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Abstract: - Rail transportation, a cornerstone of modern logistics and passenger transit systems, plays a pivotal role in facilitating the 

efficient movement of goods and people across vast distances. Operating on a network of interconnected tracks, rail systems offer a reliable 

and environmentally sustainable mode of transportation, particularly for long-distance travel and freight shipments. The paper presents a 

comprehensive investigation into the application of advanced computational techniques in the realm of rail transportation management. 

Specifically, Mamdani fuzzy logic and Backpropagation (BP) Neural Networks are employed to address critical challenges in scheduling 

and classification within rail networks. The utilization of Mamdani fuzzy logic facilitates nuanced decision-making in scheduling processes, 

considering uncertainties and complexities inherent in rail operations. Through linguistic rules and fuzzy sets, the scheduling system can 

effectively adapt to various operational constraints and disruptions, leading to more resilient and efficient scheduling solutions. 

Additionally, the integration of BP Neural Network enhances classification accuracy and prediction capabilities, enabling precise 

forecasting of train movements, passenger flows, and other key variables.    
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1. Introduction 

Scheduling within rail transportation encompasses a multifaceted process that integrates various elements to 

ensure the smooth and efficient movement of trains and resources. At its core lies the creation of timetables, 

meticulously crafted to delineate train departures, arrivals, and stops along designated routes [1]. Capacity 

planning is paramount, requiring a thorough analysis of infrastructure limitations, such as track availability and 

station capacity, to optimize resource utilization [2]. Routing and network design play a pivotal role, 

determining the most efficient paths for trains through complex rail networks. Crew scheduling is equally 

essential, ensuring trained personnel are assigned appropriately while adhering to labor regulations and safety 

protocols [3]. Real-time monitoring enables swift adjustments to schedules in response to disruptions, 

safeguarding against delays and ensuring operational continuity. Intermodal integration further complicates 

scheduling, necessitating seamless coordination between rail and other transportation modes [4]. Safety and 

compliance remain paramount throughout, with schedules designed to prioritize passenger and cargo safety 

while meeting customer service expectations through reliable and convenient service delivery. Advanced 

technologies offer promising solutions, empowering operators with predictive analytics and optimization 

algorithms to enhance efficiency and adaptability in rail scheduling practices [5]. 

Rail transportation, a cornerstone of modern infrastructure, is a vital component of global logistics and 

passenger travel networks [6]. With a rich history dating back centuries, railroads have evolved into 

sophisticated systems that efficiently move people and goods across vast distances. At its essence, rail 

transportation involves the movement of trains along tracks laid out across diverse terrains, connecting cities, 

regions, and countries [7]. Whether transporting bulk commodities like coal and grain or facilitating the daily 

commute for millions of individuals, railroads offer numerous advantages, including energy efficiency, cost-

effectiveness, and reduced environmental impact compared to other modes of transportation [8]. From high-

speed passenger trains whisking travelers between urban centers to freight trains hauling goods across 

continents, railroads play a pivotal role in shaping economies and societies worldwide [9]. However, modern 

rail transportation faces challenges such as aging infrastructure, capacity constraints, and the need for 

continued innovation to meet evolving demands. Nonetheless, with ongoing advancements in technology and 

infrastructure development, rail transportation remains a crucial pillar of sustainable and efficient 

transportation systems for the foreseeable future [10]. 
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A BP (Backpropagation) neural network, a fundamental component of artificial neural networks, stands as a 

powerful tool in the realm of machine learning and pattern recognition [11]. Comprising interconnected nodes 

organized into layers, it utilizes a supervised learning technique to adjust weights and biases iteratively, thereby 

minimizing the difference between predicted and actual outputs [12]. This process, known as backpropagation, 

involves propagating errors backward from the output layer to the input layer, enabling the network to learn 

and adapt its parameters over time. Widely applied across various domains, including image and speech 

recognition, financial forecasting, and medical diagnosis, BP neural networks excel in tasks requiring nonlinear 

mapping and complex pattern recognition [13]. However, challenges such as overfitting, vanishing gradients, 

and computational complexity persist, necessitating ongoing research and refinement. Nonetheless, with their 

ability to learn from data and generalize patterns, BP neural networks continue to drive advancements in 

artificial intelligence, empowering solutions to increasingly intricate real-world problems [14]. 

A mathematical model with BP (Backpropagation) neural networks presents a promising approach for 

optimizing rail transportation scheduling [15]. By leveraging the capabilities of BP neural networks to learn 

complex patterns and relationships within rail scheduling data, this hybrid model offers a dynamic solution to 

the challenges inherent in scheduling train movements efficiently [16]. Through the iterative adjustment of 

network parameters based on supervised learning principles, the model can adapt and refine its predictions over 

time, improving the accuracy and effectiveness of scheduling decisions [17]. Key factors such as train routes, 

timetables, infrastructure capacity, and potential disruptions can be incorporated into the model to enhance its 

predictive capabilities and robustness. Moreover, by utilizing historical data and real-time inputs, the model 

can continuously update and optimize schedules to account for changing conditions and unforeseen events 

[18]. 

The contribution of the paper are: Firstly, it introduces and applies Mamdani fuzzy logic to the scheduling 

process, offering a novel approach to decision-making that considers the uncertainty and complexity inherent 

in rail operations. By incorporating linguistic rules and fuzzy sets, the scheduling system can effectively handle 

various factors such as traffic conditions, weather disruptions, and operational constraints, leading to more 

robust and adaptive scheduling solutions. Secondly, the paper leverages Backpropagation (BP) Neural Network 

for classification tasks, enabling accurate prediction of train movements, passenger flows, and other critical 

variables in rail transportation. This contributes to enhancing operational efficiency, improving resource 

allocation, and facilitating informed decision-making for rail operators and stakeholders. Furthermore, the 

paper provides empirical evidence of the effectiveness of these computational techniques through experimental 

results, demonstrating their potential to address real-world challenges in rail transportation management. 

2. Literature Review 

The simulation of a mathematical model of rail transportation scheduling based on BP (Backpropagation) 

neural network represents a groundbreaking endeavor in the realm of transportation logistics and artificial 

intelligence. Rail transportation stands as a critical component of global infrastructure, facilitating the 

movement of passengers and freight with efficiency and reliability. However, the optimization of rail 

scheduling poses significant challenges due to the complexity of coordinating trains, tracks, and resources 

while minimizing delays and maximizing throughput. In response to these challenges, the integration of BP 

neural networks offers a promising avenue for enhancing scheduling accuracy and efficiency. By harnessing 

the power of machine learning algorithms, this simulation aims to develop a dynamic and adaptive scheduling 

model capable of learning from historical data, predicting future demand patterns, and optimizing train 

movements in real-time. This introduction sets the stage for a comprehensive exploration of the intersection 

between rail transportation, mathematical modeling, and artificial intelligence, highlighting the potential of this 

innovative approach to revolutionize scheduling practices and improve overall system performance. 

Bogdanova et al. (2023) present a neuro-fuzzy-based mathematical model for dispatching an industrial railway 

junction, highlighting the intersection of neural networks with railway operations. Shang et al. (2022) tackle 

the optimization of urban rail transit networks using a Lagrangian duality reformulation and backpropagation-

based iterative optimization framework. Meanwhile, Tu et al. (2022) delve into the modeling of Mobility as a 

Service (MaaS) collaborative dispatching systems for railway passenger transport hubs, showcasing the 
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versatility of neural network algorithms in transportation. Peng and Zheng (2023) propose a fuzzy rule-based 

neural network for scheduling high-speed train manufacturing systems, demonstrating the application of neural 

networks in manufacturing contexts. Furthermore, Ha and Chen (2022) explore passenger flow forecasting in 

urban rail transit using data mining techniques, offering insights into the predictive capabilities of neural 

networks in transportation planning. Wang et al. (2022) extend the application of neural networks to image 

processing, focusing on transforming image elements to structured data using BP neural networks. Zhou et al. 

(2023) investigate the air brake system of heavy haul trains, highlighting the role of neural networks in 

enhancing the efficiency and safety of rail operations. Wang (2022) analyzes bank credit risk evaluation models 

using BP neural networks, illustrating their utility in financial risk assessment. Li et al. (2023) present a neural 

network-based optimization approach for subway regenerative energy systems, addressing sustainability 

concerns in transportation infrastructure. Lastly, Sun (2023) explores the optimization of recognition 

algorithms using multi-feature extraction, contributing to advancements in image processing and pattern 

recognition. 

Studies such as Bogdanova et al. (2023), Shang et al. (2022), and Tu et al. (2022) demonstrate the utility of 

neural networks in optimizing railway operations, from dispatching industrial railway junctions to enhancing 

passenger assignment in urban transit networks. Additionally, Peng and Zheng (2023) and Ha and Chen (2022) 

highlight the role of neural networks in manufacturing scheduling and passenger flow forecasting, respectively, 

while Wang et al. (2022) and Zhou et al. (2023) focus on applications in image processing and rail safety 

systems. Furthermore, research by Wang (2022), Li et al. (2023), and Sun (2023) underscores the broad 

spectrum of neural network applications, spanning from financial risk evaluation to subway energy 

optimization and recognition algorithm optimization. 

3. Mamdani Fuzzy Mathematical Modelling 

Mamdani fuzzy mathematical modeling has been applied with significant success in the domain of rail 

transportation, offering a robust framework for dealing with the inherent uncertainties and complexities of this 

system. In the context of rail transportation, Mamdani fuzzy modeling involves the representation of linguistic 

variables and fuzzy rules to capture the relationships between various parameters affecting train operations. 

Mamdani fuzzy model for rail transportation involves several steps. First, linguistic variables are defined to 

represent qualitative aspects such as "distance to destination," "train speed," "track congestion," and "arrival 

punctuality." These linguistic variables are then fuzzified into fuzzy sets, each characterized by membership 

functions that describe the degree of membership of a given input to each set. Next, a set of fuzzy rules is 

formulated based on expert knowledge or historical data, which encode the relationships between the input 

linguistic variables and the desired output, such as "adjust train speed if distance to destination is short and 

track congestion is high." These fuzzy rules are typically expressed in the form of IF-THEN statements, where 

the antecedent (IF) specifies the conditions under which the rule applies, and the consequent (THEN) defines 

the action to be taken. Once the fuzzy rules are defined, the Mamdani inference mechanism is employed to 

compute the output fuzzy set based on the input fuzzy sets and the fuzzy rules. This involves applying fuzzy 

logic operations such as fuzzy AND and fuzzy OR to combine the fuzzy sets according to the specified rules. 

Finally, the output fuzzy set is defuzzified to obtain a crisp output value, representing the recommended action 

or decision. The rules for the transportation through train is presented in Table 1 and Figure 1. 

Table 1: Train Transportation Rules 

Rule Distance to Destination Train Speed Track Congestion Arrival Punctuality 

R1 Short Slow High Late 

R2 Long Fast Low Early 

R3 Medium Medium Medium On Time 

R4 Short Fast Low Early 

R5 Long Slow High Late 
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Figure 1: Transportation with Train Rules 

Table 2: Linguistic Variables for Railway Transportation 

Variable Linguistic Terms Membership Functions 

Distance (D) Short (S), Medium (M), Long 

(L) 

Triangular: S(0,20,40), M(30,50,70), 

L(60,80,100) 

Train Speed (S) Slow (SL), Medium (MD), Fast 

(FS) 

Triangular: SL(0,30,60), MD(40,70,100), 

FS(60,90,120) 

Track Congestion 

(C) 

Low (LW), Medium (MW), 

High (HW) 

Triangular: LW(0,30,60), MW(40,70,100), 

HW(80,110,140) 

Arrival Punctuality 

(A) 

Late (LT), On Time (OT), Early 

(ER) 

Not specified 

 

 

Figure 2: Railway Transportation Linguistic Variables 

Table 3: Fuzzy Rules for Railway Transportation 

Rule Antecedent (IF) Consequent (THEN) 

R1 D=S AND C=H S=SL 

R2 D=L OR C=L S=FS 

R3 D=M AND C=M S=MD 

R4 D=S AND S=FS A=LT 

R5 D=L AND S=SL A=LT 
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Figure 3: Railway Transportation Fuzzy Model 

In the Mamdani fuzzy model designed for rail transportation, linguistic variables and their associated fuzzy sets 

play a pivotal role in capturing the inherent uncertainties and complexities of the system shown in Figure 3. 

These linguistic variables, such as Distance, Train Speed, and Track Congestion, are represented by fuzzy sets 

characterized by membership functions, typically defined using triangular or trapezoidal shapes shown in 

Figure 2. For instance, Distance might be categorized as Short, Medium, or Long, each with a corresponding 

triangular membership function specifying its degree of membership within the set. Similarly, Train Speed 

could be categorized as Slow, Medium, or Fast, with corresponding membership functions capturing the fuzzy 

nature of speed transitions. Fuzzy rules, expressed as IF-THEN statements, guide decision-making within the 

system based on the input variables' fuzzy sets. For example, a rule might dictate that IF the Distance is Short 

AND Track Congestion is High, THEN the Train Speed should be set to Slow. These rules are formulated 

based on expert knowledge or historical data, providing a structured framework for making decisions in 

uncertain and dynamic rail transportation environments. By leveraging linguistic variables, fuzzy sets, and 

fuzzy rules, the Mamdani fuzzy model enables the effective representation and management of complex rail 

transportation systems, contributing to improved efficiency, safety, and decision-making processes. 

4. Scheduling in Rail Transportation  

Scheduling in rail transportation is a multifaceted process involving the coordination of train movements, 

resource allocation, and timetabling to ensure efficient and reliable operations. Mamdani fuzzy logic presents a 

versatile approach to scheduling in this domain, allowing for the integration of imprecise or uncertain factors 

into decision-making processes. The Mamdani fuzzy scheduling model for rail transportation, we begin by 

defining linguistic variables to represent key scheduling parameters such as train departure time, track 

occupancy, and arrival punctuality. These linguistic variables are then fuzzified into fuzzy sets using 

membership functions, which quantify the degree of membership of a given input to each set. For example, 

departure time could be categorized as "Early," "On Time," or "Late," each with corresponding triangular 

membership functions defining their respective degrees of earliness or lateness. 

Next, fuzzy rules are formulated to guide scheduling decisions based on the input variables' fuzzy sets. These 

rules are typically expressed in the form of IF-THEN statements, where the antecedent (IF) specifies the 

conditions under which the rule applies, and the consequent (THEN) defines the action to be taken. For 

instance, a fuzzy rule might state that IF the departure time is Late AND track occupancy is High, THEN adjust 

the train speed to Slow. 

The fuzzy rules can be represented using fuzzy logic implications, where the antecedents and consequents are 

evaluated using fuzzy logic operations such as fuzzy AND, fuzzy OR, and fuzzy NOT. For example, the fuzzy 

rule mentioned above can be mathematically represented as:  



J. Electrical Systems 20-6s (2024): 1552-1564 

1557 

𝐼𝐹 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 𝑖𝑠 𝐿𝑎𝑡𝑒

∧ 𝑇𝑟𝑎𝑐𝑘 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑖𝑠 𝐻𝑖𝑔ℎ 𝑇𝐻𝐸𝑁 𝐴𝑑𝑗𝑢𝑠𝑡 𝑇𝑟𝑎𝑖𝑛 𝑆𝑝𝑒𝑒𝑑 𝑡𝑜 𝑆𝑙𝑜𝑤𝐼𝐹 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 𝑖𝑠 𝐿𝑎𝑡𝑒

∧ 𝑇𝑟𝑎𝑐𝑘 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑖𝑠 𝐻𝑖𝑔ℎ 𝑇𝐻𝐸𝑁 𝐴𝑑𝑗𝑢𝑠𝑡 𝑇𝑟𝑎𝑖𝑛 𝑆𝑝𝑒𝑒𝑑 𝑡𝑜 𝑆𝑙𝑜𝑤 

Once the fuzzy rules are defined, the Mamdani inference mechanism is applied to compute the output fuzzy set 

based on the input fuzzy sets and the fuzzy rules. This involves combining the input fuzzy sets according to the 

specified rules using fuzzy logic operations. Finally, the output fuzzy set is defuzzified to obtain a crisp output 

value, representing the scheduling decision or action to be taken. The process of scheduling in rail 

transportation involves coordinating the movement of trains, allocating resources, and managing timetables to 

ensure efficient and reliable operations. The scheduling process begins with the creation of timetables, which 

dictate when and where trains will depart, arrive, and stop along their routes. Timetables take into account 

factors such as travel time, track availability, station capacity, and connection points. They are typically 

designed to optimize resource utilization and minimize conflicts between trains. Rail infrastructure has limited 

capacity, so scheduling must consider the availability of tracks, platforms, and other resources. Capacity 

planning involves analyzing demand, identifying bottlenecks, and optimizing resource allocation to maximize 

efficiency. This may include balancing the frequency and speed of trains to ensure optimal utilization of 

available infrastructure. Rail networks can be complex, with multiple routes and junctions. Scheduling 

algorithms determine the most efficient routes for trains based on factors like distance, speed, and track 

conditions. This involves considering factors such as track maintenance, signal systems, and operational 

constraints to ensure safe and reliable operations. Trains require qualified personnel such as engineers, 

conductors, and maintenance crews. Crew scheduling involves assigning staff to trains while ensuring 

compliance with labor regulations, managing rest periods, and optimizing productivity. Crew schedules must 

align with train timetables to ensure that adequate staffing is available for each journey. Rail schedules are 

subject to disruptions such as weather events, equipment failures, and unexpected delays. Monitoring systems 

track train movements in real-time, allowing operators to make adjustments and minimize the impact of 

disruptions on overall performance. This may involve rerouting trains, adjusting timetables, or reallocating 

resources to maintain service levels. Rail transportation often integrates with other modes such as trucks, ships, 

and airplanes. Scheduling must account for intermodal connections to ensure seamless transfer of passengers or 

freight between different transportation modes. This involves coordinating schedules and optimizing transfer 

points to minimize waiting times and streamline logistics. Rail operations must adhere to strict safety 

regulations and industry standards. Scheduling practices should prioritize safety by minimizing risks such as 

collisions, derailments, and equipment failures. This may involve scheduling maintenance windows, 

implementing safety protocols, and ensuring compliance with regulatory requirements. Timely and reliable 

service is essential for customer satisfaction. Rail schedules should meet the needs of passengers or shippers by 

providing convenient departure times, reliable arrival estimates, and efficient connections to other destinations. 

This involves balancing operational efficiency with customer preferences to deliver a positive experience for 

all stakeholders. The scheduling process in rail transportation is a complex and dynamic undertaking that 

requires careful coordination of various elements to ensure efficient and reliable operations. By integrating 

advanced technologies, predictive analytics, and optimization algorithms, rail operators can enhance 

scheduling practices to meet the evolving demands of modern transportation systems. 

Table 5: Scheduling in Rail Transportation 

Step Description 

Timetable Creation Creation of timetables specifying departure, arrival, and stop times for trains. 

Capacity Planning Analyzing demand, identifying bottlenecks, and optimizing resource allocation 

to maximize efficiency. 

Routing and Network 

Design 

Determining efficient routes considering factors like distance, speed, and track 

conditions. 

Crew Scheduling Assigning qualified personnel to trains while complying with labor regulations 

and optimizing productivity. 

Real-time Monitoring and 

Adjustments 

Tracking train movements in real-time, making adjustments to minimize 

disruptions and maintain service levels. 
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Intermodal Integration Coordinating schedules and optimizing transfer points to ensure seamless 

transfer between different transportation modes. 

Safety and Compliance Prioritizing safety by adhering to strict regulations, implementing safety 

protocols, and ensuring compliance with standards. 

Customer Service Meeting the needs of passengers or shippers by providing timely, reliable 

service and efficient connections to other destinations. 

In this scheduling table for 10 trains, each row represents a distinct train journey, delineating crucial parameters 

for efficient rail operations. The "Train Number" uniquely identifies each train, while "Departure Time" and 

"Arrival Time" denote the times the train departs from and arrives at its respective stations. The "Origin" and 

"Destination" columns specify the starting and ending stations of the journey, respectively. Additionally, the 

"Distance (km)" parameter outlines the total distance covered by each train, providing insights into the length 

of the journey. The "Track Type" category indicates the type of track utilized by the train, such as express, 

freight, or passenger, influencing operational considerations and speed limits. The "Max Speed (km/h)" 

parameter details the maximum allowable speed for the train, crucial for adherence to safety regulations and 

journey efficiency. Furthermore, the "Stops" column delineates the number of stops the train will make en 

route, impacting overall journey duration and passenger convenience. Lastly, the "Crew Assigned" category 

specifies the crew designated to operate each train, ensuring operational readiness and adherence to staffing 

requirements. 

5. Classification with BP Neural Network 

The process of rail transportation encompasses various stages, from scheduling and routing trains to managing 

real-time operations. Integrating classification tasks using Backpropagation (BP) Neural Networks with 

Mamdani fuzzy logic adds a layer of sophistication to this process, enabling the system to handle complex 

decision-making scenarios with uncertain or imprecise inputs. The process of combining Mamdani fuzzy logic 

with BP Neural Network can be represented as follows: 

Let 𝑋 represent the input data, and 𝑌 represent the target class labels. Mamdani fuzzy logic transforms the 

input data 𝑋 into fuzzy sets 𝑋𝑓, based on linguistic variables and fuzzy rules. The BP Neural Network takes 𝑋𝑓 

as input and learns to predict the class labels 𝑌 using the backpropagation algorithm. The network's output 

𝑌𝑝𝑟𝑒𝑑 is compared with the actual class labels 𝑌 to compute the error 𝐸. The weights of the neural network are 

adjusted iteratively using gradient descent to minimize the error 𝐸. In Mamdani fuzzy logic, input data 𝑋 is 

transformed into fuzzy sets 𝑋𝑓 based on linguistic variables and fuzzy rules. The transformation of crisp input 

data 𝑋 into fuzzy sets 𝑋𝑓 is achieved through membership functions. Let's denote the membership function for 

input variable 𝑋 as 𝜇𝑋(𝑥), where 𝑥 is the crisp input value. This membership function assigns a degree of 

membership to each linguistic term for 𝑋. For example, if 𝑋 represents "train speed," linguistic terms could 

include "slow," "medium," and "fast." The process of fuzzification can be represented as in equation (1) 

𝑋𝑓 = {𝜇𝑋(𝑥1), 𝜇𝑋(𝑥2), . . . , 𝜇𝑋(𝑥𝑛)}                                     (1) 

In equation (1)  x1,x2,...,xn are the crisp input values, and 𝜇𝑋(𝑥𝑖) is the degree of membership for each 

linguistic term corresponding to 𝑥𝑖. Once the input data is preprocessed into fuzzy sets 𝑋𝑓, it serves as input to 

the BP Neural Network for classification. The network consists of multiple layers of neurons, each with 

associated weights that are adjusted during training to minimize prediction errors. Let's denote the output of the 

j-th neuron in the l-th layer as 𝑧𝑗(𝑙), and the activation function of the j-th neuron in the l-th layer as aj(l). The 

forward propagation in the neural network can be represented as in equation (2) and (3) 

𝑧𝑗
(𝑙)

=  ∑ 𝑤𝑗𝑘
(𝑙)

𝑎𝑘
(𝑙−1)

+ 𝑏𝑗
(𝑙)𝑁(𝑙−1)

𝑘=1                                                          (2) 

𝑎𝑗
(𝑙)

=  𝜎(𝑧𝑗
(𝑙)

)                                                                                (3) 

In equation (2) and (3) 𝑁(𝑙 − 1) is the number of neurons in the previous layer, 𝑤𝑗𝑘(𝑙) is the weight 

connecting the k-th neuron in layer l−1 to the j-th neuron in layer 𝑙, 𝑏𝑗
(𝑙)

is the bias term for the j-th neuron in 
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layer 𝑙, and 𝜎(⋅) is the activation function. During training, the backpropagation algorithm is used to update the 

weights and biases of the network to minimize the error between predicted and actual outputs. This involves 

computing the gradient of the error function with respect to the weights and biases and adjusting them using 

gradient descent. The fuzzy sets 𝑋𝑓 obtained from Mamdani fuzzy logic serve as inputs to the BP Neural 

Network for classification. The network learns to predict the target categories or actions based on the fuzzy 

representations of the input data. During training, the weights and biases of the network are adjusted using 

backpropagation to minimize prediction errors. The integration of Mamdani fuzzy logic with BP Neural 

Networks can be represented as in equation (4) 

𝑌𝑝𝑟𝑒𝑑 = 𝐵𝑃𝑁𝑁(𝑋𝑓)                                                                                    (4) 

In equation (4) Ypred is the predicted output of the BP Neural Network given the fuzzy representations 𝑋𝑓 of 

the input data. 

6. Simulation Environment  

The simulation environment for rail transportation serves as a virtual platform where various aspects of railway 

operations can be modeled, analyzed, and optimized. This environment typically consists of software tools and 

systems that simulate the behavior of trains, infrastructure, and other relevant entities within the railway 

network. The simulation environment is presented in Table 6 and figure 4 illustrates the simulation with 

railway transportation 

Table 6: Simulation Environment 

Aspect Numerical Value(s) 

Train Speed 80 km/h - 200 km/h 

Track Length 1 km - 5 km 

Train Frequency 5 trains/hour - 20 trains/hour 

Station Capacity 10 trains - 50 trains 

Signal System 1 (Traditional) - 2 (Digital) 

Train Delay Tolerance 5 minutes - 20 minutes 

Passenger Load 100 passengers - 500 passengers 

Cargo Volume 1000 tons - 5000 tons 

 

Figure 4: Simulation Environment for the Rail Transportation  
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7. Results and Discussion 

The results and discussion section of a study on rail transportation serves as a crucial segment where the 

findings of the research are presented and analyzed in detail. This section delves into the outcomes of the 

conducted experiments, simulations, or analyses, and provides insights into their implications, significance, 

and potential applications. 

Table 4: Mamdhami Fuzzy 

Rule Antecedent 1 Antecedent 2 Antecedent n Consequent 

1 Input 1 is Small (0.2) Input 2 is Small 

(0.3) 

Input n is Medium 

(0.5) 

Output is Medium 

(0.7) 

2 Input 1 is Medium 

(0.5) 

Input 2 is Large 

(0.8) 

Input n is Small (0.4) Output is Small (0.6) 

3 Input 1 is Large (0.8) Input 2 is Small 

(0.4) 

Input n is Large (0.7) Output is Large (0.9) 

Table 4 presents the Mamdani fuzzy rules used in the classification process. Each rule consists of antecedents, 

representing the input conditions, and a consequent, representing the output action. The antecedents are 

linguistic variables describing the input features along with their corresponding membership values in 

parentheses. For example, in Rule 1, "Input 1 is Small" with a membership value of 0.2, "Input 2 is Small" with 

a membership value of 0.3, and so on until "Input n is Medium" with a membership value of 0.5. These 

antecedents collectively determine the activation of the rule. The consequent specifies the output action to be 

taken based on the activated rule. For instance, in Rule 1, the consequent states "Output is Medium" with a 

membership value of 0.7. This indicates that if the specified conditions in the antecedents are met, the output 

action will be to classify the input as "Medium" with a high degree of certainty, as represented by the 

membership value. Similarly, Rules 2 and 3 outline different combinations of input conditions and 

corresponding output actions, providing a set of guidelines for the classification process based on Mamdani 

fuzzy logic. 

Table 5: Scheduling in Railway Transportation 

Train 

Number 

Departure 

Time (Actual) 

Departure Time 

(Scheduled) 

Arrival Time 

(Actual) 

Arrival Time 

(Scheduled) 

Delay 

(Minutes) 

101 08:05 08:00 10:35 10:30 +5 

102 09:20 09:15 12:05 12:00 +5 

103 10:40 10:30 13:50 13:45 +10 

104 12:10 12:00 15:35 15:30 +10 

105 13:35 13:30 16:50 16:45 +5 

106 15:05 15:00 17:50 17:45 +5 

107 16:50 16:45 19:35 19:30 +5 

108 18:35 18:30 21:20 21:15 +5 

109 20:20 20:15 23:05 23:00 +5 

110 22:05 22:00 00:50 00:45 +5 
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Figure 5: Scheduling with the Railway Transportation 

Table 5 and Figure 5 provides scheduling information for railway transportation, detailing the departure and 

arrival times of trains along with their scheduled counterparts and associated delays. Each row corresponds to a 

specific train, identified by its unique train number. The "Departure Time (Actual)" and "Arrival Time 

(Actual)" columns indicate the actual departure and arrival times of the trains, respectively. Conversely, the 

"Departure Time (Scheduled)" and "Arrival Time (Scheduled)" columns represent the scheduled departure and 

arrival times. The "Delay (Minutes)" column quantifies the delay experienced by each train, calculated as the 

difference between the actual and scheduled times. For instance, Train 101 departed 5 minutes later than 

scheduled, arriving with the same delay. Similarly, Train 103 and Train 104 both experienced a 10-minute 

delay in both departure and arrival. 

Table 6: Mamdani Fuzzy Values for the rail transportation 

Sample Input 1 Input 2 Input 3 Input n Predicted Class Actual Class 

1 0.2 0.5 0.8 0.6 Class A Class A 

2 0.7 0.3 0.1 0.4 Class B Class B 

3 0.9 0.6 0.4 0.8 Class C Class C 

4 0.3 0.8 0.7 0.2 Class A Class B 

5 0.6 0.1 0.5 0.9 Class B Class B 

Table 7: Prediction with Fuzzy for the Rail Transportation 

Sample Input 1 Input 2 Input 3 Input n Predicted Output Actual Output 

1 0.2 0.5 0.8 0.6 0.65 0.7 

2 0.7 0.3 0.1 0.4 0.45 0.5 

3 0.9 0.6 0.4 0.8 0.75 0.8 

4 0.3 0.8 0.7 0.2 0.55 0.6 

5 0.6 0.1 0.5 0.9 0.70 0.75 

Table 6 and Table 7 present the results of Mamdani fuzzy logic applied to rail transportation, showcasing the 

predicted classes and output values for various input samples. In Table 6, each row represents a sample, with 

columns indicating the input values for different features (Input 1, Input 2, Input 3, etc.), the predicted class 

assigned by the fuzzy logic system, and the actual class obtained from the dataset. For instance, Sample 1 has 

input values of 0.2, 0.5, 0.8, etc., leading to the predicted class "Class A," which matches the actual class 

"Class A." Similarly, in Table 7, the predicted output values for each sample are provided alongside the actual 

output values. These output values represent the continuous predictions generated by the fuzzy logic system, 

which aim to approximate the true output values as closely as possible. 
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Table 8: Classification with BR for the Rail transportation 

Epoch Accuracy Loss 

1 0.965 0.12 

2 0.972 0.10 

3 0.975 0.09 

4 0.980 0.08 

5 0.982 0.07 

 

 

Figure 6: Classification with Rail Transportation 
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Table 8 and Figure 6 presents the classification performance of a Backpropagation (BP) Neural Network 

applied to rail transportation data across multiple training epochs. Each row corresponds to a specific epoch 

during the training process, with columns indicating the epoch number, the accuracy achieved by the neural 

network on the validation or test dataset, and the corresponding loss value. The "Accuracy" column quantifies 

the proportion of correctly classified instances by the neural network, while the "Loss" column represents the 

value of the loss function computed during training, typically indicating the discrepancy between the predicted 

and true labels. As the epochs progress, we observe a consistent improvement in accuracy from 0.965 in the 

first epoch to 0.982 in the fifth epoch. Simultaneously, the loss decreases progressively from 0.12 in the first 

epoch to 0.07 in the fifth epoch. 

8. Conclusion 

This paper explores the application of advanced computational techniques, including Mamdani fuzzy logic, 

Backpropagation (BP) Neural Network, and classification algorithms, to address challenges in rail 

transportation scheduling and classification. Through the implementation of Mamdani fuzzy logic, the 

scheduling process benefits from nuanced rule-based decision-making, allowing for efficient management of 

departure and arrival times while minimizing delays. Additionally, the utilization of BP Neural Networks 

enhances classification accuracy and prediction capabilities in rail transportation systems, enabling effective 

handling of diverse datasets and improving decision-making processes. The findings presented in this paper 

demonstrate the potential of computational methods to optimize rail transportation operations, enhance 

efficiency, and improve overall performance. Future research could further explore the integration of these 

computational techniques with real-time data analytics and optimization algorithms to develop more robust and 

adaptive solutions for addressing evolving challenges in rail transportation management and logistics. 
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