErrorAbsoluteMean

n

i
ii =

−
= 1

||
                                                                              (21) 

B. Performance Analysis 

The simulation results of AGL-HM-DSRNN-BWOA technique are shown in Figure 3 to 9. The proposed 

AGL-HM-DSRNN-BWOA techniques linked to the RA-IFA-GH-TME, LCC-NDVI-LRA, and MH-EM-SSA-

ML techniques,  
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Figure 3: Accuracy analysis 

 

Figure 3 shows Accuracy analysis. The AGL-HM-DSRNN-BWOA technique reaches in the range of 

20.26%, 29.22% and 30.27% higher accuracy for low risk 27.29%, 18.31% and 16.26% higher accuracy for 

medium low risk 26.26%, 17.59% and 28.35% higher accuracy for medium high risk 29.21%, 26.38% and 

25.25% higher accuracy for high risk compared to current techniques such as RA-IFA-GH-TME, LCC-NDVI-

LRA, and MH-EM-SSA-ML respectively. 

 

 
Figure 4: Sensitivity analysis 

 

Figure 4 shows Sensitivity analysis. AGL-HM-DSRNN-BWOA technique reaches in the range of 21.26%, 

19.22% and 28.27% higher sensitivity for low risk 19.29%, 25.31% and 25.26% higher sensitivity for medium 

low risk 27.26%, 29.59% and 19.35% higher sensitivity for medium high risk 24.21%, 19.38% and 23.25% 

higher sensitivity for high risk compared to current techniques such as RA-IFA-GH-TME, LCC-NDVI-LRA, 

and MH-EM-SSA-ML respectively. 

 
Figure 5: Specificity analysis 

 

Figure 5 shows Specificity analysis. The AGL-HM-DSRNN-BWOA technique reaches in the range of 

28.26%, 18.22% and 27.27% higher specificity for low risk 18.28%, 25.31% and 24.26% higher specificity for 

medium low risk 29.26%, 16.29% and 15.35% higher specificity for medium high risk 27.21%, 28.38% and 

22.25% higher specificity for high risk compared to current techniques such as RA-IFA-GH-TME, LCC-NDVI-

LRA, and MH-EM-SSA-ML respectively. 
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Figure 6: ROC analysis 

 

Figure 6 shows ROC analysis. The AGL-HM-DSRNN-BWOA technique reaches in the range of 21.26%, 

29.22% and 29.27% higher ROC compared to current techniques such as RA-IFA-GH-TME, LCC-NDVI-LRA, 

and MH-EM-SSA-ML respectively. 

 
Figure 7: Mean Square Error analysis 

 

Figure 7 shows MSE analysis. The AGL-HM-DSRNN-BWOA technique reaches in the range of 26.26%, 

17.22% and 25.27% lower mean square error for low risk 29.29%, 24.31% and 21.26% lower mean square error 

for medium low risk 22.26%, 15.59% and 19.35% lower mean square error for medium high risk 26.21%, 

28.38% and 29.28% lower mean square error for high risk compared to current techniques such as RA-IFA-GH-

TME, LCC-NDVI-LRA, and MH-EM-SSA-ML respectively. 

 

 
Figure 8: Root Mean Square Error analysis 

 

Figure 8 shows RMSE analysis. The AGL-HM-DSRNN-BWOA technique reaches in the range of 28.26%, 

15.22% and 22.27% lower root mean square error for low risk 29.29%, 24.31% and 27.26% lower root mean 

square error for medium low risk 27.26%, 17.59% and 28.35% lower root mean square error for medium high 
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risk 20.21%, 29.38% and 21.25% lower root mean square error for high risk compared to current techniques 

such as RA-IFA-GH-TME, LCC-NDVI-LRA, and MH-EM-SSA-ML respectively. 

 
Figure 9: Mean Absolute Error analysis 

 

Figure 9 shows MAE analysis. The AGL-HM-DSRNN-BWOA technique reaches in the range of 23.26%, 

19.22% and 20.27% lower mean absolute error for low risk 19.29%, 28.31% and 26.26% lower mean absolute 

error for medium low risk 27.26%, 19.59% and 18.35%lower mean absolute error for medium high risk 

19.21%, 29.38% and 28.25% lower mean absolute error for high risk compared to current techniques such as 

RA-IFA-GH-TME, LCC-NDVI-LRA, and MH-EM-SSA-ML respectively. 

C. Discussion 

This investigation utilized a model integrating eight factors to assess environmental hazard risks in Gansu 

Province, employing the information quantity model alongside geodetector analysis to characterize overall 

trends. Results indicate that geological hazards in Gansu are primarily of medium to medium-high risk, with 

fewer instances of high and low-risk events. Risk levels tend to be higher in the southeast and lower in the 

northwest, exhibiting distinct spatial patterns and agglomeration tendencies. High as well as medium-high risk 

zones are prevalent along the southeast coast, when lower risk regions are predominantly located at the 

northwest interior. These regional hazards result from a combination of natural and human factors, including 

night light intensity, elevation, distance from rivers, slope, lithology, annual rainfall, proximity to rivers, with 

the latter three factors exerting significant influence. The information quantity mode demonstrates higher 

reliability in risk assessment, as evidenced by spatial correspondence between hazard spots and risk levels, 

along with favourable ROC curve outcomes. It is imperative for local governments to formulate targeted 

strategies for mitigating geological catastrophes. This study has devised a framework for assessing the danger 

posed by geological hazards in Gansu Province, shedding light on spatial patterns and key risk factors. Such 

findings could enrich the government's disaster prevention plans, leveraging the region's unique terrain and 

geomorphology to enhance their scientific effectiveness. 

V. CONCLUSION 

In this paper, An Assessment of Geological Hazard Management using Dynamically Stabilized Recurrent 

Neural Network and Beluga Whale Optimization Algorithm (AGL-HM-DSRNN-BWOA) was successfully 

implemented. Here, NDVI dataset were used to assess the proposed technique. The proposed AGL-HM-

DSRNN-BWOA method is executed in Python. The presentation of proposed AGL-HM-DSRNN-BWOA 

method covers 22.36%, 25.42% and 18.27% higher accuracy, 23.26%, 28.32% and 31.17% higher sensitivity, 

and 26.16%, 18.17% and 17.18% higher specificity compared with existing RA-IFA-GH-TME, LCC-NDVI-

LRA, and MH-EM-SSA-ML methods. In the future process the proposed AGL-HM-DSRNN-BWOA model to 

maintain geological stability, urban construction should prioritize ecological conservation as a guiding concept. 

To ensure rapid growth in the economy, it's important to balance growth and security efforts. Land development 

prioritizes avoiding ecologically vulnerable and geologically hazardous places. 
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