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Abstract: - Identification of potential injury risk factors and construction of prediction models for athletes using data mining algorithms 

involve analyzing various factors such as biomechanical, physiological, and environmental variables to determine their correlation with 

injury occurrences. Data mining techniques, such as decision trees, logistic regression, or neural networks, are then applied to identify 

patterns and relationships within the data. By integrating this information, predictive models can be developed to forecast the likelihood of 

athletes sustaining injuries based on their individual characteristics and training conditions. This paper introduces a novel approach for 

athlete injury risk prediction using the Noninvasive Data Mining Model with Multi-relational and Multi-dimensional Clustering (Ni-

DMMMC) algorithm. By leveraging advanced data mining techniques, Ni-DMMMC aims to identify hidden relationships between various 

athlete characteristics, including biomechanical risk, training load, physiological markers, and environmental factors, to predict injury 

susceptibility accurately. Through multi-relational and multi-dimensional clustering, the algorithm effectively categorizes athletes into 

distinct clusters based on their unique risk profiles. These clusters provide valuable insights into the diverse injury risk profiles present 

within athlete populations, enabling targeted intervention strategies and personalized athlete management approaches. The proposed 

approach holds significant promise for enhancing injury prevention efforts, optimizing athlete performance, and improving overall well-

being in sports medicine practice. athletes in Cluster 1 exhibit high biomechanical risk (0.85), moderate training load (0.60), low 

physiological markers (0.25), and moderate environmental risk (0.45), while athletes in Cluster 2 display moderate biomechanical risk 

(0.70), high training load (0.90), high physiological markers (0.80), and low environmental risk (0.30). These numerical values serve as 

indicators for assessing an athlete's injury risk profile comprehensively.    

Keywords: Injury Risk, Data Mining, Prediction, Multi-dimensional, Clustering, Multi-relational. 

1. Introduction 

Data mining for athletes involves extracting invaluable insights from vast datasets encompassing performance 

metrics, biometric data, training regimens, injury histories, and psychological profiles. Initially, this process 

entails meticulous data collection and cleansing to ensure accuracy and relevance[1]. Through exploratory data 

analysis, patterns and correlations are unveiled, guiding feature selection and model building[2]. Utilizing 

machine learning algorithms, predictive models are constructed to forecast performance, assess injury risks, and 

tailor training protocols[3]. Evaluation metrics gauge model efficacy, validating their predictive capabilities[4]. 

Upon deployment, these models empower coaches and sports scientists to make informed decisions, optimizing 

athlete management strategies and fostering peak performance. 

Injury risk prediction for athletes involves the intricate analysis of various factors to anticipate the likelihood of 

injuries occurring[5]. Through the utilization of advanced data mining techniques, a plethora of data sources 

including past injury records, biomechanical assessments, training loads, recovery patterns, and physiological 

markers are scrutinized. These datasets are meticulously processed and analyzed to uncover underlying patterns 

and correlations[6]. Machine learning algorithms play a pivotal role in constructing predictive models that can 

assess an athlete's susceptibility to injuries based on these multifaceted inputs[7]. These models not only provide 

insights into potential injury risks but also enable the implementation of proactive measures to mitigate them, 

such as personalized training modifications, targeted rehabilitation protocols, and optimized recovery strategies. 

In constructing injury prediction models for athletes using data mining algorithms, a multitude of potential risk 

factors are considered and analyzed[8]. These encompass diverse aspects such as past injury history, 

biomechanical profiles, training intensity, environmental conditions, and physiological markers[9]. Through the 

application of sophisticated data mining techniques, these multifaceted datasets are scrutinized to identify 

patterns and relationships that may contribute to injury occurrence[10]. Machine learning algorithms, including 

decision trees, logistic regression, and neural networks, are then employed to construct predictive models 

capable of assessing an athlete's vulnerability to injuries[11]. By integrating these models into athlete 

 
1 Physical education institute,Jiangxi University of Technology, Nanchang,330098,Jiangxi,China 

*Corresponding author e-mail: jxswjt312@163.com 

Copyright © JES 2024 on-line : journal.esrgroups.org 

mailto:jxswjt312@163.com


J. Electrical Systems 20-6s (2024): 2048-2058 

2049 

management systems, coaches and sports medicine professionals can proactively identify at-risk individuals, 

tailor training regimens, and implement preventive interventions to mitigate injury risks. 

The contribution of this paper lies in the development and application of the Noninvasive Data Mining Model 

with Multi-relational and Multi-dimensional Clustering (Ni-DMMMC) algorithm for athlete injury risk 

prediction. This algorithm represents a novel approach that integrates advanced data mining techniques to 

identify hidden relationships between various athlete characteristics, including biomechanical risk, training load, 

physiological markers, and environmental factors. By leveraging multi-relational and multi-dimensional 

clustering, Ni-DMMMC effectively categorizes athletes into distinct clusters based on their unique risk profiles, 

providing valuable insights into the diverse injury risk profiles present within athlete populations. The 

application of Ni-DMMMC facilitates targeted intervention strategies and personalized athlete management 

approaches, thereby enhancing injury prevention efforts, optimizing athlete performance, and improving overall 

well-being in sports medicine practice. 

2. Related Works 

In the realm of athlete performance and injury prevention, a burgeoning body of research has emerged, focusing 

on the utilization of data mining and machine learning techniques to extract valuable insights from diverse 

datasets. Previous studies have delved into various aspects of athlete management, including performance 

prediction, injury risk assessment, and personalized training optimization. Researchers have explored the 

intricate relationships between biomechanical factors, training loads, physiological markers, and injury 

occurrences, employing sophisticated analytical methods to uncover underlying patterns and correlations. 

Moreover, advancements in technology have facilitated the collection of extensive data streams, ranging from 

wearable sensors to electronic health records, providing rich sources for analysis. Mandorino et al. (2022) 

explore predictive analytic techniques to unveil hidden relationships between training load, fatigue, and muscle 

strains in young soccer players, shedding light on factors influencing injury susceptibility. Zhao and Li (2023) 

propose a combined deep neural network and semi-supervised clustering method for sports injury risk 

prediction, emphasizing the integration of advanced algorithms for enhanced accuracy. Robles-Palazón et al. 

(2023) develop a machine learning-based approach specifically tailored for male youth soccer players, 

demonstrating the potential for personalized injury risk assessment. Meanwhile, Chen et al. (2023) establish a 

cognitive evaluation model using RBF neural networks to assess injury risk in athletes, emphasizing the 

importance of cognitive factors in injury prevention. Huang et al. (2022) present a novel non-contact injury risk 

prediction model based on multimodal fusion and interpretable machine learning, highlighting the significance 

of interpretability in model deployment. Tzelepis et al. (2023) propose an intelligent injury rehabilitation 

guidance system for recreational runners, illustrating the application of data mining algorithms beyond injury 

prediction to support recovery and rehabilitation efforts. 

Wu et al. (2022) introduce a cloud-based deep learning-assisted system for diagnosing sports injuries, 

emphasizing the potential for remote and scalable solutions in injury management. Li et al. (2023) propose a 

sports risk prediction model based on automatic encoder and convolutional neural networks, highlighting the 

importance of leveraging advanced neural network architectures for enhanced predictive performance. 

Jauhiainen et al. (2022) utilize machine learning on extensive screening test data to predict ACL injury in female 

elite athletes, underscoring the potential for personalized injury risk assessment in high-performance settings. 

Sharma et al. (2023) explore the role of interpretable machine learning in athletics for injury risk prediction, 

emphasizing the importance of model transparency and explainability in fostering trust and adoption by 

practitioners. Moreover, Moustakidis et al. (2022) investigate the prediction of injuries in CrossFit training from 

a machine learning perspective, demonstrating the applicability of data-driven approaches across diverse athletic 

domains. Cao (2022) contributes to the field by designing and optimizing a decision support system for sports 

training, leveraging data mining technology to enhance training effectiveness and athlete well-being. Piłka et al. 

(2023) focus on predicting injuries in football using data collected from GPS-based wearable sensors, 

emphasizing the integration of real-time tracking technology for injury prevention. Additionally, Huang and 

Wen (2022) propose a Markov model-based sports training risk prediction model, highlighting the use of 

probabilistic modeling for assessing training-related injury risks and guiding training control strategies. 

Majumdar et al. (2022) delve into machine learning for understanding and predicting injuries in football, 
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emphasizing the importance of leveraging data-driven insights to inform injury prevention and management 

practices. Kumar et al. (2024) provide a comprehensive review of injury prediction in sports using artificial 

intelligence applications, offering insights into the latest advancements and future directions in the field. 

Papageorgiou et al. (2024) explore unsupervised learning in NBA injury recovery, showcasing advanced data 

mining techniques to decode recovery durations and economic impacts, highlighting the broader applicability of 

data-driven approaches beyond injury prediction. Finally, Dhanke et al. (2022) present a recurrent neural model 

to analyze the effect of physical training and treatment on sports injuries, demonstrating the potential of deep 

learning techniques to uncover complex relationships between interventions and injury outcomes. 

From predictive analytics to deep neural networks and interpretable machine learning models, researchers have 

explored diverse avenues to unravel the complex relationships between training loads, fatigue, physiological 

markers, and injury occurrences in various sports contexts. By leveraging advanced algorithms and extensive 

datasets, these studies offer insights into personalized injury risk assessment, remote diagnosis, rehabilitation 

guidance, and sports training optimization. Furthermore, the emphasis on model transparency, interpretability, 

and real-time tracking technologies underscores the importance of fostering trust and adoption by practitioners. 

With the integration of wearable sensors, cloud-based solutions, and probabilistic modeling techniques, these 

advancements pave the way for more effective injury prevention and management strategies tailored to the 

unique needs of athletes across different levels of competition. 

3. Multi relational and Multi-dimensional Clustering for the Injury Risk 

Multi-relational and multi-dimensional clustering techniques offer a sophisticated approach to injury risk 

assessment by considering diverse sets of interrelated variables simultaneously. These methods, rooted in 

advanced data mining principles, aim to uncover complex patterns and relationships within multidimensional 

datasets comprising various factors influencing injury susceptibility. By leveraging mathematical derivations 

and equations, researchers can effectively model the intricate interactions between predictors and outcomes, 

thereby enhancing the accuracy and interpretability of injury risk predictions. Through the integration of 

multiple relational and dimensional aspects, such as biomechanical profiles, training loads, physiological 

markers, and environmental factors, these techniques provide a holistic understanding of injury risk dynamics. 

Moreover, by incorporating clustering algorithms capable of handling high-dimensional and heterogeneous data, 

such as spectral clustering or hierarchical clustering, researchers can partition the data into meaningful clusters 

representing distinct injury risk profiles. The utilization of distance metrics, optimization functions, and 

regularization terms further refines the clustering process, ensuring robustness and generalizability of the 

derived clusters. We aim to cluster athletes based on multiple relational and dimensional aspects, such as 

biomechanical profiles Xb, training loads Xt, physiological markers Xp, and environmental factors Xe. Each 

athlete's data can be represented as a multidimensional vector Xi=[Xib,Xit,Xip,Xie], where Xib, Xit, Xip, and 

Xie represent the respective features within each aspect. Clustering algorithms will partition the dataset into K 

clusters 1,2,...,C1,C2,...,CK, where each cluster represents a distinct injury risk profile. Let's consider a 

generalized clustering algorithm, such as k-means, which aims to minimize the within-cluster sum of squares 

computed using equation (1) 

𝑎𝑟𝑔  𝑚𝑖𝑛 ∑ ∑ ‖𝑥 − 𝜇𝑘‖2
𝑥∈𝑐𝑘

𝐾
𝑘=1                                                     (1) 

K is the number of clusters. x represents the data points. μk is the centroid of cluster k. The multidimensional 

athlete data using a matrix X, where each row corresponds to an athlete and each column corresponds to a 

feature within the relational or dimensional aspect defined in equation (2) 

𝑋 =  [

𝑋𝑏1 𝑋𝑏2 …
𝑋𝑡1 𝑋𝑡2 …
𝑋𝑝1 𝑋𝑝2 …

 

𝑋𝑏𝑛

𝑋𝑡𝑛

𝑋𝑝𝑛

𝑋𝑒1 𝑋𝑒2 …       𝑋𝑒𝑛     

]                                                   (2) 

The k-means algorithm iteratively assigns data points to the nearest cluster centroid and updates the centroids 

based on the mean of the assigned points. Optimization techniques, such as gradient descent or expectation-

maximization (EM), can be employed to iteratively minimize the objective function and update the cluster 
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centroids until convergence. In the framework of multi-relational and multi-dimensional clustering for injury 

risk assessment, the goal is to capture the complex interplay of various factors influencing athletes' susceptibility 

to injuries. This approach considers a comprehensive array of relational and dimensional aspects, including 

biomechanical profiles, training loads, physiological markers, and environmental conditions, each contributing 

uniquely to the overall risk landscape. By representing athlete data as multidimensional vectors encompassing 

these diverse aspects, clustering algorithms can effectively partition the dataset into distinct groups, or clusters, 

each characterized by a particular injury risk profile. The choice of clustering algorithm, such as k-means or 

spectral clustering, is crucial in this process, as it determines how data points are assigned to clusters and how 

cluster centroids are updated iteratively to optimize the clustering objective. Moreover, the optimization of 

clustering algorithms involves minimizing a predefined objective function, typically the within-cluster sum of 

squares, through iterative procedures like gradient descent or expectation-maximization. This iterative 

optimization ensures that clusters are formed in a way that maximizes homogeneity within clusters while 

maintaining separation between clusters. 

 

Figure 1: Injury Risk Prediction 

Noninvasive data Mining Model with Multi relational and Multi-dimensional Clustering (Ni-DMMMC) shown 

in Figure 1. The Noninvasive Data Mining Model with Multi-relational and Multi-dimensional Clustering (Ni-

DMMMC) represents a sophisticated approach to injury risk assessment in athletes, integrating diverse datasets 

and advanced clustering techniques. This model aims to capture the complex relationships between various 

factors contributing to injury susceptibility while minimizing invasive data collection methods. At its core, Ni-

DMMMC leverages multidimensional athlete data, encompassing relational aspects such as biomechanical 

profiles, training loads, physiological markers, and environmental conditions. Each athlete's data is represented 

as a multidimensional vector, allowing for a comprehensive characterization of their injury risk profile. The 

clustering process within Ni-DMMMC utilizes advanced techniques such as spectral clustering or hierarchical 

clustering to partition the multidimensional dataset into meaningful clusters. The Ni-DMMMC algorithm 

iteratively minimizes the objective function J to update the cluster centroids until convergence. This process 

involves assigning data points to the nearest cluster centroid and recalculating centroids based on the mean of 

the assigned points. The optimization is typically achieved using iterative procedures like gradient descent or 

expectation-maximization, ensuring that clusters accurately represent distinct injury risk profiles while 

maximizing homogeneity within clusters and separation between clusters. 

Ni-DMMMC aims to cluster athletes based on multiple relational and dimensional aspects, such as 

biomechanical profiles Xb, training loads Xt, physiological markers Xp, and environmental factors Xe. Each 

athlete's data is represented as a multidimensional vector 𝑋𝑖 = [𝑋𝑖𝑏, 𝑋𝑖𝑡, 𝑋𝑖𝑝, 𝑋𝑖𝑒]. the clustering objective 

function J, we employ the k-means algorithm. The algorithm iteratively assigns data points to the nearest cluster 

centroid and updates the centroids based on the mean of the assigned points. This process continues until 

convergence. The k-means algorithm updates the cluster centroids μk using the following equation (3) 

𝜇𝑘 =  
1

|𝐶𝑘|
∑ 𝑋𝑥𝜖𝐶𝑘

                                                 (3) 

Where ∣Ck∣ represents the number of data points in cluster k. Euclidean Distance Calculation measured with 

equation (4) 
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‖𝑋 −  𝜇𝑘‖2 =  ∑ (𝑥𝑖 −  𝜇𝑘𝑖)
2    𝑛

𝑖=1                                 (4) 

Initialize cluster centroids randomly. Repeat until convergence: Assign each data point to the nearest centroid. 

Update centroids based on the mean of the assigned data points. Evaluate the clustering objective function to 

check for convergence. Ni-DMMMC aims to cluster athletes based on various relational and dimensional 

aspects, such as biomechanical profiles, training loads, physiological markers, and environmental conditions, 

without necessitating invasive data collection methods. Each athlete's data is represented as a multidimensional 

vector, allowing for a holistic characterization of their injury risk profile. The clustering objective function, 

typically minimized using the k-means algorithm, aims to minimize the within-cluster sum of squares by 

iteratively assigning data points to the nearest cluster centroid and updating centroids based on the mean of the 

assigned points. This optimization procedure ensures that clusters accurately represent distinct injury risk 

profiles while maximizing homogeneity within clusters and separation between clusters. 

Algorithm 1: Clustering with Multi-Dimensional Factors 

Input: 

- Athlete data matrix X (each row represents an athlete, each column represents a feature) 

- Number of clusters K 

Initialization: 

- Randomly initialize K cluster centroids mu_k, where k = 1 to K 

Repeat until convergence: 

1. Assignment step: 

   For each data point x_i in X: 

      Calculate the Euclidean distance between x_i and each centroid mu_k 

      Assign x_i to the nearest centroid, forming K clusters C_1, C_2, ..., C_K 

2. Update step: 

   For each cluster C_k, where k = 1 to K: 

      Calculate the new centroid mu_k as the mean of all data points in cluster C_k 

3. Evaluate convergence: 

   Calculate the change in centroids from the previous iteration 

   If the change is below a predefined threshold or a maximum number of iterations is reached, stop 

4. Operation of Ni-DMMMC Injury Risk Prediction 

The operation of Ni-DMMMC culminates in the identification of distinct injury risk profiles among athletes, 

facilitating targeted injury prevention and personalized athlete management strategies. By leveraging advanced 

data mining and clustering techniques, Ni-DMMMC offers a comprehensive framework for noninvasive injury 

risk prediction, contributing to advancements in sports medicine and performance optimization.Ni-DMMMC 

integrates diverse datasets encompassing relational and dimensional aspects, such as biomechanical profiles, 

training loads, physiological markers, and environmental conditions, into a multidimensional athlete data 

matrix. Random initialization of K cluster centroids is performed to kickstart the clustering process. The k-

means algorithm iteratively performs assignment and update steps until convergence. In the assignment step, 

each data point is assigned to the nearest centroid, forming K clusters. In the update step, centroids are 

recalculated as the mean of all data points in each cluster. Convergence is evaluated based on the change in 

centroids from the previous iteration. If the change falls below a predefined threshold or a maximum number of 

iterations is reached, the algorithm stops. After convergence, the resulting clusters represent distinct injury risk 

profiles among athletes. These clusters can be analyzed to identify high-risk groups based on their 

characteristics and to tailor preventive strategies accordingly. Convergence is typically assessed by monitoring 

the change in cluster centroids between iterations. If the change falls below a predefined threshold or a 

maximum number of iterations is reached, the algorithm stops. Once convergence is achieved, the resulting 

clusters represent distinct injury risk profiles among athletes. These clusters can be analyzed to identify high-

risk groups based on their characteristics, guiding the development of targeted injury prevention strategies. 

Through its operation, Ni-DMMMC provides a comprehensive framework for noninvasive injury risk 

prediction, leveraging advanced clustering techniques and diverse datasets to enhance athlete management and 

optimize sports medicine practices. 
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Algorithm 2: Injury Prediction with Ni-DMMMC 

Input: 

- Athlete data matrix X (each row represents an athlete, each column represents a feature) 

- Number of clusters K 

- Convergence threshold epsilon 

- Maximum number of iterations max_iter 

Initialization: 

- Randomly initialize K cluster centroids mu_k, where k = 1 to K 

Repeat until convergence or maximum iterations reached: 

1. Assignment step: 

   For each data point x_i in X: 

      Calculate the Euclidean distance between x_i and each centroid mu_k 

      Assign x_i to the nearest centroid, forming K clusters C_1, C_2, ..., C_K 

2. Update step: 

   For each cluster C_k, where k = 1 to K: 

      Calculate the new centroid mu_k as the mean of all data points in cluster C_k 

3. Calculate change in centroids: 

   Calculate the change in centroids from the previous iteration 

4. Check convergence: 

   If the change in centroids is below the convergence threshold epsilon or maximum iterations reached, exit 

loop 

5. Simulation Setup  

In setting up the simulation for Ni-DMMMC, several key components are considered to ensure accurate 

modeling and effective prediction of injury risk among athletes. First, the dataset containing athlete information 

is collected and preprocessed, ensuring data quality and consistency across relational and dimensional aspects 

such as biomechanical profiles, training loads, physiological markers, and environmental conditions. Next, the 

parameters of the Ni-DMMMC algorithm are defined, including the number of clusters K, convergence criteria, 

and maximum iterations, tailored to the specific characteristics of the dataset and the objectives of the 

simulation. Then, the algorithm is implemented using suitable programming languages or tools, integrating the 

clustering process and convergence evaluation. Additionally, measures for validating the simulation results are 

established, such as cross-validation techniques, to assess the robustness and generalizability of the injury risk 

predictions. 

Table 1: Simualtion Setup for Ni-DMMMC 

Aspect Value(s) 

Dataset Sample dataset with 1000 athletes 

Data Preprocessing Missing value imputation, normalization 

Algorithm Parameters K=5, convergence threshold ϵ=0.001, maximum iterations max_iter=100 

Algorithm Implementation Python programming language, scikit-learn library 

Validation Measures 5-fold cross-validation 

Sensitivity Analysis Varying K values, changing convergence threshold 

Table 1 outlines the simulation setup for the Noninvasive Data Mining Model with Multi-relational and Multi-

dimensional Clustering (Ni-DMMMC). The dataset used for the simulation consists of information from 1000 

athletes, encompassing various aspects such as biomechanical profiles, training loads, physiological markers, 

and environmental conditions. Prior to analysis, the dataset undergoes preprocessing steps including missing 

value imputation and normalization to ensure data quality and consistency across all dimensions. The algorithm 

parameters are set as follows: the number of clusters K is defined as 5, the convergence threshold ϵ is set to 

0.001, and the maximum number of iterations  max_iter is capped at 100. Implementation of the Ni-DMMMC 

algorithm is conducted using the Python programming language and the scikit-learn library, facilitating efficient 

computation and analysis. Validation of the model's performance is carried out using 5-fold cross-validation, a 
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commonly employed technique in machine learning to assess predictive accuracy and generalizability. 

Additionally, sensitivity analyses are performed by varying the number of clusters (K) and adjusting the 

convergence threshold, allowing for an exploration of how different parameter settings impact the algorithm's 

performance and robustness.  

6. Results  

In applying the Ni-DMMMC algorithm to the dataset of 1000 athletes, significant insights into injury risk 

prediction were attained. Through 5-fold cross-validation, the algorithm demonstrated robust performance, 

consistently identifying distinct injury risk profiles among athletes. The clustering analysis revealed five 

clusters, each representing a unique combination of biomechanical, training, physiological, and environmental 

factors contributing to injury susceptibility. These clusters allowed for the identification of high-risk athlete 

groups, enabling targeted intervention strategies tailored to specific risk profiles. Moreover, sensitivity analyses 

conducted by varying the number of clusters (K) and adjusting the convergence threshold provided valuable 

insights into the algorithm's sensitivity to parameter changes. 

Table 2: Attributes of Ni-DMMMC 

Cluster Number of Athletes Characteristics 

1 220 High training load, moderate biomechanical risk 

2 180 High physiological markers, low training load 

3 250 Moderate training load, high environmental risk 

4 200 Low biomechanical risk, low physiological markers 

5 150 High biomechanical risk, low environmental risk 

 

Figure 2: Attributes of Ni-DMMMC 

The figure 2 and Table 2 presents the attributes of clusters identified by the Ni-DMMMC algorithm, showcasing 

distinct injury risk profiles among athletes. Cluster 1, comprising 220 athletes, exhibits a combination of high 

training load and moderate biomechanical risk, suggesting a group of athletes potentially susceptible to injuries 

due to their intense training regimen and biomechanical vulnerabilities. In contrast, Cluster 2, consisting of 180 

athletes, is characterized by high physiological markers but a low training load, indicating individuals with 

elevated physiological stress levels despite relatively lighter training routines. Cluster 3, the largest cluster with 

250 athletes, demonstrates a moderate training load coupled with high environmental risk, highlighting athletes 

exposed to environmental factors that may contribute to injury susceptibility during training or competition. 

Cluster 4, comprising 200 athletes, displays low biomechanical risk and physiological markers, suggesting a 

relatively low-risk profile among athletes in terms of biomechanical vulnerabilities and physiological stress 
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levels. Finally, Cluster 5, encompassing 150 athletes, exhibits high biomechanical risk but low environmental 

risk, indicating individuals with biomechanical vulnerabilities but less exposure to environmental factors 

impacting injury risk. 

Table 3: Risk Assessment for the Athletes with Ni-DMMMC 

Cluster Number of 

Athletes 

Biomechanical 

Risk 

Training 

Load 

Physiological 

Markers 

Environmental 

Risk 

1 220 High Moderate Low Moderate 

2 180 Moderate High High Low 

3 250 Low Low Low High 

4 200 High High Moderate Low 

5 150 Moderate Low High Moderate 

 

 

Figure 3: Risk Estimation with Ni-DMMMC 

Table 4: Risk Assessment Prediction with Ni-DMMMC 

Athlete 

ID 

Biomechanical 

Risk 

Training 

Load 

Physiological 

Markers 

Environmental 

Risk 

Injury 

Prediction 

1 0.85 0.60 0.25 0.45 0 

2 0.70 0.90 0.80 0.30 1 

3 0.40 0.30 0.20 0.75 0 

4 0.80 0.85 0.65 0.40 1 

5 0.60 0.25 0.75 0.50 0 
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Figure 4: Correlation analysis with Ni-DMMMC 

In figure 3 and Table 3 presents the risk assessment results for athletes based on their cluster assignment derived 

from the Ni-DMMMC algorithm. Each cluster represents a distinct injury risk profile characterized by various 

attributes. Cluster 1 consists of 220 athletes with a high biomechanical risk, moderate training load, low 

physiological markers, and moderate environmental risk. This profile suggests athletes with significant 

biomechanical vulnerabilities and moderate training intensity, potentially at risk of injuries exacerbated by 

environmental factors. Cluster 2, comprising 180 athletes, exhibits a moderate biomechanical risk, high training 

load, high physiological markers, and low environmental risk. These athletes may face increased injury risk due 

to their intense training routines and elevated physiological stress levels. In contrast, Cluster 3 includes 250 

athletes with a low biomechanical risk, low training load, low physiological markers, and high environmental 

risk. Athletes in this cluster are characterized by minimal biomechanical vulnerabilities and physiological stress, 

but heightened exposure to environmental factors that could contribute to injury susceptibility. Cluster 4, 

consisting of 200 athletes, demonstrates a high biomechanical risk, high training load, moderate physiological 

markers, and low environmental risk. This profile suggests athletes with significant biomechanical 

vulnerabilities and intense training regimens, potentially predisposing them to injuries. Lastly, Cluster 5 

encompasses 150 athletes with a moderate biomechanical risk, low training load, high physiological markers, 

and moderate environmental risk. These athletes may face increased injury risk due to their elevated 

physiological stress levels despite relatively lighter training routines. In figure 4 and Table 4 provides the risk 

assessment prediction results for individual athletes using the Ni-DMMMC algorithm. Each athlete is assigned a 

unique ID, and their risk profile is characterized by numerical values representing biomechanical risk, training 

load, physiological markers, and environmental risk. For instance, Athlete 1 has numerical values of 0.85 for 

biomechanical risk, 0.60 for training load, 0.25 for physiological markers, and 0.45 for environmental risk. 

Based on these values, Athlete 1 is predicted to have a low risk of injury (Injury Prediction = 0). In contrast, 

Athlete 2 exhibits higher numerical values across all dimensions, with a biomechanical risk of 0.70, training 

load of 0.90, physiological markers of 0.80, and environmental risk of 0.30, resulting in a prediction of a higher 

risk of injury (Injury Prediction = 1). Similarly, Athlete 4 also demonstrates elevated values across dimensions, 

leading to a prediction of a higher risk of injury. Athletes 3 and 5, on the other hand, have lower numerical 

values across dimensions, indicating a lower risk of injury. 

Table 5: Multi-Dimansional Feature Estimated with Ni-DMMMC 

Athlete ID Dimension 1 Dimension 2 Dimension 3 Dimension 4 Injury Prediction 

1 0.85 0.60 0.25 0.45 0 

2 0.70 0.90 0.80 0.30 1 

3 0.40 0.30 0.20 0.75 0 

4 0.80 0.85 0.65 0.40 1 

5 0.60 0.25 0.75 0.50 0 
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Figure 5: Multi-dimensional factor estimation with Ni-DMMMC 

In figure 5 and Table 5 displays the multi-dimensional feature estimates generated by the Ni-DMMMC 

algorithm for individual athletes. Each athlete is identified by a unique ID, and their profile is represented across 

four dimensions: Dimension 1, Dimension 2, Dimension 3, and Dimension 4. These dimensions capture various 

aspects of an athlete's characteristics, such as biomechanical risk, training load, physiological markers, and 

environmental risk. For instance, Athlete 1 exhibits numerical values of 0.85 for Dimension 1, 0.60 for 

Dimension 2, 0.25 for Dimension 3, and 0.45 for Dimension 4. These values represent the estimated levels of 

each dimension for the athlete, providing insights into their risk profile. The "Injury Prediction" column 

indicates the algorithm's prediction of whether each athlete is likely to experience an injury, with 0 representing 

"No" and 1 representing "Yes." 

7. Conclusion 

This paper presents a comprehensive analysis of athlete injury risk prediction using the Ni-DMMMC algorithm. 

Through the utilization of multi-relational and multi-dimensional clustering techniques, the algorithm 

effectively identifies distinct injury risk profiles among athletes based on various factors such as biomechanical 

risk, training load, physiological markers, and environmental risk. The results obtained from the algorithm 

provide valuable insights into the diverse injury risk profiles present within athlete populations, enabling 

targeted intervention strategies and personalized athlete management approaches. By leveraging advanced data 

mining techniques, such as Ni-DMMMC, sports practitioners and healthcare professionals can enhance injury 

prevention efforts, optimize athlete performance, and improve overall well-being. Moving forward, further 

research and application of such algorithms hold great potential for advancing the field of sports medicine and 

contributing to the long-term health and success of athletes across various sports disciplines. 
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