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Abstract: - Virtual Reality Animation Interaction Design is a dynamic field at the intersection of technology and creativity, where 

immersive experiences come to life through the fusion of animation and interactive design. There are some challenges involves in 

design of virtual Reality animation. The main challenge is animation image error involves in the design. To overcome this issue, 

present a Virtual Reality Animation Interaction Design Using Bayesian Physics-Informed Neural Network with Archimedes 
Optimization Algorithm Based scene modelling  (VRAID-BPINN-AOA) is proposed. Initially, the animation images are collected 

from animation dataset. Then, the animation images are fed to pre-processing segment.  In pre-processing segment, the noise of the 

image is removing layer by layer by utilizing adaptive-noise Augmented Kalman Filter (ANAKF). Then the pre-processed 
animation image is given for Feature extraction process. In Feature extraction, spatiotemporal features such as Object Position, 

velocity, Optical flow and Crowd Density are extracted by utilizing Multi-Level 2-D Quantum Wavelet Transform (ML2DQWT). 

Finally the extracted feature attributes are given to Bayesian physics-informed neural network (BPINN) for the prediction of error in 
the animation images. In general, BPINN does not express some adaption of optimization strategies for determining optimal 

parameters to promise accurate prediction of error. Therefore, Archimedes Optimization Algorithm (AOA) is proposed to optimize 

the parameter of BPINN .The proposed technique is implemented and efficacy of VRAID-BPINN-AOA technique is assessed by 
support of numerous performances such as Bit Error Rate, Design Rate, End to End Delay, Latency, and Transmission Rate. 

Proposed VRAID-BPINN-AOA method attains 28.56%, 26.67% and 25.67% lower Bit error rate and26.42%, 25.67% and 23.67% 

lower Design rate are compared with existing such as Virtual Interactive Animation Design with Restricted Boltzmann machine (VI-
AD-RBM),Generative deep learning for visual animation in landscapes design using Generative adversarial network(GDL-VALD-

GAN), and Hand interface using deep learning in immersive virtual reality using convolutional neural network(HID-LVIR-

CNN)respectively. 

Keywords: Animation Data, adaptive-noise Augmented Kalman Filter, Archimedes Optimization Algorithm, 

Bayesian physics-informed neural network, Multi-Level 2-D Quantum Wavelet Transform. 

 

I. INTRODUCTION 

Virtual Reality Animation Interaction Design Technology combines the immersive capabilities of virtual 

reality (VR) with the dynamic world of animation and the principles of interaction design, offering a 

transformative and engaging user experience [1]. This multidisciplinary approach integrates cutting-edge 

technologies to create virtual environments where users can interact with animated elements in a natural and 

intuitive manner. VR animation interaction design technology allows for the creation of compelling narratives, 

simulations, and interactive experiences that go beyond traditional forms of media. Users can navigate through 

digital spaces, manipulate virtual objects, and participate in rich storytelling experiences; all while being 

surrounded by visually stunning and dynamically animated content. This fusion of technologies not only opens 

new frontiers for entertainment but also holds tremendous potential in fields such as education, training, and 

healthcare, providing users with immersive and interactive learning experiences [2-4]. As advancements in 

these technologies continue the possibilities for creative expression and practical applications are boundless, 

ushering in a new era of interactive and animated virtual reality experiences [5]. Existing deep learning methods 

in Virtual Reality Animation Interaction Design Technology face several drawbacks. One significant challenge 

lies in their dependence on large and meticulously labelled datasets, making the training process resource-

intensive [6, 7]. The computational complexity of deep learning models, especially those with numerous layers, 

poses a hurdle for real-time applications in virtual reality, where low-latency interactions are paramount. 

Additionally, the lack of interpretability in these models hinders understanding their decision-making processes, 

crucial for refining user experiences. Adaptability to diverse inputs, such as gestures and voice commands, 

remains a challenge, impacting the naturalness of user interactions. Ethical concerns arise regarding biases in 

training data, as models may unintentionally perpetuate and exacerbate discriminatory patterns in virtual reality 

experiences [8-10]. Over fitting and generalization issues further limit the robustness of these methods, making 

it imperative for on-going research in order to get around these restrictions and enhance the effectiveness and 

inclusivity of Virtual Reality Animation Interaction Design Technology [11, 12].  
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Overcoming the drawbacks of existing deep learning methods in Virtual Reality Animation Interaction 

Design Technology requires a multi-faceted approach [13]. To address data dependency issues, efforts should 

be directed towards developing more efficient data augmentation techniques and exploring transfer learning 

methods that can leverage pre-existing knowledge from related domains [14]. Managing computational 

complexity necessitates on-going advancements in hardware capabilities and optimization techniques, with a 

focus on creating models that balance performance and efficiency. Improving interpretability requires research 

into explainable AI techniques, enabling designers to better understand and fine-tune the generated interactions 

[15-17]. Enhancing adaptability to diverse inputs involves incorporating multimodal learning approaches that 

can effectively handle various forms of user input. Ethical concerns demand rigorous evaluation of training 

datasets for biases and the development of mitigation strategies, alongside increased transparency and 

accountability in the development process. Finally, addressing over fitting and generalization issues requires the 

exploration of more robust architectures, regularization techniques, and diverse training scenarios to ensure 

models can adapt effectively to new and unforeseen situations. A collaborative effort across researchers, 

developers, and ethicists is essential to steer advancements in Virtual Reality Animation Interaction Design 

Technology towards more inclusive, reliable, and user-friendly solutions [18-20]. 

The task of predicting errors in virtual reality animation images presents several challenges in its problem 

statement. Several existing methods are concentrated on developing the predicting mechanism such as bit error 

rate, end to end delay, latency design rate and transmission rate. To overawe the problems, specific solutions 

necessity to be put onward to fix this issue, the existing technique doesn’t exactly perform the prediction of 

error in animation images. Such are inspired to do us this investigation work. 

This paper's proposed approach seeks to lower the error of the animation image by ML2DQWT from the 

dataset. The proposed study uses aBPINN to predict the error in animation image.  The AOA algorithm is used 

to optimize the parameter of the BPINN 

The following are the research's primary contributions: 

• The research presents a method that combines Bayesian Physics-Informed Neural Network 

(BPINN) and AOA. For an optimization of Virtual Reality Animation Interaction Design.  

• The objective of the proposed method is to decrease the bit error rate, decrease the design rate, 

decrease the end to end delay, decrease the latency, and increase the transmission rate. 

• The BPINN algorithm is utilized to predict the error in animation images.   

• The AOA algorithm is utilized to optimize the parameter of the BPINN. 

Rest of this manuscript is organized as below: segment 2 investigates literature review, proposed approach is 

designated in segment 3, outcomes with discussion are established in segment 4, and conclusion is presented in 

segment 5. 

II. LITERATURE SURVEY 

Many studies have previously presented on the literature which depends on a Virtual Reality Animation 

Interaction Design using deep learning.A portion of the works were analysed here. 

Liu [21] have presented Studying Design Systems for Virtual Interactive Animation with a Foundation in 

Deep Learning Using the problem of style recognition in animation capture data, the fundamentals of the 

Restricted Boltzmann Machine are applied to create a semi-supervised spatio-temporal feature model. When the 

top model's parameters remain unchanged and only the bottom model requires retraining, the model is 

considered well parallelized. This is especially true when only the bottom features, such as overfitting or 

underfitting, are unable to accurately represent the animation features. This is achieved by using a layer-by-

layer training approach. It attains higher transmission rate and it attains higher bit error rate. 

Ardhianto et al. [22] have developed Deep learning generative techniques for designing animated 

landscapes. Deep learning using Contrastive Language-Image and Vector Quantized Generative Adversarial 

Network Alternative landscape designs were created using text prompts and assembled into an animation using 

pre-training. According to our experiment, it is possible to generate a single frame in approximately 

3.636 ± 0.089 s, which is much faster than the traditional animation creation method. Additionally, our approach 

produced a high-quality image with an inception score evaluation of 3.2904. It attains lower end to end delay 

and it attains higher latency. 
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Kang et al. [23] have developed Immersion virtual reality hand interface utilizing deep learning. A 

controller was used to map a real hand gesture to a virtual hand in a comprehensible structure, enabling a real-

to-virtual direct hand interface. Furthermore, a gesture-to-action interface can communicate the gesture-to-

action process in real-time even in the absence of the graphical user interface (GUI) found in many 

contemporary interactive applications. The training process for image classification is applied in this interface, 

which involves capturing a 2D representation of a 3D virtual hand gesture model with a CNN deep learning 

model. It attains lower latency and it attains higher design rate. 

Gan et al. [24] have developed a study on behavior control and role modeling for virtual reality animation 

systems in the IoT. In this work, single role models are generated using 3D modeling technology based on 

depth images, which are then combined and rearranged to form 3D scenes, using the development of the 3D 

animation interactive system as an example. The hybrid intelligent collision detection algorithm makes it 

possible to control character behavior in the interactive system. improves collision detection's effectiveness and 

accuracy by combining the differential and quantum behavior particle swarm optimization algorithms. It attains 

lower design rate and it attains higher end to end delay. 

Paier, et al. [25] have developed an interactive deep neural network-based facial animation. Utilizing the 

latest developments in deep learning, a novel hybrid animation framework offers an engine for interactive 

animation that can be operated through an easy-to-use visualisation for editing facial expressions. The authors 

present an automatic pipeline for creating training sequences with both consistent three-dimensional face 

models and dynamic textures. To train a low-dimensional latent space of expressions on the face that was used 

for interactive face animation, they train a variation auto encoder using this data. It attains lower latency and it 

attains higher end to end delay. 

Zhu and Lee [26] have developed Using Flash animation style and deep learning, 3D shape feature 

extraction is done. Combining deep learning with conventional 3D shape feature extraction techniques can help 

to increase the precision of 3D shape data classification and retrieval tasks and alleviate the bottleneck of non-

deep learning techniques, particularly for non-rigid 3D shapes. This paper presents an accurate feature 

extraction scheme for flash animation that requires few training samples. Tests reveal that this paper's scheme 

had a higher success rate for accurate feature extraction than the most advanced techniques. It attains higher 

transmission rate and it attains higher bit latency. 

Fukuda et al. [27] have developed Techniques for rendering virtual reality that can be used to analyze 

landscapes, train deep learning models, and avoid VR sickness. In addition to standard immersive rendering, 

create an annotated image dataset with paired foreground-background and semantically relevant images for use 

in landscape analysis and deep learning neural network training. Furthermore, develop a rendering method for 

camera velocity that uses a personalized method of segmentation rendering to calculate the angular and linear 

speeds of the VR camera at every frame in the virtual reality environment. Based on the velocity value, a color 

is overlayed on the screen. It attains lower latency and it attains higher bit error rate.  

III. PROPOSED METHODOLOGY 

In this section, Virtual Reality Animation Interaction Design using Bayesian Physics-Informed Neural 

Network with Archimedes Optimization Algorithm Based scene modelling(BPINN) is proposed. Block diagram 

of VRAID-BPINN-AOA is presented in figure 1. The five steps in this process are: data acquisition, feature 

extraction, pre-processing, classification, and optimization. Accordingly, detailed description of all step given 

as below, 
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Figure 1: Block Diagram for proposed VRAID-BPINN-AOA method 

A. Image Acquisition 

Initially, image is collected form animation images dataset [28]. This dataset contains 1000 animated gifs 

split into test and train sets. An animation dataset is a collection of structured information specifically curated 

for training and testing purposes in the field of computer animation. These datasets typically include diverse 

sets of animations, covering various styles, characters, and movements to learn and generalize effectively. 

B. Pre-processing using an adaptive-noise Augmented Kalman Filter 

In this section, ANAKF [29] is used for pre-processing the animation image. ANAKF is used to remove the 

noise from the image. Based on the phase connection derivation among sub apertures, a unique ANAKF method 

is created. As a result, (1) provides the prediction error for the measured quantities. 
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normalize this deviation and obtain a dimensionless estimate, the difference between the measured and re-

estimated signals at each time-step is quantified by the latter vector. Compared to other estimation methods, 

such as calculating the mean value of instantaneous errors, the formulation of least-squares in Equation (1) has 

been favored because it enables a smoothed estimate of error throughout the 𝑁 time-steps, guaranteeing 

consistent input and reaction forecasts for large dn
q , vn

q and 
uq range bounds. For the variables that need to be 

tuned, this eliminates the requirement for the A-AKF user to choose ad hoc bounds. Next is the prediction error 

for the unmeasured quantities in (2). 
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ly . If the latter quantity isn't available, an 

alternative can be a reference estimate. The AKF prediction error can then be calculated using the vector 
p

kẑ of 

the responses estimated by CMS-ME, which is provided in (3). 
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were calculated utilizing the AKF at the CMS-ME approach and lth  unmeasured DOF, or enl 1 . Next, the 

prediction error for the unidentified input is given in (4).  
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−−= ˆˆ is the unknown input error's covariance. Equation (4)'s explicit time 

dependency has been removed for the purpose of clarity. Each unknown input estimation error's variance is 

represented by this matrix's diagonal elements. ANAKF is more challenging for datasets based on time series 

since any modification applied without domain expertise runs the risk of altering the temporal information in 

the animation images. It involves normalizing each image and removed the noise of the image. It is given in 

equation (5) 
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For normalization, the matching estimated input's squared amplitude at the jth  time-step in the window 
2ˆ
ju  

has been utilized. The approach presented here assumes the presence of negligible cross-correlation terms and 

takes into account zero cross-correlation of noise sources, as uuP .  Finally, Animation images are pre-processed 

by ANAKF, which is removed the noise of every animation image layer by layer. These pre-processed 

animation images are fed into feature extraction segment. 

C. Feature Extraction using Multi-Level2-D Quantum Wavelet Transform 

In this section, ML2DQWT [30] is discussed for Feature Extraction. ML2DQWT is used to extract 

spatiotemporal features such as Object position, velocity, Optical flow and Crowd Density. The multilevel 

classical wavelet transform in two dimensions was given in (6). 

( ) ( ) 







=−−−− −

jj

jjT
j GE

BA
WAW jmjn 11 212

               (6) 

Where ,jA ,jB ,jE  and jG are the sub images, and ( )12 −− jnW and ( )
T

jmW 12 −− are the 11 22 +−+−  jnjn and

11 22 +−+−  jmjm matrices for wavelet kernels, respectively. Taking into account a 
mn 22  image with an input 



J. Electrical Systems 20-3s (2024): 2819-2832 

2824 

of mnA
2,20 = , the traditional 2-D wavelet transform with multiple levels of mn 2,2

 . First, define 
j
mnT , and 

j
mnR , , which are provided in equations (7) and (8) to make the multilevel 2D-QWT possible.  

( ) ( )( )211123211 2,222,22222, , +−+−+−+−+−++−+− = jmjnjnjmjmnjmjn PIPIIWWDiagT j
mn                (7) 

( )( )11212 2,222,22, +−+−+−+− = jmjnjnjm PIPIR j
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Where ,jA ,jB ,jE  and jG are the sub images, and ( )12 −− jnW and ( )
T

jmW 12 −− are the 11 22 +−+−  jnjn  and 

11 22 +−+−  jmjm  the corresponding matrix wavelet kernels. The traditional multilevel 2-D wavelet transform of 

mn 2,2
 is performed, given an image mnA

2,20 = . The Object Position is the location or coordinates of an 

object with respect to a certain point or origin in a given reference frame are refers object position. It is a vector 

quantity expresses how far object has moved from a selected reference point. Position is frequently defined in 

physics in terms of direction and distance from a reference frame of reference point. The Object position is 

calculated in equation (9) 

2
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1
)( ckkwpkp ++=                                                                                                      (9) 

Where, )(kp represents the position at time k , 0p denotes the initial position, 0w indicates the initial 

velocity, c represents constant acceleration, k is the time. Velocity means speed at which something changes in 

relation to time. It is vector quantity that expresses the motion's direction and speed of an item. In mathematics, 

velocity is defined as the position of an object divided by its time. The velocity is formulated in equation (10) 

ckwkw += 0)(                              (10) 

Here, 0w indicates the initial velocity, )(kw represents the velocity at time k , c represents constant 

acceleration, k is the time. The optimal flow is the movement or velocity of features or pixels between frames 

in a video sequence is represented by the optical flow field. It gives details about the movement of various parts 

of video, including its direction and intensity. Optimal flow is calculated in equation (11) 

0=++
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dz
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Where, v and w denotes horizontal with vertical components of optical flow vector, 
dk

dv
represents 

temporal derivatives of optical flow components, 
dk

dz
denotes the spatial gradients of the video. Crowd density 

is the concentration of people inside a specific area or place is referred to as crowd density. It is a measurement 

of the quantity of people or things in a given area. Then, the crowd density is given in equation (12) 

Area

PeopleofNumber
DensityCrowd =

                                                                              

(12) 

Here, peopleofNumber  represents the count of individuals present in the area, Area denotes the space 

over the crowd. Then the extracted anomalous spatiotemporal features such as Object position, velocity, Optical 

flow and BPINN is fed features related to Crowd Density in order to predict the error in the animation picture. 

D. Prediction of error in animation design using Bayesian Physics-Informed Neural Networks 

Using noisy data and partial differential equations (PDEs), a Bayesian physics-informed neural network 

(BPINN) [31] can solve forward and inverse nonlinear problems. Within this Bayesian framework, the variation 

inference (VI) or the Hamiltonian Monte Carlo (HMC) could function as an estimator of the posterior, while the 

BNN in conjunction serves as the prior for PDEs with a PINN. The general partial differential equation is given 

in (13) 
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In this case, xN  represents a differential operator in general, D denotes the physical domain with dimension 

d, ( )xuu = represents the PDE's solution, and   represents the PDE's parameter vector. Furthermore, the 
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operator for boundary conditions operating on the domain boundary   is xB , and the forcing term is ( )xff = . 

Since  is required for forward problems, our objective is to determine the distribution of u  at any x .  must 

also be inferred from the data in inverse problems. The noisy measurement is given in (14) 

,bfu DDDD =                             (14) 
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measurement that is independent and focused on the actual value that is hidden. The hidden value equation is 

given in (15) 
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Here ( ) ,i
u

( )
,

i
f  and 

( )i
b are zero-mean independent Gaussian noises. Assume additionally that each sensor's 

fidelity is known, that is, the standard deviations of  and 
( )i
b are known to be ( ) ,i

u
( )

,
i
f  and

( )i
b , 

respectively. The BPINN model also predicts the error in the animation design. It is formulated in equation(16) 
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In the last instance, the equality results from the independence of the priors for   and . Note that although 

the PDE's parameter  is a vector in the above problem configuration, the same framework could be used to 

represent the factor with a different surrogate model, such as a neural network, in situations where it is a field or 

fields that depend on x . Finally BPINN predicted the error in animation images. Due to its convenience, 

pertinence, AI-depend optimization strategy is taken to account in BPINN. The AOA is employed to enhance 

BPINN. Here, AOA is employed for optimizing the parameter of BPINN. 

E. The Archimedes Optimization Algorithm 

Here, step-by-step procedure for utilizing Archimedes Optimization Algorithm (AOA) [32] to get ideal 

BPINN values is explained. The AOA population based met heuristic algorithm, employing immersed objects 

as its population individuals.AOA initiates the search by generating an initial object population, similar to these 

other algorithms, all of which have random accelerations, densities, and volumes. These iterations are carried 

out by the algorithm until the termination condition is satisfied. The following presents a detailed mathematical 

expression of the AOA steps. 

Step 1: Initialization 

Set up the input parameters; in this case, they are the BPINN gain parameters, which are represent as xN
 

Step2: Random Generation 

After initialization, the input parameters are generated randomly in the form of a matrix. The AOA ought to 

choose the search phase prior to commencing operations. The function coefficient is calculated in (17) 
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Here, The function value at the 
tht  iteration, or ( )IterCMOA _ , is determined by applying Equation (21). 

The variable IterC _ signifies the current iteration, ranging from 1 to the maximum quantity of iterations

( )IterM _ . The minimum and maximum values of the accelerated function are indicated by the symbols Min

and Max, correspondingly.
 

Step3: Fitness Function 

Initialization values, result are random solution. Assessment of fitness values utilizes outcomes of weight 

parameter optimization xN . It is given in equation (18) 

( )xNOptimizingfunctionfitness =
                           

(18) 

Where xN is the general differential operator. 
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Step 4: Update densities, volumes 

Motivated by the principles of Archimedes' buoyancy, the Archimedes Optimization Algorithm, focuses on 

updating the density volume definition to enhance convergence. This algorithm dynamically adjusts the density 

estimation of solution spaces, optimizing computational efficiency. Using (19), the object's density and volume 

are updated for iteration 1+t :
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            (19) 

Here the best object so far has been identified by its volume and density, bestvol and bestden , and a random 

number that is distributed evenly, rand .
 

Step5: Transfer operator and density factor 

After initially colliding, the objects try to return to their initial state of equilibrium over time. The transfer 

operatorTF  assists in doing this in AOA, which is defined by (20) and moves search from exploration to 

exploitation.  
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Where transfer TF progressively rises over time to reach. The variables t  and maxt represent the maximum 

and iteration number, respectively, in this case. Density decreasing factor D helps AOA with local and global 

search in a similar manner. Using (21): It gets smaller over time. 
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Where 
1+td gradually decreases, allowing convergence in the previously identified promising region. Keep 

in mind that managing this variable correctly will guarantee that exploration and exploitation in AOA are 

balanced. 

Step6: Exploration Phase 

In the exploration phase of the Archimedes Optimization Algorithm, the algorithm intelligently probes 

solution spaces with a diverse range of candidate solutions. By leveraging dynamic density adjustments, it 

adapts to the evolving landscape, emphasizing thorough exploration. When an object collides, choose a random 

material ( )mr and use (22) to update the object's acceleration for iteration 1+t .
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Whereas mracc , mrden  and mrvol represent the acceleration, density, and volume of random material, iden

, ivol  and iacc  represent the density, volume, and acceleration of object I. Notably, exploration is guaranteed 

for one-third of the iterations if 5.0FT . Figure 2 shows that the Flowchart for AOA optimizing BPINN. 
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Figure 2: Flowchart for AOA optimizing BPINN 

Step7: Exploitation Phase 

During the exploitation phase of the Archimedes Optimization Algorithm, the focus shifts to refining 

promising solutions discovered in the exploration phase. This strategic exploitation phase enhances the 

algorithm's efficiency in converging towards optimal solutions in diverse optimization scenarios. If 5.0FT  

indicates that there are no object collisions, use (23) to update the object's acceleration for iteration 1+t .I 
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Here the best object's acceleration is represented by bestacc . 

Step8: Termination 

The weight parameter values xN  from Bayesian physics-informed neural network are optimized with 

support of AOA, until the halting criteria are satisfied, iteratively repeat step 3. And lastly, VRAID-BPINN-

AOA predicts the animation error with higher accuracy with less Error rate. 

IV. RESULT WITH DISCUSSION 

Investigational outcome of proposed technique is discussed. The proposed VRAID-BPINN-AOA method is 

implemented in MATLAB and evaluated under some metrics. Obtained results of HAD-TSV-ITF-CZNN 

technique are analysed with existing techniques likes VI-AD-RBM [21],GDL-VALD-GAN [22], HID-LVIR-

CNN [23]correspondingly. 

A. Performance measures 

Selecting the best classifier requires taking this critical step. Performance metrics are evaluated in order to 

evaluate performance, including Bit Error rate, Design Rate, End to End Delay, Latency and Transmission Rate. 
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1) Bit Error Rate 

BER, also known as BER, is the ratio of incorrectly received bits to total bits received. It is calculated by 

counting the number of errors and comparing the transmitted and received bit sequences. The bit error is 

calculated in (24) 

bits

err
N

N
BER =                              (24) 

Where, errN is the number of error and bitsN number of bits? 

2) Design Rate 

Design rate refers to the pace at which neural network architectures and models are conceptualized and 

developed. The design rate is calculated by (25) 

( )
100

−
=

IP

IPCP
DR                              (25) 

Where, CP  is the current production and IP  is the initial production 

3) End to End Delay 

The amount of time that data takes to travel through a neural network is referred to as the end-to-end delay, 

encompassing both inference and any pre-processing or post-processing steps. In (26) the End to End Delay is 

computed. 

R

LN
EED


=                              (26) 

Where the packet length is L , the link is N , and the transmission rate is R . 

4) Latency 

Latency in deep learning denotes the time delay between initiating a task, such as making an inference, and 

receiving the corresponding output. The latency is calculated in the (27) 

layQueueingDeayprocessDelonDelayTransmissiLatency ++=                         (27) 

5) Transmission Rate 

Transmission rate in deep learning pertains to the speed at which data is transferred between components, 

such as GPUs or distributed nodes, during training or inference. The Transmission Rate of the data is calculated 

by (28) 

TDTR /=                              (28) 

Where, D is the data and T  is the time 

B. Performance Analysis 

Figure 3 to 7 depicts the simulation results of proposed VRAID-BPINN-AOAmethod.  Then, the proposed 

VRAID-BPINN-AOAmethod is likened with existingVI-AD-RBM, GDL-VALD-GAN and HID-LVIR-

CNNmethods respectively. 

 
Figure 3: Performance Analysis of Bit Error rate 
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Figure 3 portrays Bit error rate analysis. Here, VRAID-BPINN-AOA method attains 26.48%, 23.56% and 

21.16% lower Bit Error Rate at method of 2, 25.24%, 23.14% and 22.58% lower Bit Error Rate at method of 6; 

28.56%, 26.67% and 25.67% lower Bit Error Rate at method of 10; when evaluated to existing VI-AD-RBM, 

GDL-VALD-GAN and HID-LVIR-CNN method respectively. 

 
Figure 4: Performance Analysis of Design Rate 

 

Figure 4 portrays Design rate analysis. Here, VRAID-BPINN-AOA method attains23.36%, 26.57% and 

21.61% lower design rate at method of 4, 24.28%, 21.17% and 23.42% lower design rate at method of 6 

and26.42%, 25.67% and 23.67% lower design rate at method of 10; when evaluated to existing VI-AD-RBM, 

GDL-VALD-GAN and HID-LVIR-CNN method respectively. 

 
Figure 5: Performance Analysis of End to End Delay 

 

Figure 5 portrays end to end delay analysis. Here, VRAID-BPINN-AOA method attains26.52%, 25.18% 

and 23.63% lower end to end delay at method of 4;27.22%, 25.29% and 24.43% lower end to end delay at 

method of 8 and28.56%, 24.67% and 26.67% lower end to end delay at method of 10; when evaluated to 

existing VI-AD-RBM, GDL-VALD-GAN and HID-LVIR-CNN method respectively. 
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Figure 6: Performance Analysis of Latency 

 

Figure 6 portrays latency analysis. Here, VRAID-BPINN-AOA method attains24.66%, 21.78% and 23.97% 

lower latency at method of 2; 26.52%, 24.68% and 22.32% lower latency at method of 4; 28.56%, 26.67% and 

25.67% lower latency at method of 10; when evaluated to existing VI-AD-RBM, GDL-VALD-GAN and HID-

LVIR-CNN method respectively. 

 
Figure 7: Performance Analysis of Transmission Rate 

 

Figure 7 portrays Transmission Rate analysis. Here, VRAID-BPINN-AOA method attains 25.31%, 28.78% 

and 21.65% higher Transmission Rate at method of 2, 24.42%, 22.92% and 24.64% higher Transmission Rate 

at method of 6 and 26.22%, 22.67% and 25.67% higher Transmission Rate at method of 10; when evaluated to 

existing VI-AD-RBM, GDL-VALD-GAN and HID-LVIR-CNN method respectively. 

C. Discussion 

Major goal of this research project is to decrease the bit error rate, decrease the design rate, decrease the 

final delay, cut down on the latency, and increase the transmission rate. BPINN method for predicting the error 

in the animation images in the real world is presented in this paper. The thorough analysis of the literature also 

demonstrates when it comes to extracting features by ML2DQWT from animation images, BPINN techniques 

outperform manual ones. The proposed research offers an improved, pre-trained BPINN architecture that works 

better than the methods that have been previously published. From animation image, both spatiotemporal 

features are effectively extracted using this ML2DQWT model. Additionally, this work has shown how 



J. Electrical Systems 20-3s (2024): 2819-2832 

2831 

important ANAKF is to improve training outcomes for architectures. The animation dataset is subjected to the 

proposed technique. The Bit error rate values of VRAID-BPINN-AOA are 28.56%, 26.67% and 

25.67%lowerthan existing methods such as VI-AD-RBM, GDL-VALD-GAN and HID-LVIR-CNN 

respectively. Similar to this, the Transmission rate of proposed method is 96.94% analysed with average 

Transmission rate comparison techniques of 82.54%. The proposed method VRAID-BPINN-AOA has lower 

Bit error rate and higher Transmission rate evaluation metrics than existing methods. Therefore, the 

comparative methods are expensive than the proposed technique. As a result, the proposed technique Predict the 

error more effectively and efficiently. 

V. CONCLUSION 

This paper proposes deep learning models to predict the error in the virtual reality animation images with 

BPINN. Pre-processing algorithms are used to remove the noise in the images using an ANAKF. BPINN 

prediction algorithm is feature extractors to make prediction for spatiotemporal features such as Object Position, 

velocity, Optical flow and Crowd Density. The performance of the VRAID-BPINN-AOA technique has been 

examined using the MATLAB platform, and a comparative analysis has been conducted with other existing 

methods. The proposed technique is assessed through various scenarios, encompassing optimal and random 

scheduling, along with the utilization of a sophisticated AOA algorithm for evaluation. Performance of 

proposed VRAID-BPINN-AOA approach contains 28.56%, 24.67% and 26.67% lower end to end delay, 

28.56%, 26.67% and 25.67% lower latency and 26.22%, 22.67% and 25.67% higher Transmission Rate is 

analysed with existing methods likes VI-AD-RBM, GDL-VALD-GAN and HID-LVIR-CNN respectively. 
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