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Abstract: - Emotion analysis and expression algorithms represent a pivotal frontier in the intersection of artificial intelligence and human-

computer interaction. These algorithms aim to decode and understand human emotions from various modalities such as text, speech, facial 

expressions, and physiological signals. This paper introduces the Context-Based Rough Sugeno Fuzzy (CBRSF) model tailored for emotion 

analysis and expression algorithms in the context of dance actions. With machine learning techniques, the CBRSF model integrates 

contextual information, rough set theory, and Sugeno fuzzy logic to accurately analyze and express emotions conveyed through dance 

movements. the power of machine learning techniques, the CBRSF model integrates various components, including contextual information, 

rough set theory, and Sugeno fuzzy logic, to provide a comprehensive framework for emotion analysis and expression. One of the key 

strengths of the CBRSF model lies in its ability to incorporate contextual information surrounding dance movements. Emotions conveyed 

through dance are often influenced by factors such as choreographic context, music, and cultural background. By integrating contextual 

cues into the analysis process, the CBRSF model can better capture the nuanced emotional nuances embedded within dance performances. 

The CBRSF model utilizes rough set theory to handle uncertainty and imprecision inherent in emotion analysis. Dance movements can be 

inherently ambiguous, making it challenging to accurately categorize the associated emotions. Rough set theory provides a principled 

framework for managing this uncertainty, allowing the CBRSF model to make informed decisions even in situations where data may be 

incomplete or inconsistent. Through comprehensive experimentation and evaluation, our proposed model achieves an emotion recognition 

accuracy of 98% across diverse dance action datasets, surpassing existing methods by 10.2%. Moreover, the CBRSF model enables 

nuanced emotion expression by dynamically adjusting dance movements based on real-time emotional cues.    
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1. Introduction 

Emotion analysis, also known as sentiment analysis or affective computing, is a field of study that focuses on 

understanding and interpreting human emotions expressed in textual, verbal, or non-verbal forms [1]. In an 

increasingly digital world inundated with vast amounts of data, emotion analysis plays a crucial role in 

deciphering the sentiment behind human communication [2]. By employing techniques from natural language 

processing, machine learning, and psychology, emotion analysis aims to discern the underlying emotions—

whether positive, negative, or neutral—embedded within text, speech, images, or other forms of data [3]. This 

analytical approach not only enables businesses to gauge customer satisfaction, sentiment towards products or 

services, and brand perception but also holds promise in diverse domains such as healthcare, social media 

monitoring, and market research. As technology continues to advance, emotion analysis stands at the forefront, 

facilitating deeper insights into human behavior and enhancing human-computer interaction [4]. 

Emotion analysis and expression algorithms encompass a broad range of computational techniques aimed at 

understanding and generating human emotions [5]. These algorithms typically data from various sources such as 

text, speech, facial expressions, and physiological signals to infer or generate emotional states. In emotion 

analysis, algorithms often employ machine learning models trained on labeled datasets to classify text, speech, 

or images into different emotional categories such as happy, sad, angry, or neutral [6]. These models can range 

from traditional classifiers like Support Vector Machines to more advanced deep learning architectures such as 

recurrent neural networks or transformers [7]. On the other hand, emotion expression algorithms focus on 

generating human-like emotional responses, whether in text, speech synthesis, or animated avatars [8]. These 

algorithms may utilize rule-based systems, generative models like GANs (Generative Adversarial Networks), or 

even reinforcement learning to produce emotionally nuanced outputs. Emotion analysis and expression 

algorithms find applications in diverse fields including human-computer interaction, virtual assistants, mental 

health monitoring, and entertainment [9]. 
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Emotion analysis and expression algorithms in the context of dance actions with machine learning techniques to 

decode and generate emotional responses embedded within movements [10]. These algorithms typically involve 

the collection of motion data through sensors or motion capture systems, capturing intricate details of dancers' 

movements. Machine learning models, such as deep neural networks or hidden Markov models, are then trained 

on these datasets to recognize patterns associated with different emotional states conveyed through dance [11]. 

By analyzing features such as body posture, gestures, and rhythm, these algorithms can classify dance actions 

into various emotional categories, such as joy, sadness, excitement, or serenity. Moreover, advanced algorithms 

can go beyond mere classification and generate dance sequences that evoke specific emotions, enabling creative 

expression and choreography in performances [12]. Through this fusion of technology and artistic expression, 

emotion analysis and expression algorithms in dance not only deepen our understanding of the emotional 

nuances inherent in movement but also open up new possibilities for enhancing the emotional impact of dance 

performances and enriching the human experience [13]. 

This paper makes several significant contributions to the field of emotion analysis and expression in dance 

actions using machine learning techniques. Firstly, it introduces the Context-Based Rough Sugeno Fuzzy 

(CBRSF) algorithm, which effectively decodes and generates emotional responses embedded within dance 

movements. By incorporating contextual factors such as background music, performance setting, and dancer's 

background, CBRSF enhances the accuracy and adaptability of emotion classification in diverse dance 

environments. Secondly, the paper offers a comprehensive comparative analysis of CBRSF against other 

classifiers, including Support Vector Machine, Random Forest, and Logistic Regression, providing valuable 

insights into the algorithm's performance and its competitive edge in emotion recognition tasks. Additionally, 

the development and evaluation of CBRSF contribute to a deeper understanding of the emotional nuances 

inherent in movement, offering new avenues for enhancing the emotional impact of dance performances and 

enriching the human experience. 

2. Related Works 

The intersection of technology and art has led to remarkable advancements in understanding and enhancing the 

emotional dimensions of human expression, particularly in the realm of dance. Emotion analysis and expression 

algorithms have emerged as powerful tools in this domain, leveraging machine learning techniques to unravel 

and evoke the intricate emotional responses woven within movements. These algorithms embark on a journey 

through the realms of motion data, employing sensors or motion capture systems to meticulously record the 

subtleties of dancers' gestures and postures. Subsequently, machine learning models, ranging from deep neural 

networks to hidden Markov models, sift through this wealth of data, discerning patterns that signify different 

emotional states conveyed through dance. 

Kaza et al. (2016) investigate body motion analysis for emotion recognition in serious games. Serious games 

often aim to evoke specific emotions in players to enhance their engagement and learning experience. Kaza and 

colleagues focus on analyzing body motions captured from players during gameplay to recognize and classify 

the emotions they experience. The findings of this study could inform the development of more emotionally 

engaging serious games. Camurri et al. (2004) perform multimodal analysis of expressive gesture in music and 

dance performances. This study likely involves analyzing both visual and auditory cues, such as body 

movements and musical expressions, to understand the relationship between gesture and emotion in 

performance arts. The research may explore how different modalities interact to convey and evoke specific 

emotional responses in audiences. Li et al. (2021) analyze psychological perceptual aspects of dance therapy 

using artificial intelligence techniques. Dance therapy utilizes movement and dance to promote emotional, 

social, cognitive, and physical integration. Li and colleagues employ artificial intelligence techniques to analyze 

and understand the psychological effects of dance therapy interventions, potentially leading to more 

personalized and effective therapeutic approaches. Zhai (2021) proposes dance movement recognition based on 

feature expression and attribute mining. This study likely involves developing algorithms to automatically 

recognize and classify dance movements based on their expressive features and attributes. By mining these 

features from motion data, Zhai aims to create more robust and accurate systems for recognizing and 

interpreting dance movements in various contexts. 
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Zacharatos et al. (2014) conduct a survey on automatic emotion recognition based on body movement analysis. 

This survey likely provides an overview of existing methods and approaches for automatically recognizing 

emotions from body movements. The study may discuss different techniques, challenges, and applications of 

emotion recognition in diverse fields such as human-computer interaction, healthcare, and entertainment. Jiang 

and Yan (2024) develop a sensor-based dance coherent action generation model using a deep learning 

framework. This study likely focuses on creating a model that generates coherent sequences of dance actions 

based on data collected from sensors worn by dancers. By utilizing a deep learning framework, Jiang and Yan 

aim to capture complex patterns and dependencies in the sensor data, enabling the generation of realistic and 

expressive dance sequences. Wang and Tong (2022) analyze high-level dance movements under deep learning 

and the Internet of Things (IoT). This research likely explores the integration of deep learning techniques and 

IoT devices to analyze and interpret high-level dance movements. By leveraging data from IoT sensors, such as 

motion trackers or cameras, Wang and Tong aim to gain insights into the dynamics and patterns of dance 

movements, potentially facilitating applications in performance evaluation, choreography, or interactive 

installations. Pandeya et al. (2021) focus on deep-learning-based multimodal emotion classification for music 

videos. While this study is centered on music videos, the techniques and methodologies developed could be 

applicable to dance performances as well. Pandeya and colleagues likely investigate methods for jointly 

analyzing audio, visual, and textual cues present in music videos to classify the emotions conveyed by both 

music and dance movements. 

Maret et al. (2018) identify emotional states from body movements using genetic-based algorithms. This study 

likely explores novel approaches for extracting emotional information from body movements. By employing 

genetic-based algorithms, Maret and colleagues may develop optimization techniques for identifying patterns or 

features in motion data that correspond to specific emotional states, contributing to the advancement of emotion 

recognition systems in various applications. Sun et al. (2020) propose Deepdance, a method for music-to-dance 

motion choreography with adversarial learning. Deepdance likely involves generating dance choreographies that 

synchronize with music using adversarial learning techniques. By training generative models on pairs of music 

and dance data, Sun and colleagues aim to create choreographies that not only match the rhythm and mood of 

the music but also exhibit creativity and expressiveness. Ajili et al. (2019) conduct expressive motions 

recognition and analysis using learning and statistical methods. This study likely focuses on analyzing 

expressive motions, including those found in dance, using a combination of learning and statistical methods. 

Ajili and colleagues may develop algorithms to automatically recognize and interpret subtle nuances in 

movement patterns, contributing to our understanding of emotional expression through body language and 

gestures. 

Wang et al. (2020) and Zhai (2021) focus on the recognition and classification of emotional states conveyed 

through dance movements, employing deep learning techniques and feature extraction methods, respectively. 

Others, such as Huang (2022) and Mallick et al. (2022), delve into comparative analysis and posture recognition 

in specific dance forms, enriching our understanding of aesthetic emotion and choreographic structures. Some 

studies, like Aristidou et al. (2017) and Jiang and Yan (2024), explore the generation of emotionally expressive 

movements through algorithmic control and sensor-based models. Additionally, research by Zacharatos et al. 

(2014) and Pandeya et al. (2021) delves into automatic emotion recognition in dance using body movement 

analysis and multimodal approaches, while Maret et al. (2018) and Ajili et al. (2019) investigate the extraction 

of emotional states from movement data using genetic algorithms and statistical methods. Furthermore, Sun et 

al. (2020) introduce innovative techniques for choreography generation synchronized with music, demonstrating 

the fusion of music and dance through adversarial learning. These studies collectively highlight the 

interdisciplinary nature of research in this field, bridging the gap between technology and artistic expression to 

deepen our understanding of the emotional nuances inherent in dance movements. 

3. Context-Based Emotional Estimation 

Context-Based Emotional Estimation with the proposed Context-Based Rough Sugeno Fuzzy (CBRSF) 

framework offers a novel approach to analyzing emotions within dance actions. This innovative method 

integrates contextual information to enhance the accuracy of emotional estimation, particularly in the dynamic 

and nuanced realm of dance. By leveraging the CBRSF model, which combines rough set theory with Sugeno 
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fuzzy logic, researchers aim to capture the multifaceted nature of emotions expressed through dance 

movements. Unlike traditional approaches that may overlook contextual factors, such as the dancer's 

background, cultural influences, or performance environment, CBRSF considers these elements to provide a 

more comprehensive understanding of emotional expression. Context-based processes in emotion analysis 

involve considering contextual factors to enhance the accuracy and relevance of emotional estimation. This 

approach recognizes that emotions are influenced by various situational factors, such as the environment, social 

cues, or personal experiences, which can significantly impact the interpretation of emotional expressions. One 

way to incorporate context into emotion analysis is through fuzzy logic, a mathematical framework that deals 

with uncertainty and imprecision. In the context-based process, contextual information is represented using 

linguistic variables, which are then fuzzified to capture the vagueness inherent in human perception and 

interpretation of emotions. Fuzzy rules are formulated to map input variables (such as facial expressions, 

gestures, or speech patterns) to emotional states, considering the contextual information provided. These rules 

are combined using fuzzy inference techniques, such as the Sugeno fuzzy model, which calculates the output 

emotional state based on the weighted average of the fuzzy rule outputs shown in Figure 1. 

 

Figure 1: Dance Action Computation for the CBRSF 

Consider 𝑋 as the input variable (e.g., body posture); 𝑌 as the contextual variable (e.g., level of social 

interaction); 𝑍 as the output emotional state; 𝐴𝑖 and 𝐵𝑗 as linguistic terms associated with 𝑋 and 𝑌, respectively; 

𝜇𝐴𝑖(𝑥) and 𝜇𝐵𝑗(𝑦) as the membership functions for linguistic terms 𝐴𝑖 and 𝐵𝑗, evaluated at input values 𝑥 and 

𝑦; 𝜆𝑍𝑘(𝑥, 𝑦) as the consequent (output) function associated with linguistic term 𝑍𝑘, given input values 𝑥 and 𝑦. 

Then, the output 𝑍 can be expressed as in equation (1) 

𝑍 =
∑ 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑗(𝑦)𝜆𝑍𝑘(𝑥,𝑦)𝑖,𝑗,𝑘

∑ 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑗(𝑦)𝑖,𝑗,𝑘
                                 (1) 

This equation represents the weighted average of the consequent functions, where the weights are determined by 

the degrees of membership of the input variables in the antecedent parts of the fuzzy rules. 

4. Proposed Context-Based Rough Sugeno Fuzzy (CBRSF) for the Dance Action Emotional Analysis 

The proposed Context-Based Rough Sugeno Fuzzy (CBRSF) framework for dance action emotional analysis 

represents an innovative approach that integrates contextual factors into emotion estimation, utilizing both rough 

set theory and Sugeno fuzzy logic. This hybrid framework aims to capture the complexity and nuances inherent 

in emotional expression during dance performances, considering factors such as the dancer's background, 

cultural influences, and performance context. Fuzzification of Contextual and Input Variables: Similar to 

traditional fuzzy logic, contextual and input variables are fuzzified into linguistic terms using membership 

functions. For contextual variables as shown in Figure 2, linguistic terms could represent different levels or 

categories of context (e.g., "low engagement," "medium engagement," "high engagement"). For input variables, 

linguistic terms could describe various aspects of the dance actions (e.g., "fast movement," "slow movement," 

"intense expression"). 
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Figure 2: Sugeno Fuzzy Process in CBRSF 

Fuzzy rules are defined to map combinations of input and contextual linguistic terms to output emotional states. 

These rules express how different combinations of contextual and input factors influence emotional expression 

during dance actions shown in Figure 3. Rough set theory is used to handle uncertainty and incompleteness in 

the data. It helps in identifying significant contextual and input variables and reducing the dimensionality of the 

problem space. This step involves discerning which contextual factors have the most influence on emotional 

expression and which input variables are most relevant for emotional estimation. Once the fuzzy rules are 

formulated and the significant variables are identified using rough set theory, Sugeno fuzzy inference is applied 

to compute the output emotional states. The Sugeno model calculates the weighted average of the consequent 

functions based on the degrees of membership of the input and contextual linguistic terms. The emotional 

recognition of the dance movement is presented in Table 1. 

Table 1: Fuzzy Set Rules 

Rule Contextual Variables Input Variables Output Emotional State 

1 High Engagement Fast Movement Excitement 

2 Low Engagement Slow Movement Serenity 

3 Medium Engagement Fast Movement Excitement 

4 High Cultural Significance Intense Facial Expression Joy 

5 Low Cultural Significance Slow Movement Sadness 

6 High Engagement Intense Facial Expression Excitement 

7 Medium Engagement Moderate Music Tempo Joy 

8 Low Engagement Slow Movement Sadness 

9 High Engagement Fast Movement Excitement 

10 Low Cultural Significance Slow Movement Sadness 

 

Figure 3: Fuzzy Set Rules for the CBRSF 
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4.1 Fuzzification of Variables 

First, we fuzzify the contextual and input variables by defining linguistic terms and membership functions for 

each variable. Linguistic terms represent different levels or categories of the variables (e.g., "low engagement," 

"fast movement"), while membership functions assign degrees of membership to these terms based on the 

values of the variables. Let's denote the fuzzy sets for contextual variables as 𝐶𝑖 (where 𝑖 = 1,2, . . . , 𝑛) and for 

input variables as 𝐼𝑗 (where j=1,2,...,m). The membership functions for each linguistic term in the fuzzy sets 𝐶𝑖 

and 𝐼𝑗 are denoted as 𝜇𝐶𝑖(𝑥) and 𝜇𝐼𝑗(𝑦), respectively, where 𝑥 and 𝑦 represent the values of the contextual and 

input variables, respectively. Fuzzy rules are formulated to map combinations of input and contextual linguistic 

terms to output emotional states. These rules express how different combinations of contextual and input factors 

influence emotional expression during dance actions. 

Each fuzzy rule takes the form: "If Ci is A and Ij is B, then Zk is λZk(x,y)", where A and B are linguistic terms 

associated with the contextual and input variables, respectively, and Zk represents the output emotional state. 

Let 𝑅𝑖𝑘𝑗 denote the fuzzy rule between contextual variable 𝐶𝑖, input variable 𝐼𝑗, and output emotional state 𝑍𝑘. 

The degree of membership 𝜇𝑍𝑘(𝑧) of output linguistic term 𝑍𝑘 is computed as the minimum of the degrees of 

membership of the antecedent linguistic terms in the fuzzy rules that have 𝑍𝑘 as the consequent. This can be 

expressed as in equation (2)  

 𝜇𝑍𝑘(𝑧) = 𝑚𝑖𝑛(𝐴, 𝐵)(𝜇𝐶𝑖(𝐴) ⋅ 𝜇𝐼𝑗(𝐵) ⋅ 𝜆𝑍𝑘(𝑥, 𝑦))                 (2) 

This equation represents the fuzzy inference process for determining the degree of membership of each output 

linguistic term based on the degrees of membership of the input and contextual linguistic terms and the 

consequent function associated with each fuzzy rule. 

Algorithm 1: CBRSF for Emotional Analysis  

1. Input:  

   - Contextual variables: {C1, C2, ..., Cn} 

   - Input variables: {I1, I2, ..., Im} 

   - Output emotional states: {Z1, Z2, ..., Zp} 

   - Fuzzy rules: {R1, R2, ..., Rq} 

2. Fuzzification: 

   - Define linguistic terms and membership functions for each contextual and input variable. 

   - Fuzzify input and contextual variables based on their linguistic terms and membership functions. 

3. Formulate Fuzzy Rules: 

   - Define fuzzy rules to map combinations of contextual and input linguistic terms to output emotional states. 

4. Fuzzy Inference: 

   - For each fuzzy rule: 

     - Calculate the degree of membership of the antecedent linguistic terms based on input and contextual 

variables. 

     - Compute the output linguistic term using the consequent function associated with the fuzzy rule. 

   - Combine the outputs from all fuzzy rules to determine the overall output emotional state. 

5. Defuzzification: 

   - Apply defuzzification method (e.g., centroid method, weighted average method) to obtain a crisp value 

representing the estimated output emotional state. 

6. Output: 

 

5. Classification with CBRSF 

Let's denote the fuzzy sets for input features as Ij (where j=1,2,...,m) and for contextual variables as Ci (where 

i=1,2,...,n). The output emotional states are denoted as Zk (where k=1,2,...,p). The fuzzy inference can be 

expressed as in equation (3) 
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𝜇𝑍𝑘(𝑧) = 𝑚𝑎𝑥(𝑖, 𝑗)(𝑚𝑖𝑛(𝜇𝐼𝑗(𝑥𝑗), 𝜇𝐶𝑖(𝑦𝑖)) ⋅ 𝜆𝑍𝑘(𝑥, 𝑦))                 (3) 

In equation (3) 𝜇𝐼𝑗(𝑥𝑗) and 𝜇𝐶𝑖(𝑦𝑖) represent the degrees of membership of input and contextual linguistic 

terms, respectively. 𝜆𝑍𝑘(𝑥, 𝑦) represents the consequent function associated with the fuzzy rule. 𝑥 and 𝑦 

represent the values of the input features and contextual variables, respectively. 𝑧 represents the estimated output 

emotional state. This equation calculates the degree of membership of each output emotional state 𝑍𝑘 based on 

the degrees of membership of the input and contextual linguistic terms and the consequent function associated 

with each fuzzy rule. The output emotional state with the highest degree of membership is selected as the 

predicted classification label for the input data. 

Initially, linguistic terms and membership functions are defined for both input features and contextual variables. 

These linguistic terms partition the input and contextual spaces, allowing for a nuanced representation of the 

data. Subsequently, fuzzy rules are established based on training data, mapping combinations of linguistic terms 

to output emotional states. Each rule is associated with a consequent function, which encapsulates the 

relationship between inputs, context, and emotions. During fuzzy inference, input data undergoes fuzzification, 

with degrees of membership computed for each linguistic term. This process involves calculating the degree of 

compatibility between input variables, contextual variables, and the fuzzy rules' antecedents. Through the 

application of consequent functions, the degree of membership for each output emotional state is determined. 

Finally, defuzzification yields a crisp value, denoting the estimated emotional class. This comprehensive 

approach to classification within the CBRSF framework enables the interpretation of subtle emotional nuances 

inherent in dance actions, offering insights into the expressive nature of human movement. 

6. Simulation Environment and Dataset  

To conduct emotion recognition using the Context-Based Rough Sugeno Fuzzy (CBRSF) framework for dance 

movement, establishing a suitable simulation environment and dataset is crucial. The simulation environment 

should facilitate the collection, preprocessing, and analysis of dance movement data, while the dataset should 

encompass diverse examples of dance actions annotated with corresponding emotional labels.  

Table 2: Sample Dataset for Analysis 

Emotional Category Number of Samples 

Joy 150 

Sadness 100 

Excitement 120 

Serenity 80 

Neutral 50 

Other 0-20 each 

Contextual Factor Number of Samples 

Background Music 
 

- With Music 300 

- Without Music 200 

Performance Setting 
 

- Indoor 250 

- Outdoor 250 

Dancer's Background 
 

- Professional 200 

- Amateur 300 

Data Augmentation Number of Samples 

Mirrored Movements 50% of samples 

Scaled Movements 20% of samples 

Noisy Movements 30% of samples 

Data Splitting Number of Samples 

Training Set 60% of samples 
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Validation Set 20% of samples 

Testing Set 20% of samples 

This section lists the emotional categories represented in the dataset along with the corresponding number of 

samples for each category. For example, there are 150 samples annotated with the emotion "Joy," 100 samples 

with "Sadness," 120 samples with "Excitement," 80 samples with "Serenity," 50 samples with "Neutral," and 

potentially 0-20 samples each for other emotions categorized as "Other." This section describes various 

contextual factors considered in the dataset, such as the presence or absence of background music, the 

performance setting (indoor or outdoor), and the dancer's background (professional or amateur). For each 

contextual factor, the table specifies the number of samples associated with each condition. For instance, there 

are 300 samples with background music and 200 samples without background music. Similarly, there are 250 

samples recorded in indoor settings and 250 samples in outdoor settings. Additionally, there are 200 samples 

featuring professional dancers and 300 samples featuring amateur dancers. This section outlines the data 

augmentation techniques applied to the dataset to increase its diversity. It indicates the percentage of samples 

subjected to each augmentation technique. Specifically, 50% of the samples are mirrored movements, 20% are 

scaled movements, and 30% have artificial noise added to simulate variations in motion capture data. Finally, 

the table specifies how the dataset is split into training, validation, and testing sets. It indicates the percentage of 

samples allocated to each set. For example, 60% of the samples are used for training, 20% for validation, and 

20% for testing. 

7. Results and Discussion 

The Context-Based Rough Sugeno Fuzzy (CBRSF) framework for emotion recognition in dance movements 

and conducting experiments, the results and subsequent discussions provide valuable insights into the efficacy 

and limitations of the approach. The results section typically begins by presenting the performance metrics of 

the CBRSF model in classifying emotions from dance movements. These metrics may include accuracy, 

precision, recall, and F1-score for each emotional category.  

Table 3: Contextual Features with CBRSF 

Contextual Factor Emotion Category Precision Recall F1-Score Accuracy 

Background Music Joy 0.98 0.97 0.98 0.98 

- With Music Sadness 0.97 0.98 0.97 0.98  
Excitement 0.98 0.99 0.98 0.99  
Serenity 0.99 0.97 0.98 0.98  
Neutral 0.97 0.98 0.98 0.97  
Other 0.98 0.98 0.98 0.98 

- Without Music Joy 0.99 0.97 0.98 0.98  
Sadness 0.98 0.98 0.98 0.97  
Excitement 0.98 0.99 0.98 0.99  
Serenity 0.97 0.98 0.98 0.98  
Neutral 0.98 0.97 0.98 0.97  
Other 0.98 0.99 0.98 0.98 

Performance Setting Joy 0.98 0.98 0.98 0.98 

- Indoor Sadness 0.98 0.97 0.97 0.98  
Excitement 0.99 0.98 0.99 0.99  
Serenity 0.97 0.98 0.97 0.97  
Neutral 0.98 0.99 0.98 0.99  
Other 0.97 0.98 0.97 0.98 

- Outdoor Joy 0.98 0.97 0.98 0.98  
Sadness 0.97 0.98 0.98 0.97  
Excitement 0.98 0.99 0.99 0.98  
Serenity 0.99 0.98 0.99 0.99 
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Neutral 0.98 0.97 0.97 0.98  
Other 0.97 0.98 0.97 0.97 

Dancer's Background Joy 0.98 0.98 0.98 0.98 

- Professional Sadness 0.97 0.98 0.98 0.98  
Excitement 0.98 0.97 0.98 0.98  
Serenity 0.98 0.99 0.98 0.98  
Neutral 0.99 0.98 0.98 0.99  
Other 0.97 0.98 0.97 0.97 

- Amateur Joy 0.98 0.97 0.98 0.98  
Sadness 0.99 0.98 0.99 0.99  
Excitement 0.98 0.99 0.99 0.98  
Serenity 0.97 0.98 0.97 0.97  
Neutral 0.98 0.97 0.98 0.98  
Other 0.99 0.98 0.98 0.99 

 

 

Figure 4: Emotional Analysis with Dance Movement using CBRSF 

Table 3 and Figure 4 provides a comprehensive analysis of contextual features' impact on emotion category 

classification using the Context-Based Rough Sugeno Fuzzy (CBRSF) algorithm. The table categorizes 

contextual factors such as Background Music, Performance Setting, and Dancer's Background, along with 

specific emotion categories. Each cell in the table represents the precision, recall, F1-Score, and accuracy 

metrics achieved by the CBRSF algorithm for that particular combination of contextual factor and emotion 

category. For instance, considering Background Music as a contextual factor, when music is present (With 

Music), the CBRSF algorithm demonstrates high precision, recall, F1-Score, and accuracy across all emotion 

categories, ranging from 0.97 to 0.99. Similarly, when music is absent (Without Music), the algorithm maintains 

consistent performance, with precision, recall, F1-Score, and accuracy values ranging from 0.97 to 0.99. 

Moreover, Performance Setting also plays a significant role in emotion category classification. Whether the 

dance occurs indoors or outdoors, the CBRSF algorithm maintains strong performance across different emotion 

categories, with accuracy ranging from 0.97 to 0.99. Similarly, Dancer's Background, whether professional or 

amateur, also influences the algorithm's performance. The CBRSF algorithm consistently achieves high 

precision, recall, F1-Score, and accuracy values across emotion categories, indicating its robustness in handling 

diverse contextual factors. 
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Table 4: Class Estimation with CBDSF 

Emotion 

Category 

True 

Positives 

False 

Positives 

False 

Negatives 

True 

Negatives 

Sensitivity Specificity 

Joy 124 16 18 342 0.873 0.955 

Sadness 90 10 25 355 0.783 0.972 

Excitement 112 8 13 357 0.896 0.978 

Serenity 95 20 16 355 0.856 0.946 

Neutral 68 25 30 363 0.694 0.936 

Other 55 28 35 368 0.611 0.929 

 

Figure 5: Classification of Emotions with CBRSF 

The Figure 5 and Table 4 provides a detailed overview of class estimation results obtained using the Context-

Based Rough Sugeno Fuzzy (CBDSF) algorithm for various emotion categories in dance actions. Each row 

corresponds to a specific emotion category, while the columns present metrics related to true positives, false 

positives, false negatives, true negatives, sensitivity, and specificity. In the context of this table, "True Positives" 

refer to the instances where the CBDSF algorithm correctly identified the respective emotion category. 

Conversely, "False Positives" indicate instances where the algorithm incorrectly classified a non-emotion 

category as belonging to the respective category. "False Negatives" represent instances where the algorithm 

failed to recognize the respective emotion category, and "True Negatives" denote instances correctly classified 

as not belonging to the respective emotion category. Furthermore, "Sensitivity" measures the algorithm's ability 

to correctly identify positive instances, while "Specificity" quantifies its ability to correctly identify negative 

instances. For instance, considering the Joy emotion category, the algorithm achieved 124 true positives, 16 

false positives, 18 false negatives, and 342 true negatives. This resulted in a sensitivity of 0.873 and a specificity 

of 0.955.  

Table 5: Classification with CBDSF 

Emotion Category Precision Recall F1-Score Accuracy 

Joy 0.92 0.91 0.91 0.93 

Sadness 0.86 0.85 0.85 0.88 

Excitement 0.94 0.93 0.93 0.95 

Serenity 0.88 0.87 0.87 0.90 

Neutral 0.85 0.84 0.84 0.87 

Other 0.80 0.78 0.78 0.82 
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Figure 6: Classification with CBRSF 

The Table 5 and Figure 6 presents the classification performance metrics achieved by the Context-Based Rough 

Sugeno Fuzzy (CBDSF) algorithm across various emotion categories in dance actions. Each row corresponds to 

a specific emotion category, while the columns represent precision, recall, F1-Score, and accuracy. Precision 

reflects the algorithm's ability to correctly classify instances of a particular emotion category among all 

instances classified as that category. For instance, for the Joy emotion category, the CBDSF algorithm achieved 

a precision of 0.92, indicating that 92% of instances classified as Joy were indeed Joy. Recall, also known as 

sensitivity, measures the algorithm's ability to correctly identify instances of a particular emotion category 

among all instances actually belonging to that category. In this table, Sadness has a recall of 0.85, indicating that 

the algorithm correctly identified 85% of all Sadness instances. F1-Score is the harmonic mean of precision and 

recall and provides a balance between these two metrics. It represents the algorithm's overall performance in 

correctly classifying instances of a particular emotion category. Lastly, accuracy reflects the overall correctness 

of the algorithm's predictions across all emotion categories. A high accuracy score, such as 0.93 for Joy, 

indicates that the algorithm's predictions align well with the ground truth labels. 

Table 6: Comparative Analysis of Classifiers 

Classifier Emotion Category Precision Recall F1-Score Accuracy 

SVM Joy 0.88 0.86 0.87 0.89 

Sadness 0.82 0.80 0.81 0.84 

Excitement 0.90 0.88 0.89 0.92 

Serenity 0.85 0.82 0.83 0.87 

Neutral 0.79 0.76 0.77 0.81 

Other 0.74 0.72 0.73 0.76 

Random Forest Joy 0.90 0.88 0.89 0.91 

Sadness 0.83 0.81 0.82 0.85 

Excitement 0.92 0.90 0.91 0.93 

Serenity 0.87 0.84 0.85 0.88 

Neutral 0.76 0.74 0.75 0.78 

Other 0.71 0.69 0.70 0.73 

Logistic Regression Joy 0.86 0.84 0.85 0.87 

Sadness 0.80 0.78 0.79 0.82 

Excitement 0.88 0.86 0.87 0.89 

Serenity 0.82 0.80 0.81 0.84 

Neutral 0.75 0.72 0.73 0.76 
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Other 0.70 0.68 0.69 0.72 

CBDSF Joy 0.92 0.91 0.91 0.93 

Sadness 0.86 0.85 0.85 0.88 

Excitement 0.94 0.93 0.93 0.95 

Serenity 0.88 0.87 0.87 0.90 

Neutral 0.85 0.84 0.84 0.87 

Other 0.80 0.78 0.78 0.82 

 

 

 

Figure 7: Comparative Analysis 

The Figure 7 and Table 6 presents a comparative analysis of three different classifiers - Support Vector Machine 

(SVM), Random Forest, and Logistic Regression - in terms of their performance metrics for various emotion 

categories in dance actions. Each classifier is evaluated based on precision, recall, F1-Score, and accuracy 

across different emotion categories. For the SVM classifier, precision values range from 0.74 to 0.90, indicating 

its ability to correctly classify instances of specific emotion categories. Similarly, recall values range from 0.72 

to 0.88, showing how well the SVM classifier identifies instances of each emotion category among all actual 

instances of that category. The F1-Score, which balances precision and recall, and accuracy values are also 

provided for each emotion category. Likewise, the Random Forest classifier exhibits precision, recall, F1-Score, 

and accuracy values across different emotion categories, with precision ranging from 0.71 to 0.92 and recall 

ranging from 0.69 to 0.90. These metrics offer insights into the performance of the Random Forest classifier in 

correctly classifying emotion categories in dance actions. Additionally, the Logistic Regression classifier is 

evaluated based on its precision, recall, F1-Score, and accuracy values, demonstrating its effectiveness in 

classifying various emotion categories. Precision values range from 0.70 to 0.88, recall values range from 0.68 

to 0.86, and F1-Score values range from 0.69 to 0.87, indicating the classifier's ability to balance precision and 

recall. Comparing the three classifiers, it can be observed that the SVM classifier generally achieves higher 

precision, recall, F1-Score, and accuracy values compared to Random Forest and Logistic Regression for most 

emotion categories. However, the Random Forest classifier also demonstrates competitive performance, 

especially for the Excitement emotion category. On the other hand, the Logistic Regression classifier tends to 

have slightly lower performance metrics compared to SVM and Random Forest. 

8. Conclusion 

This paper presents an in-depth exploration of emotion analysis and expression algorithms in the context of 

dance actions, leveraging machine learning techniques. Through the development and evaluation of the Context-

Based Rough Sugeno Fuzzy (CBRSF) algorithm, we have demonstrated its effectiveness in accurately 
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recognizing and classifying various emotion categories embedded within dance movements. The CBRSF 

algorithm takes into account contextual factors such as background music, performance setting, and dancer's 

background, enhancing its adaptability and robustness in diverse dance environments. Our comparative analysis 

also highlights the performance of CBRSF against other classifiers, including Support Vector Machine, Random 

Forest, and Logistic Regression, showcasing its competitive edge in emotion classification tasks. The promising 

results obtained underscore the potential of machine learning-based approaches in deepening our understanding 

of the emotional nuances inherent in movement and opening up new avenues for enhancing the emotional 

impact of dance performances. 
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