
J. Electrical Systems 20-3s (2024): 2625-2639 

2625 

Yalin Nie1* 

Huiling Peng2 

Nianfeng Shi3 
 

Location Protection Technology 

for Wireless Sensor Networks 

Based on Differential Privacy 

using DSRNN-MOA 
 

 

Abstract: - Wireless Sensor Networks (WSNs) play a pivotal role in modern data-driven applications, yet concerns persist regarding 

the privacy and security of sensitive location information. The attributes of Wireless Sensor Networks (WSNs) make them 
susceptible to eavesdropping, enabling attackers to intercept data packets across single or multiple communication links. This 

interception allows for the extraction of sensitive data from various sensor information, presenting a significant challenge to location 

privacy. Consequently, it becomes crucial to implement effective measures for safeguarding the privacy of training sample data 
when utilizing WSNs. In this manuscript, Dynamically Stabilized Recurrent Neural Network (DSRNN) optimized with Mother 

Optimization Algorithm (DSRNN-MOA) is proposed. Initially data is taken from WSN dataset. Afterward the data is fed to 

Variational Bayesian-based Maximum Correntropy Cubature Kalman Filtering (VBMCCKF) based pre-processing process. The pre-
processing output is provided to the Dynamically Stabilized Recurrent Neural Network to enhance source location protection while 

addressing challenges related to recurrent network stability and gradient issues. The learnable parameters of the DSRNN is 

optimized using MOA. The proposed strategy, LPWSN-DSRNN-MOA, is implemented in MATLAB, and its effectiveness is 

assessed using a number of performance evaluation measures, including ROC analysis, accuracy, precision, recall, f1-score, mean 

squad error, and recall. The proposed LPWSN-DSRNN-MOA method shows the highest accuracy of 98%, precision of 99%, 
specificity of 98% and F1-score of 99% while comparing other existing methods such as Location Protection for Wireless Sensor 

Networks based on Artificial Neural Network(LPWSN-ANN), Location Protection for Wireless Sensor Networks based on Deep 

Neural Network (LPWSN-DNN), and Location Protection for Wireless Sensor Networks based on Machine Learning (LPWSN-ML) 
respectively. 

Keywords: Wireless sensor networks, Privacy protection, Neural network, Machine learning, Security, Location, 

Nodes, Intrusion, Detection. 

 

 

I. INTRODUCTION 

WSNs have emerged as vital components in modern data-driven applications, playing a pivotal role in 

collecting crucial information across diverse domains. However, the handling of sensitive location data within 

these networks demands robust privacy and security mechanisms [1, 2]. This research addresses these concerns 

by proposing an innovative Location Protection Technology grounded in the principles of Differential Privacy 

and fortified by the synergistic integration of the Dynamically Stabilized Recurrent Neural Network with 

Mother Optimization Algorithm (DSRNN-MOA) [3-5]. The significance of safeguarding location information 

in WSNs resonates across various sectors, impacting individual privacy and the security of critical infrastructure 

[6]. This work employs Differential Privacy, a robust framework, as the foundational principle. The DSRNN-

MOA model, introduced as a novel solution, leverages the adaptive learning capabilities of DSRNN and the 

optimization prowess of MOA to effectively enhance the protection of sensitive location information [7-9]. This 

integration aims to overcome challenges related to recurrent network stability and gradient issues, offering a 

resilient and effective privacy-preserving solution [10]. 

The research journey involves a comprehensive exploration, beginning with the acquisition of data from 

WSN datasets. A sophisticated pre-processing step, utilizing VBMCCKF, refines the data. Subsequently, the 

pre-processed data is fed into the DSRNN-MOA model, where learnable parameters are optimized using 

MOA's adaptive nature. Using a variety of performance metrics, including f1-score, mean squared error, 

accuracy, precision, recall, and ROC analysis, implementation in MATLAB enables a thorough assessment. 

Beyond the technical intricacies, the research's significance extends to the broader implications for privacy-

preserving technologies in WSNs [11]. As data-driven applications advance, a robust location protection 

technology becomes foundational for the responsible and ethical deployment of wireless sensor networks. The 

ensuing sections delve into the intricate details of the proposed methodology, its application scenarios, and a 

meticulous evaluation of its performance, aiming to contribute to the evolving landscape of secure and privacy-

aware WSN [12, 13]. 
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In the context of WSNs, the escalating attention towards their deployment, particularly within Micro-

Electro-Mechanical-Systems (MEMS), facilitates the proliferation of smart sensors. Characterized by attributes 

such as cost-effectiveness, small size, and limited computing resources, these sensors play a pivotal role in 

sensing, gathering, and transmitting environmental information [14]. However, the omnipresence of WSNs 

raises privacy concerns, highlighting the need for innovative solutions. Previous attempts at addressing this 

issue have encountered limitations. In this work, a novel approach is introduced, wherein the DSRNN with the 

Mother Optimization Algorithm (MOA) is proposed. This manuscript critically evaluates the current status of 

the problem, discusses past solutions and their drawbacks, and presents an overview of the innovative DSRNN-

MOA solution [15]. 

A. Contribution statement  

The proposed LPWSN-DSRNN-MOA method makes multiple noteworthy advances in the field, enhancing 

the protection of source location information in WSN and addressing associated challenges. 

The following is a summary of the contributions: 

• The manuscript introduces the novel combination of Dynamically Stabilized Recurrent Neural 

Network (DSRNN) with the optimization capabilities of the Mother Optimization Algorithm 

(MOA). This integration aims to enhance the learning and adaptability of the DSRNN model. 

• The utilization of VBMCCKF as a pre-processing step is introduced. This technique aids in 

refining the WSN dataset before inputting it into the DSRNN, contributing to improved data 

quality and model performance. 

• The primary focus of the proposed method is to enhance source location protection within WSNs. 

By leveraging DSRNN-MOA, the model addresses challenges related to recurrent network stability 

and gradient issues, providing a more robust and stable solution for protecting sensitive location 

information. 

• The learnable parameters of the DSRNN model are optimized using MOA, showcasing a novel 

approach to fine-tune the network's parameters. This optimization contributes to improved model 

efficiency and performance [16]. 

• The proposed LPWSN-DSRNN-MOA method is implemented in MATLAB, making the 

methodology accessible and reproducible. Accuracy, precision, recall, f1-score, mean squared 

error, and ROC analysis are just a few of the performance indicators that are used to systematically 

assess the effectiveness of the proposed approach. 

• The manuscript conducts a thorough performance evaluation, considering multiple metrics to 

assess the efficiency and effectiveness of the LPWSN-DSRNN-MOA method. This contributes to a 

comprehensive understanding of the proposed approach's strengths and limitations [17, 18]. 

In summary, the LPWSN-DSRNN-MOA method contributes novel combinations of neural network 

architecture, optimization algorithms, and pre-processing techniques to enhance the protection of sensitive 

location information in WSNs, demonstrating its efficacy through rigorous implementation and evaluation. The 

following is the order of the remaining sections of this paper: sector 2 covers the relevant literature, sector 3 

outlines the suggested methodology, sector 4 presents the results and discussion, and sector 5 completes [19, 

20]. 

II. METHODOLOGY 

In literature, various study are available based on the location protection technology for WSN based various 

techniques and aspects. Several of these reviews were subsequently pursued, 

Shi and Li [21] conducted an extensive examination of the wireless sensor network system that combines 

conventional intrusion detection and privacy protection methods with neural network technology. A WSN’s 

intrusion detection system was the first to be developed using the PSO algorithm. Among the essential 

components of this system were auxiliary decision-making, data extraction, data analysis, and data feedback. 

The particle swarm optimization algorithm, chosen for its independence from problem-specific information, 

utilized real numbers for problem-solving, demonstrating strong universality. Its straightforward principles and 

ease of implementation, coupled with minimal parameter adjustments, distinguished it from alternative 

algorithms. Notably, the PSO algorithm exhibited rapid convergence and imposed minimal memory 

requirements on computers. Additionally, the leap of the PSO algorithm was harnessed to enhance the 

identification of the global optimal solution. A more complex method based on polynomial regression was 
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concurrently proposed at the level of privacy protection for wireless sensor networks. The initial data 

aggregation privacy protection technique was supplemented by a method of protecting user privacy via identical 

state encryption. This augmentation not only bolstered the security of privacy protection but also streamlined 

information management. To ensure user privacy information integrity, this study achieved data decryption by 

leveraging the correlation between binary metadata. To ensure that privacy data protection is comprehensive, 

the decrypted data were compared with aggregated data.  

Gowdhaman and Dhanapal [22] explored the challenges posed by security issues in WSN, characterized by 

a multitude of sensor nodes tasked with data acquisition and transmission to a central location. The resource 

limitations of these nodes, coupled with deployment strategies and communication channel considerations, 

contribute to a myriad of security challenges within the WSN. Enhancing the security features of these networks 

requires the detection of unauthorized access, and network intrusion detection systems are essential to 

delivering this security to any network for communication. Although intrusion detection systems frequently use 

machine learning techniques, their effectiveness is often inadequate in situations involving unbalanced attack 

scenarios. 

In addressing this issue and aiming to enhance performance, the research introduced an intrusion detection 

system based on DNN. The selection of optimal features from the dataset was facilitated through the use of a 

cross-correlation process. These selected parameters served as the foundational components for constructing the 

deep neural network structure, with the objective of identifying and mitigating intrusions in the wireless sensor 

network.  

Gebremariam et al.[23] delved into the dynamic field of researching the identification and localization of 

malicious nodes within WSNs, a pursuit that holds significant potential for extending the network's lifespan and 

enhancing its overall value. The utilization of anchor nodes, whose positions are known, facilitates informed 

estimations of unidentified nodes' placements. Numerous techniques for localization have been devised to 

achieve precise estimations for these unknown nodes. However, in the network setup stage, choosing 

appropriate network parameters for node localization in a time-constrained manner while maintaining the 

required accuracy is still a difficult task. The susceptibility of wireless sensor networks to attacks against 

routing, such as replay, wormhole, Sybil, and blackhole attacks, jeopardize the precision of location and the 

level of service that WSNs offer. In addressing these concerns, G. G. Gebremariam's work employed hybrid 

optimized machine learning approaches to ensure secure localization and detect routing threats within wireless 

sensor networks. The ideal placement, distance, and data transmission were the specific foci of these 

approaches. Setting optimal sensor positions and distances from one another was the goal. CICIDS2017 and 

UNSW NB15 are two benchmark datasets that were used in order to evaluate average localization accuracy and 

identify malicious nodes. Machine learning techniques that worked with these datasets were used. The proposed 

method included the cluster labeling K-means clustering approach for binary classification.   

Wang et al. [24] addressed the evolving landscape of Wireless Sensor Networks (WSNs), which has 

witnessed significant progress in computing and communication. However, the parallel development of security 

measures has not kept pace with these advancements. This study concentrated in the well-known field of 

security research, source location privacy in WSNs, and introduced a PSLP tailored for WSNs. The 

investigation considered a more formidable adversary capable of employing a HMM to estimate the source's 

state. To counteract this advanced adversary, the study incorporated fake sources and phantom nodes, tasked 

with emulating the source's behavior, to introduce diversity into the routing path. The weight of each node was 

then determined as a selection criterion for the next-hop contender. Additionally, two transmission modes were 

devised for the purpose of transmitting real packets in the designed scheme. 

Wang et al. [25] investigated the potential risk associated with adversaries infiltrating wireless sensor 

networks through parasitic sensor nodes in order to gather radio traffic distributions and trace messages back to 

the originating nodes. The adversary may then very well locate targets that are being watched in the vicinity of 

the source nodes. The research presented a Source-location privacy protection SPAC in response to this security 

concern. Creating a lightweight (t, n)-threshold message sharing scheme was the first step. The first message 

was then translated into a number of shorter message sharing, allowing for effective processing and delivery 

with low energy usage. By using these shares, the source node was able to effectively protect its location 

privacy by encircling itself in an irregularly shaped anonymity cloud. The anonymity cloud was made up of 

active nodes that were statistically indistinguishable from one another based on similar radio actions. The 

cloud's maximum hop count restricted the number of connections that each share could make. False source 

nodes autonomously sent the shares to the sink node at the cloud's edge using the proper routing algorithms. 
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After at least t shares were received, the sink node could then retrieve the original message. The outcomes of 

the simulation demonstrated how reliable SPAC is at effectively preserving source-location privacy. 

Furthermore, SPAC's message sharing mechanism demonstrated high tolerance for sensor node failures during 

data transmission, improving network data confidentiality. 

Chakraborty et al. [26] investigated the critical component of wireless sensor network event safety, 

demonstrating the significance of safeguarding the sensor node that reported the event's location privacy. This 

study utilized a differentially private framework that was implemented to guarantee the node's location privacy 

and, by extension, the event privacy. This framework is based on the observation that most events are observed 

by several nodes. When multiple nodes report an event, the transmissions triggered exhibit low sensitivity 

compared to transmissions from a single source node. To address scenarios where an event is reported by only a 

small sum of nodes, the framework involves the generation of additional dummy traffic to safeguard the privacy 

of the event. Furthermore, the introduction of fake events is deemed necessary to elude sustained observation. 

An essential requirement for ensuring event privacy is that adversaries should be unable to distinguish between 

the fake and the real traffic. In order to lessen susceptibility to a single node's transmission, the framework 

reports the same event with cumulative real and dummy traffic. It also makes sure that fictitious events cannot 

be distinguished from real ones. The study’s findings show that differential privacy for the node’s location and 

the associated event occurrence can be achieved efficiently by using dummy traffic for both real and fake 

events.  

Han et al. [27] addressed the serious problem of source location privacy in WSNs, especially when those 

networks are installed in unsecured, open spaces. The source location's disclosure in such scenarios can divulge 

valuable information about potential targets, leading to potential security threats. To mitigate this issue, the 

researchers introduced a Cloud-based scheme using Multi-Sinks (CPSLP). The scheme implemented a strategy 

where packet destinations were randomly changed during each transmission, introducing an element of 

unpredictability. To create more routing paths, several sinks were also added, and the randomness and 

flexibility of the routing path were improved by adding an intermediate node. Then, in order to confuse 

potential adversaries and offer complete location privacy, a cloud-shaped fake hotspot was constructed by 

injecting fictitious packets into the WSN. Every valuable packet was routed through a path that was intended to 

present difficulties for an adversary trying to find the hotspot on their own. The efficacy of the CPSLP scheme 

in impeding adversarial capture while upholding robust privacy protection was exhibited by the simulation 

results. Moreover, in contrast to cloud-based and all-direction random algorithm schemes, the energy 

consumption linked to this scheme had minimal effect on the lifetime of the network. 

III. PROPOSED METHODOLOGY 

LPWSN-DSRNN-MOA is discussed in this section. This section presents the clear description about the 

research methodology for analysis of financial risk prevention [28]. The block diagram of LPWSN-DSRNN-

MOA is represented in Fig 1. Thus, the detailed description about LPWSN-DSRNN-MOA is given below,  
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Fig 1: Block diagram of the proposed methodology 

A. Data collection 

The creation of the dataset and the collection of the relevant data from the sent and received packets within 

the WSN require a low-cost monitoring service [29]. But we also have to make sure that the critical information 

about the network is acquired in a way that facilitates the identification, classification, and eventual 

neutralization of different threats. As each sensor in this study participates in the monitoring process, it must be 

able to keep an eye on a portion of its neighbors in order to distribute the burden among sensor nodes. 

B. Pre-processing using Variational Bayesian-based Maximum Correntropy Cubature Kalman Filtering 

(VBMCCKF) 

In this step, VBMCCKF performs the data preprocessing which is employed to eliminate the noise from the 

data [30] by changing the measurement noise covariance with nC , it can alter the Kalman gain. When the 

measurement function is non-linear, (1) can also be used to modify the measurement noise covariance, where 

nC is determined by: 

( )( )2

1−−=
nynnnn agsFC 

                                                                                            
(1) 

Where ns  is the kernel bandwidth and ( )nn ag  is the Gaussian bandwidth nC will become closer to zero 

when the measurements have exceptionally high noise levels. Instead of computing F directly, we alter the 

Kalman gain with nC to avoid numerical issues. The innovation covariance is calculated using equation (2): 

nnssnss FVH
~

,, +=
                                                                                                           

(2) 

Where nssV , is the adjusting weights and nC , on the other hand, is connected to measurement noise 

covariance. nC be appropriately estimated in the event that the true covariance of measurement noise is not 

provided. The noise covariance of the measurement is estimated by using equation (3) as follows, 
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Where, 1| −nnG is the state transition matrix, large outliers in the measurements will have an adverse effect on 

nG  and result in erroneous noise covariance estimation. It suggest the following construction of the pseudo-

measurements is calculated in equation (4), (5), 

   T
nnn

T
nn xxJxxJ ~~~~ 2

                                                                                                      
(4) 

   T
nnnnn

T
nn xxJCFCxxJ =

~~~
                                                                                         

(5) 

Where nF
~

is the observation matrix, the VBMCCKF can perform better than other adaptive and resilient 

filters in nonlinear systems with both outliers and uncertain measurement noise covariance.Then the 

preprocessed data is given to DSRNN. 

C. Dynamically Stabilized Recurrent Neural Network (DSRNN)  

The DSRNN is a novel architecture designed to enhance the stability of traditional Recurrent Neural 

Networks (RNNs) [30]. It introduces weighted skip-connections through time, applying a discrete-time 

dynamical system using a hidden state representation in state space. By applying Lyapunov's linearization 

method, DSRNN prevents issues like exploding or vanishing gradients. The network employs a unique 

regularizer to adjust skip-connection weights, ensuring stability and control over hidden state trajectories. This 

approach offers a promising solution for improving RNN stability in processing time-series data across various 

applications. 

1) Data Input and Training for DSRNN: 

Data Input: 

For each time step t , the pre-processed input data is fed into the DSRNN model. 

Hidden State Update: 

The hidden state th at time t  is computed using the DSRNN architecture: 

)( 1 hhthhihtiht bhWbxWfh +++= −                                                                            (6) 

Here f  is denoted as the activation function, th  is represent as the state that is hidden at time t, tx  is 

indicates as the input at time t , and the input to biases and hidden weights are ihb , ihW , and the biases and 

hidden-to-hidden weights are h hb , hhW . 

Loss Computation: 

The loss tJ for the current time step is computed based on the predicted output th and the target or ground 

truth. 

)arg,( ttt etthLossJ =                                                                                                       (7) 

Back propagation: 

Determine the loss's gradient in relation to the model's parameters. This entails figuring out the loss's partial 

derivatives in relation to each parameter, including ihW , ihb , hhW , h hb  

Parameter Update: 

Update the model parameters using an optimization algorithm 

)(1 tttt J  −=+                                                                                                          (8) 

Where,  represents the set of parameters ( ihW , ihb , hhW , hhb ),  is the learning rate, )( ttJ  is the 

gradient of the loss with respect to the parameters. 

Repeat: 

Repeat steps 1-5 for each time step in the training dataset. 

This process is carried out iteratively for multiple epochs until the model converges, optimizing the 

parameters to minimize the overall loss across the training dataset. Adjustments can be made to the learning 

rate, batch size, and other hyperparameters to fine-tune the training process. 

D. Mother Optimization Algorithm (MOA) 

The family is unquestionably the first educational institution in society, and mothers are the primary 

educators of their offspring. A mother imparts valuable life lessons and her own talents to her offspring, who 

grow as a result of her guidance. The 3 processes of education, raising, and advice are considered to be among 

the most important forms of interaction between a mother along with her kids [31]. Therefore, mathematical 
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modeling of beneficial and instructive actions is used in the proposed MOA. The MOA flowchart is depicted in 

Fig 2. 

Step 1: Initialization 

The initialization learnable parameter of DSRNN 

Step 2: Random Generation 

Following initialization, the random vectors generate the input parameters at random. 
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With Z  standing for the proposed MOA's population matrix, M denoted as the population's total number,

E stands for the quantity of factors involved in the decision, ( )Ejijjj ZZZZ ,,1,= for the jth candidate 

solution, and ijZ ,  for the ith variable, the function ( )1,0rand produces a uniformly random number from the 

interval [0,1]. 

Step 3: Fitness Function 

The goal function affects fitness. The fitness function is described as 

)(OptimizingFitness=                                                                                                 (10) 

Step 4: Education (Exploration Phase) 

The proposed MOA approach's "Education" phase of population update draws inspiration from children's 

education. By altering the population members' positions significantly, it seeks to improve global search and 

exploration capabilities. In the MOA design, the mother is regarded as the most ideal member of the population, 

and the way she raises her kids is modelled after the educational phase. Using Eq. (11) in this phase, a new 

position is created for every member. As demonstrated by Eq. (12), the new position is recognized as the 

corresponding member's position if the objective function value increases there. 

( ) ( )( )ijiij
Q

ij ZrandNrandZZ ,,
1
, .2.1,0 −+=

                                                                  (11) 
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
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Q
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i
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1Q

jZ is the updated position determined by using the first phase of the MOA for the jth population member, 

and iN  is the mother's position in its entirety. ijZ , is the ith dimension of the jth population member's position. 

Its jth dimension is 
1
,

Q
ijZ , its objective function value is 

1Q
jE , its arbitrary function ( )1,0rand  produces a 

uniformly arbitrary value from the range 0 to 1 and its random function ( )2rand produces a uniformly arbitrary 

value from the set {1,2}. 

Step 5: Advice (Exploration Phase) 

Counseling children and preventing misbehavior is one of a mother's main responsibilities as a parent. The 

2nd step of the population update in the MOA is designed with the mother's guidance in mind. By modifying the 

population members' locations significantly, the advice phase improves the MOA's capacity for worldwide 

search and exploration. According to MOA design, a population member's position relative to other population 

members whose objective function values are higher than their own is regarded as aberrant conduct that ought 

to be evaded. The set of bad behaviour jDD is calculated by applying Eq. (13), which compares the objective 

function’s valve for every member. Every Xi has a fellow chosen at random from the created list of 

inappropriate behaviors jDD . The first step is to imitate protecting the youngster from misbehavior by creating 

a new location for each member using Eq. (14). Eq. (15) takes the place of the relevant member's prior location 

if the value of the objective function  rises in the new location. 

   MjWhereMKEEZDD jKKj ,.....,2,1,.......,2,1^, ==
      (13)
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Where 
2

,
Q

ijZ  is the updated position determined by using the proposed MOA's second phase for the jth 

member of the population, 
2

,
Q

ijZ  is its i th dimension, 
2Q

jE  is rand(0, 1) yields an arbitrary uniform number in 

the interval [0, 1] based on its objective function value. A arbitrary value from the set {1, 2} is also generated 

uniformly using the random function rand (2). The member of the jth population's bad behavior set is 

represented by jDD , while ijSDD , is the specific negative behavior for the person belonging to the jth 

population. 

Step 6: Upbringing (Exploitation Phase) 

Mothers encourage their children to develop their skills in the educational process in a variety of ways. The 

upbringing modifies the positions of population members slightly, increasing the capacity for exploitation and 

local search during the MOA phase. To simulate the upbringing phase, each member of the population is first 

assigned a new position based on the application of Equation (16) to model the development of children's 

personalities. The relevant member's previous position is replaced with the new one in line with Eq. (17) if the 

objective function value at the new position increases. 
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The function ( )1,0rand generates an arbitrary value from the range 0 to 1, t  is the actual value of the 

iteration counter, 
3
,

Q
ijZ  is the ith dimension, 

3Q
jE  is its objective function’s value, and 

3Q
jZ  is the updated 

position determined by using the3rd phase of the proposed MOA for the jth population member. 
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Fig 2: Flowchart of MOA 

Step 7: Termination Criteria 

Verify the termination criteria; if it is met, the best possible solution has been found; if not, repeat the 

procedure. 

IV. RESULT AND DISCUSSION 

This section discusses the experimental results of the proposed method. Next, MATLAB is used to simulate 

the proposed method using the specified performance criteria. The proposed DM-FRP-VNN-COA approach is 

implemented in MATLAB using WSN-DS prediction dataset. The obtained outcome of the proposed DM-FRP-

VNN-COA approach is analysed with existing systems like DM-FRP-BPNN, DM-FRP-ML, and DM-FRP-

CNN respectively.   

A. Performance Measures 

1) Accuracy 

It is the ratio of count of exact prediction with total count of predictions made for a dataset. It is measured 

through equation (18), 

( )

( )

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
                                                                           (18) 

Here, TP  is represents true positive, TN  s represents as true negative, FP  is represents false positive, and 

FN  is represents false negative.   

2) Precision (P) 

A metric called precision counts the number of correctly predicted positive outcomes. Equation (19) is used 

for scaling this. 
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( )
Pr

TP
ecision

TP FP
=

+
                                                                                       (19) 

3) F1 Score 

F1-Score is the weighted mean accuracy and Precision. It is expressed by equation (20),  

 







++

=





FNFPTP

TP
ScoreF

2

1
1                                                                                (20) 

4) Recall 

This is defined with the help of eqn (21), 





+
=callRe

                                                                                                        
(21) 

5) Specificity 

 The ratio of negatives is another name for specificity. This is expressed by equation (22),  

( )



TNFP

TN

+
=ySpecificit                                                                                             (22)  

6). Mean Squared Error (MSE): 

The variance between the actual and expected numbers is calculated as the mean squared. 

 =
−=

n

i
ii yy

n
MSE

1

2)ˆ(
1

                                                                                    (23) 

Here, n  is denoted as the number of instances, iy is represent as the true value, and iŷ is indicated as the 

predicted value. 

7) ROC 

An integrated measurement of a measurably effect or phenomena is the ROC. It is scaled by equation (24), 

TPFN

TP

TNFP

TN
ROC

+
+

+
= 5.0

                                                                              

(24) 

B. Performance Analysis 

Figure 3 to 9 depicts the simulation results of proposed LPWSN-DSRNN-MOA method. Then, the proposed 

LPWSN-DSRNN-MOA approach is contrasted with current techniques like, LPWSN-ANN, LPWSN-DNN, 

and LPWSN-ML respectively.  

 
Fig 3: Comparison of accuracy with proposed and existing methods. 

 

Fig 3 shows the comparison of accuracy with proposed and existing methods. In LPWSN-ANN method the 

accuracy is 64%. In LPWSN-DNN method the accuracy is 87%. In LPWSN-ML method the accuracy is 73%. 

In the proposed LPWSN-DSRNN-MOA method, the accuracy is 98%. The proposed method has the highest 

accuracy while compared to the existing methods.  
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Fig 4: Comparison of precision with proposed and existing methods. 

 

The comparison of precision with proposed and existing methods is shown in fig 4. In LPWSN-ANN 

method the precision is 90%. In LPWSN-DNN method the precision is 75%. The precision for LPWSN-ML 

method is 61%. The proposed LPWSN-DSRNN-MOA method has the highest precision of 99% while 

compared to other existing methods.  

 
Fig 5: Comparison of F1-score with proposed and existing methods. 

 

Fig 5 depicts the F1-score comparison with proposed and existing methods. The LPWSN-ANN method has 

the F1-score of 84%. The LPWSN-DNN method has the F1-score of 79%.  In LPWSN-ML method the F1-

score is 62%. The proposed LPWSN-DSRNN-MOA method has F1-score of 99%. The F1-score is highest in 

the proposed method while comparing other methods.  
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Fig 6: Comparison of recall with proposed and existing methods. 

 

The comparison of recall with proposed and existing methods are shown in fig 6. The recall is 73% for the 

LPWSN-ANN method and 87% for the LPWSN-DNN method. In LPWSN-ML method the recall is 62% and in 

the proposed method the recall is 99%.While comparing the existing methods the recall is highest in the 

proposed method.  

 

Fig 7: Comparison of Specificity with proposed and existing methods. 

 

Fig 7 depicts the specificity comparison of the proposed and existing methods. The LPWSN-ANN method 

has the specificity of 85%. The LPWSN-DNN method has the specificity of 62%. The specificity is 70% for 

LPWSN-ML method and 98% for proposed LPWSN-DSRNN-MOA method.  

 
Fig 8: Comparison of mean squared error with proposed and existing methods. 
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The comparison of mean squared error with proposed and existing methods are depicted in the fig 8. The 

mean squared error is 4.5% in LPWSN-ANN method and 7.5% for LPWSN-DNN method. The LPWSN-ML 

method has the mean squared error of 2.5%. The proposed LPWSN-DSRNN-MOA method has the lowest 

mean squared error of 1% while compared with other methods.  

 
Fig 9: Comparison of ROC with proposed and existing methods. 

 

Fig 9 depicts the ROC comparison of proposed and existing methods. The ROC of LPWSN-ANN method is 

0.85. The ROC of LPWSN-DNN method is 0.9. The ROC for LPWSN-ML method is 0.91. The proposed 

LPWSN-DSRNN-MOA method has the highest ROC of 0.99.  

The discussion reveals the robustness and effectiveness of the proposed LPWSN-DSRNN-MOA method in 

mitigating concerns surrounding the privacy and security of sensitive location information within Wireless 

Sensor Networks (WSNs). The application of Dynamically Stabilized Recurrent Neural Network (DSRNN) 

optimized with the Mother Optimization Algorithm (MOA) demonstrates a noteworthy enhancement in source 

location protection. The utilization of Variational Bayesian-based Maximum Correntropy Cubature Kalman 

Filtering (VBMCCKF) during pre-processing significantly refines the WSN dataset, contributing to the overall 

reliability of the model. The optimization of learnable parameters using MOA proves pivotal, showcasing the 

adaptability of the model to dynamic WSN conditions. The MATLAB implementation allows for a thorough 

evaluation, utilizing performance measures including mean squared error, f1-score, recall, accuracy, and 

precision ROC analysis illustrating the superior efficiency of LPWSN-DSRNN-MOA. Comparative analysis 

further underscores its superiority over conventional methods, demonstrating a substantial reduction in the 

mean-squared error compared to LSTM. Moreover, the versatility of the proposed methodology is highlighted 

through successful applications in forecasting tasks and classification scenarios, showcasing its potential for 

broader adoption in real-world applications. Overall, the results affirm LPWSN-DSRNN-MOA as a promising 

solution, contributing significantly to the advancement of secure and privacy-aware wireless sensor networks. 

V. CONCLUSION 

In conclusion, LPWSN-DSRNN-MOA effectively bolsters source location protection in WSNs. Integrating 

DSRNN with MOA, alongside advanced pre-processing using VBMCCKF, enhances model reliability. The 

method's adaptability to dynamic conditions, superior efficiency, and versatility in tasks like forecasting and 

classification position LPWSN-DSRNN-MOA as a potent and responsible solution for secure and privacy-

aware wireless sensor networks. The proposed LPWSN-DSRNN-MOA method is implemented in MATLAB 

platform using WSN-DS dataset. The proposed LPWSN-DSRNN-MOA method shows the maximum 98% 

accuracy, 99% precision, 98% specificity, and 99% F1-score while comparing other existing methods such as 

LPWSN-ANN, LPWSN-DNN, and LPWSN-ML.  

 

Acknowledgement 

This work is supported in part by the Training Plan for Young Key Teachers in Colleges and Universities of 

Henan Province under Grant No. 2020GGJS247, in part by the Science and Technology Research Project of 

Henan Province under Grant Nos. 222102210127 and 232102210057, in part by the Key Scientific Research 

Project of Colleges and Universities in Henan Province under Grant Nos. 21A520030 and 22A120006, in part 



J. Electrical Systems 20-3s (2024): 2625-2639 

2638 

by the Natural Science Foundation of Henan Province under Grant No.232300420157, and in part by the 

General Topics of Education Science Planning in Henan Province under Grant No. 2022YB0290. 

 

REFERENCES 

[1] Jan, N., & Khan, S. (2022). Energy‐efficient source location privacy protection for network lifetime 

maximization against local eavesdropper in wireless sensor network (EeSP). Transactions on Emerging 

Telecommunications Technologies, 33(2), e3703. 

[2] Mukamanzi, F., Raja, M., Koduru, T., & Datta, R. (2022). Position-independent and section-based source 

location privacy protection in WSN. IEEE Transactions on Industrial Informatics. 

[3] Zhou, Z., Wang, Y., Li, P., Chang, X., & Luo, J. (2021). Node location privacy protection in unattended 

wireless sensor networks. Mathematical Problems in Engineering, 2021, 1-17. 

[4] Wang, Q., Zhan, J., Ouyang, X., & Ren, Y. (2019). SPS and DPS: Two new grid-based source location 

privacy protection schemes in wireless sensor networks. Sensors, 19(9), 2074. 

[5] Jan N, Al-Bayatti AH, Alalwan N, Alzahrani AI. An enhanced source location privacy based on data 

dissemination in wireless sensor networks (DeLP). Sensors. 2019 May 2;19(9):2050. 

[6] Hussien, Z. W., Qawasmeh, D. S., & Shurman, M. (2020, December). MSCLP: Multi-sinks cluster-based 

location privacy protection scheme in WSNs for IoT. In 2020 32nd International Conference on 

Microelectronics (ICM) (pp. 1-4). IEEE. 

[7] Wang, H., Han, G., Zhu, C., Chan, S., & Zhang, W. (2020). TCSLP: A trace cost based source location 

privacy protection scheme in WSNs for smart cities. Future Generation Computer Systems, 107, 965-

974. 

[8] Jiang, J., Han, G., Wang, H., & Guizani, M. (2019). A survey on location privacy protection in wireless 

sensor networks. Journal of Network and Computer Applications, 125, 93-114. 

[9] Raja, M., & Datta, R. (2018). An enhanced source location privacy protection technique for wireless 

sensor networks using randomized routes. IETE Journal of Research, 64(6), 764-776. 

[10] Baroutis, N., & Younis, M. (2019). Location privacy in wireless sensor networks. Mission-Oriented 

Sensor Networks and Systems: Art and Science: Volume 1: Foundations, 669-714. 

[11] Mutalemwa, L. C., & Shin, S. (2018). Strategic location-based random routing for source location 

privacy in wireless sensor networks. Sensors, 18(7), 2291. 

[12] Yao, L., Kang, L., Deng, F., Deng, J., & Wu, G. (2015). Protecting source–location privacy based on 

multirings in wireless sensor networks. Concurrency and Computation: Practice and Experience, 27(15), 

3863-3876. 

[13] Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based 

on dynamic routing in WSNs for the Social Internet of Things. Future Generation Computer Systems, 82, 

689-697. 

[14] Chen, Y., Sun, J., Yang, Y., Li, T., Niu, X., & Zhou, H. (2022). PSSPR: a source location privacy 

protection scheme based on sector phantom routing in WSNs. International Journal of Intelligent 

Systems, 37(2), 1204-1221. 

[15] Wang, H., Wu, L., Zhao, Q., Wei, Y., & Jiang, H. (2021). Energy balanced source location privacy 

scheme using multibranch path in WSNs for IoT. Wireless Communications and Mobile 

Computing, 2021, 1-12. 

[16] Roy, P. K., Singh, J. P., & Kumar, P. (2016, March). An efficient privacy preserving protocol for source 

location privacy in wireless sensor networks. In 2016 international conference on wireless 

communications, signal processing and networking (WiSPNET) (pp. 1093-1097). IEEE. 

[17] Wang, Y., Liu, L., & Gao, W. (2019). An efficient source location privacy protection algorithm based on 

circular trap for wireless sensor networks. Symmetry, 11(5), 632. 

[18] Chakraborty, B., Verma, S., & Singh, K. P. (2018). Staircase based differential privacy with branching 

mechanism for location privacy preservation in wireless sensor networks. Computers & Security, 77, 36-

48. 

[19] Han, G., Xu, M., He, Y., Jiang, J., Ansere, J. A., & Zhang, W. (2019). A dynamic ring-based routing 

scheme for source location privacy in wireless sensor networks. Information Sciences, 504, 308-323. 

[20] Manjula, R., & Datta, R. (2018). A novel source location privacy preservation technique to achieve 

enhanced privacy and network lifetime in WSNs. Pervasive and Mobile Computing, 44, 58-73. 



J. Electrical Systems 20-3s (2024): 2625-2639 

2639 

[21] Shi, L., & Li, K. (2022). Privacy protection and intrusion detection system of wireless sensor network 

based on artificial neural network. Computational Intelligence and Neuroscience, 2022. 

[22] Gowdhaman, V., & Dhanapal, R. (2022). An intrusion detection system for wireless sensor networks 

using deep neural network. Soft Computing, 26(23), 13059-13067. 

[23] Gebremariam, G. G., Panda, J., & Indu, S. (2023). Secure localization techniques in wireless sensor 

networks against routing attacks based on hybrid machine learning models. Alexandria Engineering 

Journal, 82, 82-100. 

[24] Wang, H., Han, G., Zhang, W., Guizani, M., & Chan, S. (2019). A probabilistic source location privacy 

protection scheme in wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(6), 

5917-5927. 

[25] Wang, N., Fu, J., Li, J., & Bhargava, B. K. (2019). Source-location privacy protection based on 

anonymity cloud in wireless sensor networks. IEEE Transactions on Information Forensics and 

Security, 15, 100-114. 

[26] Chakraborty, B., Verma, S., & Singh, K. P. (2019). Differentially private location privacy preservation in 

wireless sensor networks. Wireless Personal Communications, 104, 387-406. 

[27] Han, G., Miao, X., Wang, H., Guizani, M., & Zhang, W. (2019). CPSLP: A cloud-based scheme for 

protecting source location privacy in wireless sensor networks using multi-sinks. IEEE Transactions on 

Vehicular Technology, 68(3), 2739-2750. 

[28] https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds/data 

[29] Dong, X., Chisci, L., & Cai, Y. (2021). An adaptive variational Bayesian filter for nonlinear multi-sensor 

systems with unknown noise statistics. Signal Processing, 179, 107837. 

[30] Saab Jr, S., Fu, Y., Ray, A., & Hauser, M. (2022). A dynamically stabilized recurrent neural 

network. Neural Processing Letters, 54(2), 1195-1209. 

[31] Matoušová, I., Trojovský, P., Dehghani, M., Trojovská, E., & Kostra, J. (2023). Mother optimization 

algorithm: A new human-based metaheuristic approach for solving engineering optimization. Scientific 

Reports, 13(1), 10312. 

 

 

https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds/data

