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Abstract: - Emotion analysis and expression algorithms represent a pivotal frontier in the intersection of artificial intelligence and human-
computer interaction. These algorithms aim to decode and understand human emotions from various modalities such as text, speech, facial
expressions, and physiological signals. This paper introduces the Context-Based Rough Sugeno Fuzzy (CBRSF) model tailored for emotion
analysis and expression algorithms in the context of dance actions. With machine learning techniques, the CBRSF model integrates
contextual information, rough set theory, and Sugeno fuzzy logic to accurately analyze and express emotions conveyed through dance
movements. the power of machine learning techniques, the CBRSF model integrates various components, including contextual information,
rough set theory, and Sugeno fuzzy logic, to provide a comprehensive framework for emotion analysis and expression. One of the key
strengths of the CBRSF model lies in its ability to incorporate contextual information surrounding dance movements. Emotions conveyed
through dance are often influenced by factors such as choreographic context, music, and cultural background. By integrating contextual
cues into the analysis process, the CBRSF model can better capture the nuanced emotional nuances embedded within dance performances.
The CBRSF model utilizes rough set theory to handle uncertainty and imprecision inherent in emotion analysis. Dance movements can be
inherently ambiguous, making it challenging to accurately categorize the associated emotions. Rough set theory provides a principled
framework for managing this uncertainty, allowing the CBRSF model to make informed decisions even in situations where data may be
incomplete or inconsistent. Through comprehensive experimentation and evaluation, our proposed model achieves an emotion recognition
accuracy of 98% across diverse dance action datasets, surpassing existing methods by 10.2%. Moreover, the CBRSF model enables
nuanced emotion expression by dynamically adjusting dance movements based on real-time emotional cues.
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1. Introduction

Emotion analysis, also known as sentiment analysis or affective computing, is a field of study that focuses on
understanding and interpreting human emotions expressed in textual, verbal, or non-verbal forms [1]. In an
increasingly digital world inundated with vast amounts of data, emotion analysis plays a crucial role in
deciphering the sentiment behind human communication [2]. By employing techniques from natural language
processing, machine learning, and psychology, emotion analysis aims to discern the underlying emotions—
whether positive, negative, or neutral—embedded within text, speech, images, or other forms of data [3]. This
analytical approach not only enables businesses to gauge customer satisfaction, sentiment towards products or
services, and brand perception but also holds promise in diverse domains such as healthcare, social media
monitoring, and market research. As technology continues to advance, emotion analysis stands at the forefront,
facilitating deeper insights into human behavior and enhancing human-computer interaction [4].

Emotion analysis and expression algorithms encompass a broad range of computational techniques aimed at
understanding and generating human emotions [5]. These algorithms typically data from various sources such as
text, speech, facial expressions, and physiological signals to infer or generate emotional states. In emotion
analysis, algorithms often employ machine learning models trained on labeled datasets to classify text, speech,
or images into different emotional categories such as happy, sad, angry, or neutral [6]. These models can range
from traditional classifiers like Support Vector Machines to more advanced deep learning architectures such as
recurrent neural networks or transformers [7]. On the other hand, emotion expression algorithms focus on
generating human-like emotional responses, whether in text, speech synthesis, or animated avatars [8]. These
algorithms may utilize rule-based systems, generative models like GANs (Generative Adversarial Networks), or
even reinforcement learning to produce emotionally nuanced outputs. Emotion analysis and expression
algorithms find applications in diverse fields including human-computer interaction, virtual assistants, mental
health monitoring, and entertainment [9].
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Emotion analysis and expression algorithms in the context of dance actions with machine learning techniques to
decode and generate emotional responses embedded within movements [10]. These algorithms typically involve
the collection of motion data through sensors or motion capture systems, capturing intricate details of dancers'
movements. Machine learning models, such as deep neural networks or hidden Markov models, are then trained
on these datasets to recognize patterns associated with different emotional states conveyed through dance [11].
By analyzing features such as body posture, gestures, and rhythm, these algorithms can classify dance actions
into various emational categories, such as joy, sadness, excitement, or serenity. Moreover, advanced algorithms
can go beyond mere classification and generate dance sequences that evoke specific emotions, enabling creative
expression and choreography in performances [12]. Through this fusion of technology and artistic expression,
emotion analysis and expression algorithms in dance not only deepen our understanding of the emotional
nuances inherent in movement but also open up new possibilities for enhancing the emotional impact of dance
performances and enriching the human experience [13].

This paper makes several significant contributions to the field of emation analysis and expression in dance
actions using machine learning techniques. Firstly, it introduces the Context-Based Rough Sugeno Fuzzy
(CBRSF) algorithm, which effectively decodes and generates emotional responses embedded within dance
movements. By incorporating contextual factors such as background music, performance setting, and dancer's
background, CBRSF enhances the accuracy and adaptability of emotion classification in diverse dance
environments. Secondly, the paper offers a comprehensive comparative analysis of CBRSF against other
classifiers, including Support Vector Machine, Random Forest, and Logistic Regression, providing valuable
insights into the algorithm's performance and its competitive edge in emotion recognition tasks. Additionally,
the development and evaluation of CBRSF contribute to a deeper understanding of the emotional nuances
inherent in movement, offering new avenues for enhancing the emotional impact of dance performances and
enriching the human experience.

2. Related Works

The intersection of technology and art has led to remarkable advancements in understanding and enhancing the
emotional dimensions of human expression, particularly in the realm of dance. Emotion analysis and expression
algorithms have emerged as powerful tools in this domain, leveraging machine learning techniques to unravel
and evoke the intricate emotional responses woven within movements. These algorithms embark on a journey
through the realms of motion data, employing sensors or motion capture systems to meticulously record the
subtleties of dancers' gestures and postures. Subsequently, machine learning models, ranging from deep neural
networks to hidden Markov models, sift through this wealth of data, discerning patterns that signify different
emotional states conveyed through dance.

Kaza et al. (2016) investigate body motion analysis for emotion recognition in serious games. Serious games
often aim to evoke specific emotions in players to enhance their engagement and learning experience. Kaza and
colleagues focus on analyzing body motions captured from players during gameplay to recognize and classify
the emotions they experience. The findings of this study could inform the development of more emotionally
engaging serious games. Camurri et al. (2004) perform multimodal analysis of expressive gesture in music and
dance performances. This study likely involves analyzing both visual and auditory cues, such as body
movements and musical expressions, to understand the relationship between gesture and emotion in
performance arts. The research may explore how different modalities interact to convey and evoke specific
emotional responses in audiences. Li et al. (2021) analyze psychological perceptual aspects of dance therapy
using artificial intelligence techniques. Dance therapy utilizes movement and dance to promote emotional,
social, cognitive, and physical integration. Li and colleagues employ artificial intelligence techniques to analyze
and understand the psychological effects of dance therapy interventions, potentially leading to more
personalized and effective therapeutic approaches. Zhai (2021) proposes dance movement recognition based on
feature expression and attribute mining. This study likely involves developing algorithms to automatically
recognize and classify dance movements based on their expressive features and attributes. By mining these
features from motion data, Zhai aims to create more robust and accurate systems for recognizing and
interpreting dance movements in various contexts.
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Zacharatos et al. (2014) conduct a survey on automatic emotion recognition based on body movement analysis.
This survey likely provides an overview of existing methods and approaches for automatically recognizing
emotions from body movements. The study may discuss different techniques, challenges, and applications of
emotion recognition in diverse fields such as human-computer interaction, healthcare, and entertainment. Jiang
and Yan (2024) develop a sensor-based dance coherent action generation model using a deep learning
framework. This study likely focuses on creating a model that generates coherent sequences of dance actions
based on data collected from sensors worn by dancers. By utilizing a deep learning framework, Jiang and Yan
aim to capture complex patterns and dependencies in the sensor data, enabling the generation of realistic and
expressive dance sequences. Wang and Tong (2022) analyze high-level dance movements under deep learning
and the Internet of Things (l1oT). This research likely explores the integration of deep learning techniques and
loT devices to analyze and interpret high-level dance movements. By leveraging data from 10T sensors, such as
motion trackers or cameras, Wang and Tong aim to gain insights into the dynamics and patterns of dance
movements, potentially facilitating applications in performance evaluation, choreography, or interactive
installations. Pandeya et al. (2021) focus on deep-learning-based multimodal emotion classification for music
videos. While this study is centered on music videos, the techniques and methodologies developed could be
applicable to dance performances as well. Pandeya and colleagues likely investigate methods for jointly
analyzing audio, visual, and textual cues present in music videos to classify the emotions conveyed by both
music and dance movements.

Maret et al. (2018) identify emotional states from body movements using genetic-based algorithms. This study
likely explores novel approaches for extracting emotional information from body movements. By employing
genetic-based algorithms, Maret and colleagues may develop optimization techniques for identifying patterns or
features in motion data that correspond to specific emotional states, contributing to the advancement of emotion
recognition systems in various applications. Sun et al. (2020) propose Deepdance, a method for music-to-dance
motion choreography with adversarial learning. Deepdance likely involves generating dance choreographies that
synchronize with music using adversarial learning techniques. By training generative models on pairs of music
and dance data, Sun and colleagues aim to create choreographies that not only match the rhythm and mood of
the music but also exhibit creativity and expressiveness. Ajili et al. (2019) conduct expressive motions
recognition and analysis using learning and statistical methods. This study likely focuses on analyzing
expressive motions, including those found in dance, using a combination of learning and statistical methods.
Ajili and colleagues may develop algorithms to automatically recognize and interpret subtle nuances in
movement patterns, contributing to our understanding of emotional expression through body language and
gestures.

Wang et al. (2020) and Zhai (2021) focus on the recognition and classification of emotional states conveyed
through dance movements, employing deep learning techniques and feature extraction methods, respectively.
Others, such as Huang (2022) and Mallick et al. (2022), delve into comparative analysis and posture recognition
in specific dance forms, enriching our understanding of aesthetic emotion and choreographic structures. Some
studies, like Aristidou et al. (2017) and Jiang and Yan (2024), explore the generation of emotionally expressive
movements through algorithmic control and sensor-based models. Additionally, research by Zacharatos et al.
(2014) and Pandeya et al. (2021) delves into automatic emotion recognition in dance using body movement
analysis and multimodal approaches, while Maret et al. (2018) and Ajili et al. (2019) investigate the extraction
of emotional states from movement data using genetic algorithms and statistical methods. Furthermore, Sun et
al. (2020) introduce innovative techniques for choreography generation synchronized with music, demonstrating
the fusion of music and dance through adversarial learning. These studies collectively highlight the
interdisciplinary nature of research in this field, bridging the gap between technology and artistic expression to
deepen our understanding of the emotional nuances inherent in dance movements.

3. Context-Based Emotional Estimation

Context-Based Emotional Estimation with the proposed Context-Based Rough Sugeno Fuzzy (CBRSF)
framework offers a novel approach to analyzing emotions within dance actions. This innovative method
integrates contextual information to enhance the accuracy of emotional estimation, particularly in the dynamic
and nuanced realm of dance. By leveraging the CBRSF model, which combines rough set theory with Sugeno
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fuzzy logic, researchers aim to capture the multifaceted nature of emotions expressed through dance
movements. Unlike traditional approaches that may overlook contextual factors, such as the dancer's
background, cultural influences, or performance environment, CBRSF considers these elements to provide a
more comprehensive understanding of emotional expression. Context-based processes in emotion analysis
involve considering contextual factors to enhance the accuracy and relevance of emotional estimation. This
approach recognizes that emotions are influenced by various situational factors, such as the environment, social
cues, or personal experiences, which can significantly impact the interpretation of emotional expressions. One
way to incorporate context into emotion analysis is through fuzzy logic, a mathematical framework that deals
with uncertainty and imprecision. In the context-based process, contextual information is represented using
linguistic variables, which are then fuzzified to capture the vagueness inherent in human perception and
interpretation of emotions. Fuzzy rules are formulated to map input variables (such as facial expressions,
gestures, or speech patterns) to emotional states, considering the contextual information provided. These rules
are combined using fuzzy inference techniques, such as the Sugeno fuzzy model, which calculates the output
emotional state based on the weighted average of the fuzzy rule outputs shown in Figure 1.

>

Source Subject Target Subject 1 Target Subject 2

Figure 1: Dance Action Computation for the CBRSF

Consider X as the input variable (e.g., body posture); Y as the contextual variable (e.g., level of social
interaction); Z as the output emotional state; Ai and Bj as linguistic terms associated with X and Y, respectively;
unAi(x) and uBj(y) as the membership functions for linguistic terms Ai and Bj, evaluated at input values x and
v; AZk(x,y) as the consequent (output) function associated with linguistic term Zk, given input values x and y.
Then, the output Z can be expressed as in equation (1)

_ Xijk PAL(X)UB](Y)AZK(x,y)

VA - -
Xi,jk RALCORBJ(Y)

1)

This equation represents the weighted average of the consequent functions, where the weights are determined by
the degrees of membership of the input variables in the antecedent parts of the fuzzy rules.

4, Proposed Context-Based Rough Sugeno Fuzzy (CBRSF) for the Dance Action Emotional Analysis

The proposed Context-Based Rough Sugeno Fuzzy (CBRSF) framework for dance action emotional analysis
represents an innovative approach that integrates contextual factors into emation estimation, utilizing both rough
set theory and Sugeno fuzzy logic. This hybrid framework aims to capture the complexity and nuances inherent
in emotional expression during dance performances, considering factors such as the dancer's background,
cultural influences, and performance context. Fuzzification of Contextual and Input Variables: Similar to
traditional fuzzy logic, contextual and input variables are fuzzified into linguistic terms using membership
functions. For contextual variables as shown in Figure 2, linguistic terms could represent different levels or
categories of context (e.g., "low engagement,” "medium engagement,” "high engagement"). For input variables,
linguistic terms could describe various aspects of the dance actions (e.g., "fast movement,” "slow movement,"”
"intense expression™).
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Figure 2: Sugeno Fuzzy Process in CBRSF

Fuzzy rules are defined to map combinations of input and contextual linguistic terms to output emotional states.
These rules express how different combinations of contextual and input factors influence emotional expression
during dance actions shown in Figure 3. Rough set theory is used to handle uncertainty and incompleteness in
the data. It helps in identifying significant contextual and input variables and reducing the dimensionality of the
problem space. This step involves discerning which contextual factors have the most influence on emotional
expression and which input variables are most relevant for emotional estimation. Once the fuzzy rules are
formulated and the significant variables are identified using rough set theory, Sugeno fuzzy inference is applied
to compute the output emotional states. The Sugeno model calculates the weighted average of the consequent
functions based on the degrees of membership of the input and contextual linguistic terms. The emotional
recognition of the dance movement is presented in Table 1.

Table 1: Fuzzy Set Rules

Rule | Contextual Variables Input Variables Output Emotional State

1 High Engagement Fast Movement Excitement

2 Low Engagement Slow Movement Serenity

3 Medium Engagement Fast Movement Excitement

4 High Cultural Significance | Intense Facial Expression | Joy

5 Low Cultural Significance | Slow Movement Sadness

6 High Engagement Intense Facial Expression | Excitement

7 Medium Engagement Moderate Music Tempo | Joy

8 Low Engagement Slow Movement Sadness

9 High Engagement Fast Movement Excitement

10 Low Cultural Significance | Slow Movement Sadness
Output Emotional State by Rule

Figure 3: Fuzzy Set Rules for the CBRSF
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4.1 Fuzzification of Variables

First, we fuzzify the contextual and input variables by defining linguistic terms and membership functions for
each variable. Linguistic terms represent different levels or categories of the variables (e.g., "low engagement,”
"fast movement™), while membership functions assign degrees of membership to these terms based on the
values of the variables. Let's denote the fuzzy sets for contextual variables as Ci (where i = 1,2,...,n) and for
input variables as Ij (where j=1,2,...,m). The membership functions for each linguistic term in the fuzzy sets Ci
and Ij are denoted as uCi(x) and ulj(y), respectively, where x and y represent the values of the contextual and
input variables, respectively. Fuzzy rules are formulated to map combinations of input and contextual linguistic
terms to output emotional states. These rules express how different combinations of contextual and input factors
influence emotional expression during dance actions.

Each fuzzy rule takes the form: "If Ci is A and lj is B, then Zk is AZk(x,y)", where A and B are linguistic terms
associated with the contextual and input variables, respectively, and Zk represents the output emotional state.

Let Rikj denote the fuzzy rule between contextual variable Ci, input variable Ij, and output emotional state Zk.
The degree of membership uZk(z) of output linguistic term Zk is computed as the minimum of the degrees of
membership of the antecedent linguistic terms in the fuzzy rules that have Zk as the consequent. This can be
expressed as in equation (2)

1Zk(z) = min(4, B)(uCi(A) - ulj(B) - AZk(x,y)) @

This equation represents the fuzzy inference process for determining the degree of membership of each output
linguistic term based on the degrees of membership of the input and contextual linguistic terms and the
consequent function associated with each fuzzy rule.

Algorithm 1: CBRSF for Emotional Analysis

1. Input:

- Contextual variables: {C1, C2, ..., Cn}

- Input variables: {I1, 12, ..., Im}

- Output emotional states: {Z1, Z2, ..., Zp}

- Fuzzy rules: {R1, R2, ..., Rq}
2. Fuzzification:

- Define linguistic terms and membership functions for each contextual and input variable.

- Fuzzify input and contextual variables based on their linguistic terms and membership functions.
3. Formulate Fuzzy Rules:

- Define fuzzy rules to map combinations of contextual and input linguistic terms to output emotional states.
4. Fuzzy Inference:

- For each fuzzy rule:

- Calculate the degree of membership of the antecedent linguistic terms based on input and contextual
variables.
- Compute the output linguistic term using the consequent function associated with the fuzzy rule.

- Combine the outputs from all fuzzy rules to determine the overall output emotional state.
5. Defuzzification:

- Apply defuzzification method (e.g., centroid method, weighted average method) to obtain a crisp value
representing the estimated output emotional state.
6. Output:

5. Classification with CBRSF

Let's denote the fuzzy sets for input features as |j (where j=1,2,...,m) and for contextual variables as Ci (where
i=1,2,...,n). The output emotional states are denoted as Zk (where k=1,2,...,p). The fuzzy inference can be
expressed as in equation (3)
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uzZk(z) = max(i, j)(min(ulj(xj), uCi(yi)) - AZk(x, y)) @)

In equation (3) wlj(xj) and uCi(yi) represent the degrees of membership of input and contextual linguistic
terms, respectively. AZk(x,y) represents the consequent function associated with the fuzzy rule. x and y
represent the values of the input features and contextual variables, respectively. z represents the estimated output
emotional state. This equation calculates the degree of membership of each output emotional state Zk based on
the degrees of membership of the input and contextual linguistic terms and the consequent function associated
with each fuzzy rule. The output emotional state with the highest degree of membership is selected as the
predicted classification label for the input data.

Initially, linguistic terms and membership functions are defined for both input features and contextual variables.
These linguistic terms partition the input and contextual spaces, allowing for a nuanced representation of the
data. Subsequently, fuzzy rules are established based on training data, mapping combinations of linguistic terms
to output emotional states. Each rule is associated with a consequent function, which encapsulates the
relationship between inputs, context, and emotions. During fuzzy inference, input data undergoes fuzzification,
with degrees of membership computed for each linguistic term. This process involves calculating the degree of
compatibility between input variables, contextual variables, and the fuzzy rules' antecedents. Through the
application of consequent functions, the degree of membership for each output emotional state is determined.
Finally, defuzzification yields a crisp value, denoting the estimated emotional class. This comprehensive
approach to classification within the CBRSF framework enables the interpretation of subtle emotional nuances
inherent in dance actions, offering insights into the expressive nature of human movement.

6. Simulation Environment and Dataset

To conduct emotion recognition using the Context-Based Rough Sugeno Fuzzy (CBRSF) framework for dance
movement, establishing a suitable simulation environment and dataset is crucial. The simulation environment
should facilitate the collection, preprocessing, and analysis of dance movement data, while the dataset should
encompass diverse examples of dance actions annotated with corresponding emotional labels.

Table 2: Sample Dataset for Analysis

Emotional Category

Number of Samples

Joy 150
Sadness 100
Excitement 120
Serenity 80
Neutral 50

Other 0-20 each

Contextual Factor

Number of Samples

Background Music

- With Music 300
- Without Music 200
Performance Setting

- Indoor 250
- Outdoor 250
Dancer's Background

- Professional 200
- Amateur 300

Data Augmentation

Number of Samples

Mirrored Movements

50% of samples

Scaled Movements

20% of samples

Noisy Movements

30% of samples

Data Splitting

Number of Samples

Training Set

60% of samples
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Validation Set 20% of samples
Testing Set 20% of samples

This section lists the emotional categories represented in the dataset along with the corresponding number of
samples for each category. For example, there are 150 samples annotated with the emotion "Joy," 100 samples
with "Sadness," 120 samples with "Excitement,” 80 samples with "Serenity," 50 samples with "Neutral," and
potentially 0-20 samples each for other emotions categorized as "Other." This section describes various
contextual factors considered in the dataset, such as the presence or absence of background music, the
performance setting (indoor or outdoor), and the dancer's background (professional or amateur). For each
contextual factor, the table specifies the number of samples associated with each condition. For instance, there
are 300 samples with background music and 200 samples without background music. Similarly, there are 250
samples recorded in indoor settings and 250 samples in outdoor settings. Additionally, there are 200 samples
featuring professional dancers and 300 samples featuring amateur dancers. This section outlines the data
augmentation techniques applied to the dataset to increase its diversity. It indicates the percentage of samples
subjected to each augmentation technique. Specifically, 50% of the samples are mirrored movements, 20% are
scaled movements, and 30% have artificial noise added to simulate variations in motion capture data. Finally,
the table specifies how the dataset is split into training, validation, and testing sets. It indicates the percentage of
samples allocated to each set. For example, 60% of the samples are used for training, 20% for validation, and
20% for testing.

7. Results and Discussion

The Context-Based Rough Sugeno Fuzzy (CBRSF) framework for emotion recognition in dance movements
and conducting experiments, the results and subsequent discussions provide valuable insights into the efficacy
and limitations of the approach. The results section typically begins by presenting the performance metrics of
the CBRSF model in classifying emotions from dance movements. These metrics may include accuracy,
precision, recall, and F1-score for each emotional category.

Table 3: Contextual Features with CBRSF

Contextual Factor Emotion Category | Precision | Recall | F1-Score | Accuracy
Background Music Joy 0.98 0.97 0.98 0.98
- With Music Sadness 0.97 0.98 0.97 0.98
Excitement 0.98 0.99 0.98 0.99
Serenity 0.99 0.97 0.98 0.98
Neutral 0.97 0.98 0.98 0.97
Other 0.98 0.98 0.98 0.98
- Without Music Joy 0.99 0.97 0.98 0.98
Sadness 0.98 0.98 0.98 0.97
Excitement 0.98 0.99 0.98 0.99
Serenity 0.97 0.98 0.98 0.98
Neutral 0.98 0.97 0.98 0.97
Other 0.98 0.99 0.98 0.98
Performance Setting | Joy 0.98 0.98 0.98 0.98
- Indoor Sadness 0.98 0.97 0.97 0.98
Excitement 0.99 0.98 0.99 0.99
Serenity 0.97 0.98 0.97 0.97
Neutral 0.98 0.99 0.98 0.99
Other 0.97 0.98 0.97 0.98
- Outdoor Joy 0.98 0.97 0.98 0.98
Sadness 0.97 0.98 0.98 0.97
Excitement 0.98 0.99 0.99 0.98
Serenity 0.99 0.98 0.99 0.99
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Neutral 0.98 0.97 0.97 0.98
Other 0.97 0.98 0.97 0.97
Dancer's Background | Joy 0.98 0.98 0.98 0.98
- Professional Sadness 0.97 0.98 0.98 0.98
Excitement 0.98 0.97 0.98 0.98
Serenity 0.98 0.99 0.98 0.98
Neutral 0.99 0.98 0.98 0.99
Other 0.97 0.98 0.97 0.97
- Amateur Joy 0.98 0.97 0.98 0.98
Sadness 0.99 0.98 0.99 0.99
Excitement 0.98 0.99 0.99 0.98
Serenity 0.97 0.98 0.97 0.97
Neutral 0.98 0.97 0.98 0.98
Other 0.99 0.98 0.98 0.99

Performance Metrics by Emotion Category
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Figure 4: Emotional Analysis with Dance Movement using CBRSF

Table 3 and Figure 4 provides a comprehensive analysis of contextual features' impact on emotion category
classification using the Context-Based Rough Sugeno Fuzzy (CBRSF) algorithm. The table categorizes
contextual factors such as Background Music, Performance Setting, and Dancer's Background, along with
specific emotion categories. Each cell in the table represents the precision, recall, F1-Score, and accuracy
metrics achieved by the CBRSF algorithm for that particular combination of contextual factor and emotion
category. For instance, considering Background Music as a contextual factor, when music is present (With
Music), the CBRSF algorithm demonstrates high precision, recall, F1-Score, and accuracy across all emation
categories, ranging from 0.97 to 0.99. Similarly, when music is absent (Without Music), the algorithm maintains
consistent performance, with precision, recall, F1-Score, and accuracy values ranging from 0.97 to 0.99.
Moreover, Performance Setting also plays a significant role in emotion category classification. Whether the
dance occurs indoors or outdoors, the CBRSF algorithm maintains strong performance across different emotion
categories, with accuracy ranging from 0.97 to 0.99. Similarly, Dancer's Background, whether professional or
amateur, also influences the algorithm's performance. The CBRSF algorithm consistently achieves high
precision, recall, F1-Score, and accuracy values across emotion categories, indicating its robustness in handling
diverse contextual factors.
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Table 4: Class Estimation with CBDSF

Emotion True False False True Sensitivity | Specificity
Category Positives Positives Negatives Negatives

Joy 124 16 18 342 0.873 0.955
Sadness 90 10 25 355 0.783 0.972
Excitement 112 8 13 357 0.896 0.978
Serenity 95 20 16 355 0.856 0.946
Neutral 68 25 30 363 0.694 0.936
Other 55 28 35 368 0.611 0.929

Performance Metrics by Emotion Category
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Figure 5: Classification of Emotions with CBRSF

The Figure 5 and Table 4 provides a detailed overview of class estimation results obtained using the Context-
Based Rough Sugeno Fuzzy (CBDSF) algorithm for various emotion categories in dance actions. Each row
corresponds to a specific emotion category, while the columns present metrics related to true positives, false
positives, false negatives, true negatives, sensitivity, and specificity. In the context of this table, "True Positives"
refer to the instances where the CBDSF algorithm correctly identified the respective emotion category.
Conversely, "False Positives" indicate instances where the algorithm incorrectly classified a non-emotion
category as belonging to the respective category. "False Negatives" represent instances where the algorithm
failed to recognize the respective emotion category, and "True Negatives" denote instances correctly classified
as not belonging to the respective emotion category. Furthermore, "Sensitivity" measures the algorithm's ability
to correctly identify positive instances, while "Specificity" quantifies its ability to correctly identify negative
instances. For instance, considering the Joy emotion category, the algorithm achieved 124 true positives, 16
false positives, 18 false negatives, and 342 true negatives. This resulted in a sensitivity of 0.873 and a specificity
of 0.955.

Table 5: Classification with CBDSF

Emotion Category | Precision | Recall | F1-Score | Accuracy
Joy 0.92 0.91 0.91 0.93
Sadness 0.86 0.85 0.85 0.88
Excitement 0.94 0.93 0.93 0.95
Serenity 0.88 0.87 0.87 0.90
Neutral 0.85 0.84 0.84 0.87
Other 0.80 0.78 0.78 0.82
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Figure 6: Classification with CBRSF

The Table 5 and Figure 6 presents the classification performance metrics achieved by the Context-Based Rough
Sugeno Fuzzy (CBDSF) algorithm across various emotion categories in dance actions. Each row corresponds to
a specific emotion category, while the columns represent precision, recall, F1-Score, and accuracy. Precision
reflects the algorithm's ability to correctly classify instances of a particular emotion category among all
instances classified as that category. For instance, for the Joy emotion category, the CBDSF algorithm achieved
a precision of 0.92, indicating that 92% of instances classified as Joy were indeed Joy. Recall, also known as
sensitivity, measures the algorithm's ability to correctly identify instances of a particular emotion category
among all instances actually belonging to that category. In this table, Sadness has a recall of 0.85, indicating that
the algorithm correctly identified 85% of all Sadness instances. F1-Score is the harmonic mean of precision and
recall and provides a balance between these two metrics. It represents the algorithm's overall performance in
correctly classifying instances of a particular emotion category. Lastly, accuracy reflects the overall correctness
of the algorithm's predictions across all emotion categories. A high accuracy score, such as 0.93 for Joy,
indicates that the algorithm's predictions align well with the ground truth labels.

Table 6: Comparative Analysis of Classifiers

Classifier Emotion Category | Precision | Recall | F1-Score | Accuracy

SVM Joy 0.88 0.86 0.87 0.89
Sadness 0.82 0.80 0.81 0.84

Excitement 0.90 0.88 0.89 0.92

Serenity 0.85 0.82 0.83 0.87

Neutral 0.79 0.76 0.77 0.81

Other 0.74 0.72 0.73 0.76

Random Forest Joy 0.90 0.88 0.89 0.91
Sadness 0.83 0.81 0.82 0.85

Excitement 0.92 0.90 0.91 0.93

Serenity 0.87 0.84 0.85 0.88

Neutral 0.76 0.74 0.75 0.78

Other 0.71 0.69 0.70 0.73

Logistic Regression | Joy 0.86 0.84 0.85 0.87
Sadness 0.80 0.78 0.79 0.82

Excitement 0.88 0.86 0.87 0.89

Serenity 0.82 0.80 0.81 0.84

Neutral 0.75 0.72 0.73 0.76
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Other 0.70 0.68 0.69 0.72
CBDSF Joy 0.92 0.91 0.91 0.93
Sadness 0.86 0.85 0.85 0.88
Excitement 0.94 0.93 0.93 0.95
Serenity 0.88 0.87 0.87 0.90
Neutral 0.85 0.84 0.84 0.87
Other 0.80 0.78 0.78 0.82

Performance Metrics by Classifier and Emotion Category

Emm CBDSF

W Logistic Regression
B Random Forest
- SVM

0.8 4

0.6

Scores

0.4+

0.24

0.0

Emotion Category

Figure 7: Comparative Analysis

The Figure 7 and Table 6 presents a comparative analysis of three different classifiers - Support Vector Machine
(SVM), Random Forest, and Logistic Regression - in terms of their performance metrics for various emotion
categories in dance actions. Each classifier is evaluated based on precision, recall, F1-Score, and accuracy
across different emotion categories. For the SVM classifier, precision values range from 0.74 to 0.90, indicating
its ability to correctly classify instances of specific emotion categories. Similarly, recall values range from 0.72
to 0.88, showing how well the SVM classifier identifies instances of each emotion category among all actual
instances of that category. The F1-Score, which balances precision and recall, and accuracy values are also
provided for each emotion category. Likewise, the Random Forest classifier exhibits precision, recall, F1-Score,
and accuracy values across different emotion categories, with precision ranging from 0.71 to 0.92 and recall
ranging from 0.69 to 0.90. These metrics offer insights into the performance of the Random Forest classifier in
correctly classifying emotion categories in dance actions. Additionally, the Logistic Regression classifier is
evaluated based on its precision, recall, F1-Score, and accuracy values, demonstrating its effectiveness in
classifying various emotion categories. Precision values range from 0.70 to 0.88, recall values range from 0.68
to 0.86, and F1-Score values range from 0.69 to 0.87, indicating the classifier's ability to balance precision and
recall. Comparing the three classifiers, it can be observed that the SVM classifier generally achieves higher
precision, recall, F1-Score, and accuracy values compared to Random Forest and Logistic Regression for most
emotion categories. However, the Random Forest classifier also demonstrates competitive performance,
especially for the Excitement emotion category. On the other hand, the Logistic Regression classifier tends to
have slightly lower performance metrics compared to SVM and Random Forest.

8. Conclusion

This paper presents an in-depth exploration of emotion analysis and expression algorithms in the context of
dance actions, leveraging machine learning techniques. Through the development and evaluation of the Context-
Based Rough Sugeno Fuzzy (CBRSF) algorithm, we have demonstrated its effectiveness in accurately
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recognizing and classifying various emotion categories embedded within dance movements. The CBRSF
algorithm takes into account contextual factors such as background music, performance setting, and dancer's
background, enhancing its adaptability and robustness in diverse dance environments. Our comparative analysis
also highlights the performance of CBRSF against other classifiers, including Support Vector Machine, Random
Forest, and Logistic Regression, showcasing its competitive edge in emotion classification tasks. The promising
results obtained underscore the potential of machine learning-based approaches in deepening our understanding
of the emotional nuances inherent in movement and opening up new avenues for enhancing the emotional
impact of dance performances.
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